From afbb4cc73c44b6321cae39dbe46b97155805097d Mon Sep 17 00:00:00 2001 From: Trygve Laugstøl Date: Sun, 13 Dec 2015 21:03:11 +0100 Subject: wip --- .../BKP/Tamper/readme.txt | 120 +++++++++++++++++++++ 1 file changed, 120 insertions(+) create mode 100644 tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/BKP/Tamper/readme.txt (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/BKP/Tamper/readme.txt') diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/BKP/Tamper/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/BKP/Tamper/readme.txt new file mode 100644 index 0000000..49d3c67 --- /dev/null +++ b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/BKP/Tamper/readme.txt @@ -0,0 +1,120 @@ +/** + @page BKP_Tamper BKP Tamper example + + @verbatim + ******************** (C) COPYRIGHT 2011 STMicroelectronics ******************* + * @file BKP/Tamper/readme.txt + * @author MCD Application Team + * @version V3.5.0 + * @date 08-April-2011 + * @brief Description of the BKP Tamper example. + ****************************************************************************** + * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS + * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE + * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY + * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING + * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE + * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. + ****************************************************************************** + @endverbatim + +@par Example Description + +This example shows how to write/read data to/from Backup data registers and +demonstrates the Tamper detection feature. + +The associated firmware performs the following: + +1. It configures the ANTI_TAMP pin to be active low, and enables the Tamper interrupt. + +2. It writes the data to all Backup data registers, then check whether the data were +correctly written. If yes, LED1 turns on, otherwise LED2 turns on. + +3. On applying a low level on the ANTI_TAMP pin (PC.13), the Backup data registers +are reset and the Tamper interrupt is generated. The corresponding ISR then checks +whether the Backup data registers are cleared. If yes, LED3 on, otherwise LED4 +turns on. + + +@par Directory contents + + - BKP/Tamper/stm32f10x_conf.h Library Configuration file + - BKP/Tamper/stm32f10x_it.h Interrupt handlers header file + - BKP/Tamper/stm32f10x_it.c Interrupt handlers + - BKP/Tamper/main.h Main header file + - BKP/Tamper/main.c Main program + - BKP/Tamper/system_stm32f10x.c STM32F10x system source file + + +@par Hardware and Software environment + + - This example runs on STM32F10x Connectivity line, High-Density, Medium-Density, + High-Density Value line, XL-Density, Medium-Density Value line, Low-Density + and Low-Density Value line Devices. + + - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density + Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL + (Connectivity line), STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL + (Medium-Density) evaluation boards and can be easily tailored to any other + supported device and development board. + To select the STMicroelectronics evaluation board used to run the example, + uncomment the corresponding line in stm32_eval.h file (under Utilities\STM32_EVAL) + + - STM32100B-EVAL Set-up + - Use LD1, LD2, LD3 and LD4 leds connected respectively to PC.06, PC.07, + PC.08 and PC.09 pins + - Use the Tamper push-button connected to pin PC.13. PC13 is already + connected to VDD on the eval board. + + - STM3210C-EVAL Set-up + - Use LD1, LD2, LD3 and LD4 leds connected respectively to PD.07, PD.13, PF.03 + and PD.04 pins + - Use the Tamper push-button connected to pin PC.13 (set jumper JP1 in position 2-3). + PC13 is already connected to VDD on the eval board. + + - STM3210E-EVAL Set-up + - Use LD1, LD2, LD3 and LD4 leds connected respectively to PF.06, PF0.7, + PF.08 and PF.09 pins + - Use the Tamper push-button connected to pin PC.13. PC13 is already + connected to VDD on the eval board. + + - STM3210B-EVAL Set-up + - Use LD1, LD2, LD3 and LD4 leds connected respectively to PC.06, PC.07, + PC.08 and PC.09 pins + - Use the Tamper push-button connected to pin PC.13. PC13 is already + connected to VDD on the eval board. + + - STM32100E-EVAL Set-up + - Use LD1, LD2, LD3 and LD4 leds connected respectively to PF.06, PF0.7, + PF.08 and PF.09 pins + - Use the Tamper push-button connected to pin PC.13. PC13 is already + connected to VDD on the eval board. + +@par How to use it ? + +In order to make the program work, you must do the following : + - Copy all source files from this example folder to the template folder under + Project\STM32F10x_StdPeriph_Template + - Open your preferred toolchain + - Rebuild all files and load your image into target memory + - Run the example + +@note + - Low-density Value line devices are STM32F100xx microcontrollers where the + Flash memory density ranges between 16 and 32 Kbytes. + - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx + microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes. + - Medium-density Value line devices are STM32F100xx microcontrollers where + the Flash memory density ranges between 64 and 128 Kbytes. + - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx + microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes + - High-density Value line devices are STM32F100xx microcontrollers where + the Flash memory density ranges between 256 and 512 Kbytes. + - High-density devices are STM32F101xx and STM32F103xx microcontrollers where + the Flash memory density ranges between 256 and 512 Kbytes. + - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where + the Flash memory density ranges between 512 and 1024 Kbytes. + - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers. + + *

© COPYRIGHT 2011 STMicroelectronics

+ */ -- cgit v1.2.3