/** ****************************************************************************** * @file USART/Synchronous/main.c * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief Main program body ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * *

© COPYRIGHT 2011 STMicroelectronics

****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f10x.h" #include "platform_config.h" /** @addtogroup STM32F10x_StdPeriph_Examples * @{ */ /** @addtogroup USART_Synchronous * @{ */ /* Private typedef -----------------------------------------------------------*/ typedef enum {FAILED = 0, PASSED = !FAILED} TestStatus; /* Private define ------------------------------------------------------------*/ #define TxBufferSize1 (countof(TxBuffer1) - 1) #define TxBufferSize2 (countof(TxBuffer2) - 1) #define DYMMY_BYTE 0x00 /* Private macro -------------------------------------------------------------*/ #define countof(a) (sizeof(a) / sizeof(*(a))) /* Private variables ---------------------------------------------------------*/ USART_InitTypeDef USART_InitStructure; USART_ClockInitTypeDef USART_ClockInitStructure; uint8_t TxBuffer1[] = "USART Synchronous Example: USARTy -> SPIy using TXE and RXNE Flags"; uint8_t TxBuffer2[] = "USART Synchronous Example: SPIy -> USARTy using TXE and RXNE Flags"; uint8_t RxBuffer1[TxBufferSize2]; uint8_t RxBuffer2[TxBufferSize1]; __IO uint8_t NbrOfDataToRead1 = TxBufferSize2; __IO uint8_t NbrOfDataToRead2 = TxBufferSize1; __IO uint8_t TxCounter1 = 0, RxCounter1 = 0; __IO uint8_t TxCounter2 = 0, RxCounter2 = 0; volatile TestStatus TransferStatus1 = FAILED, TransferStatus2 = FAILED; /* Private function prototypes -----------------------------------------------*/ void RCC_Configuration(void); void GPIO_Configuration(void); void SPI_Configuration(void); TestStatus Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { /*!< At this stage the microcontroller clock setting is already configured, this is done through SystemInit() function which is called from startup file (startup_stm32f10x_xx.s) before to branch to application main. To reconfigure the default setting of SystemInit() function, refer to system_stm32f10x.c file */ /* System Clocks Configuration */ RCC_Configuration(); /* Configure the GPIO ports */ GPIO_Configuration(); /* Configure the SPI */ SPI_Configuration(); /* USARTy configuration ------------------------------------------------------*/ /* USARTy configured as follow: - BaudRate = 115200 baud - Word Length = 8 Bits - One Stop Bit - No parity - Hardware flow control disabled (RTS and CTS signals) - Receive and transmit enabled - USART Clock Enabled - USART CPOL: Clock is active High - USART CPHA: Data is captured on the second edge - USART LastBit: The clock pulse of the last data bit is output to the SCLK pin */ USART_ClockInitStructure.USART_Clock = USART_Clock_Enable; USART_ClockInitStructure.USART_CPOL = USART_CPOL_High; USART_ClockInitStructure.USART_CPHA = USART_CPHA_2Edge; USART_ClockInitStructure.USART_LastBit = USART_LastBit_Enable; USART_ClockInit(USARTy, &USART_ClockInitStructure); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No ; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USARTy, &USART_InitStructure); /* Configure the USARTy */ USART_Init(USARTy, &USART_InitStructure); /* Enable the USARTy */ USART_Cmd(USARTy, ENABLE); while(NbrOfDataToRead2--) { /* Write one byte in the USARTy Transmit Data Register */ USART_SendData(USARTy, TxBuffer1[TxCounter1++]); /* Wait until end of transmit */ while(USART_GetFlagStatus(USARTy, USART_FLAG_TC) == RESET) { } /* Wait the byte is entirely received by SPIy */ while(SPI_I2S_GetFlagStatus(SPIy, SPI_I2S_FLAG_RXNE) == RESET) { } /* Store the received byte in the RxBuffer2 */ RxBuffer2[RxCounter2++] = SPI_I2S_ReceiveData(SPIy); } /* Clear the USARTy Data Register */ USART_ReceiveData(USARTy); while(NbrOfDataToRead1--) { /* Wait until end of transmit */ while(SPI_I2S_GetFlagStatus(SPIy, SPI_I2S_FLAG_TXE)== RESET) { } /* Write one byte in the SPIy Transmit Data Register */ SPI_I2S_SendData(SPIy, TxBuffer2[TxCounter2++]); /* Send a Dummy byte to generate clock to slave */ USART_SendData(USARTy, DYMMY_BYTE); /* Wait until end of transmit */ while(USART_GetFlagStatus(USARTy, USART_FLAG_TC) == RESET) { } /* Wait the byte is entirely received by USARTy */ while(USART_GetFlagStatus(USARTy, USART_FLAG_RXNE) == RESET) { } /* Store the received byte in the RxBuffer1 */ RxBuffer1[RxCounter1++] = USART_ReceiveData(USARTy); } /* Check the received data with the send ones */ TransferStatus1 = Buffercmp(TxBuffer1, RxBuffer2, TxBufferSize1); /* TransferStatus = PASSED, if the data transmitted from USARTy and received by SPIy are the same */ /* TransferStatus = FAILED, if the data transmitted from USARTy and received by SPIy are different */ TransferStatus2 = Buffercmp(TxBuffer2, RxBuffer1, TxBufferSize2); /* TransferStatus = PASSED, if the data transmitted from SPIy and received by USARTy are the same */ /* TransferStatus = FAILED, if the data transmitted from SPIy and received by USARTy are different */ while (1) { } } /** * @brief Configures the different system clocks. * @param None * @retval None */ void RCC_Configuration(void) { /* Enable GPIO clock */ RCC_APB2PeriphClockCmd(USARTy_GPIO_CLK | SPIy_GPIO_CLK | RCC_APB2Periph_AFIO, ENABLE); /* Enable USARTy Clock */ RCC_APB2PeriphClockCmd(USARTy_CLK, ENABLE); /* Enable SPIy Clock */ RCC_APB2PeriphClockCmd(SPIy_CLK, ENABLE); } /** * @brief Configures the different GPIO ports. * @param None * @retval None */ void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; /* Configure USARTy TX and USARTy CK pins as alternate function push-pull */ GPIO_InitStructure.GPIO_Pin = USARTy_TxPin | USARTy_ClkPin; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(USARTy_GPIO, &GPIO_InitStructure); /* Configure SPI1 pins: SCK, MISO and MOSI */ GPIO_InitStructure.GPIO_Pin = SPIy_SCKPin | SPIy_MISOPin | SPIy_MOSIPin; GPIO_Init(SPIy_GPIO, &GPIO_InitStructure); /* Configure USARTy RX as input floating */ GPIO_InitStructure.GPIO_Pin = USARTy_RxPin; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(USARTy_GPIO, &GPIO_InitStructure); } /** * @brief Configures the SPI. * @param None * @retval None */ void SPI_Configuration(void) { SPI_InitTypeDef SPI_InitStructure; SPI_StructInit(&SPI_InitStructure); SPI_I2S_DeInit(SPIy); /* SPIy Config */ SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Slave; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_LSB; /* Configure SPIy */ SPI_Init(SPIy, &SPI_InitStructure); /* SPIy enable */ SPI_Cmd(SPIy, ENABLE); } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval PASSED: pBuffer1 identical to pBuffer2 * FAILED: pBuffer1 differs from pBuffer2 */ TestStatus Buffercmp(uint8_t* pBuffer1, uint8_t* pBuffer2, uint16_t BufferLength) { while(BufferLength--) { if(*pBuffer1 != *pBuffer2) { return FAILED; } pBuffer1++; pBuffer2++; } return PASSED; } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/