
IoT Workshop

Trygve Laugstøl <trygvis@trygvis.io>

NodeMCU

NodeMCU hardware

NodeMCU hardware

Flash

ESP8266 CP201x USB

QSPI

UART

ESP-12

NodeMCU

ESP8266 software layers

ESP8266 Hardware

ESP SDK
GCC

libc

ESP interface

Generic

Arduino
Ethernet ESP APIs

A
rd
u
in
o

ESP8266 + Arduino

▶ Standard Arduino IDE
▶ ESP8266 Arduino core

▶ https://github.com/esp8266/Arduino

Arduino IDE

Arduino code structure

void setup() {
// Called once

}

void loop() {
// Called repeatedly

}

Arduino file structure

foo/
foo.ino
config.h

Generic Arduino APIs

// Pin: D0, D1, etc.
// Mode: OUTPUT, INPUT, INPUT_PULLUP
void pinMode(uint8_t pin, uint8_t mode);

// State: HIGH, LOW, true/false, 1/0
void digitalWrite(uint8_t pin, uint8_t state);
int digitalRead(uint8_t pin);

unsigned long now millis();
unsigned long now micros();

ESP Arduino APIs

class {
void restart();
uint32_t getFreeHeap();
uint32_t getChipId();

...
} ESP;

// Usage
ESP.restart();

ESP

// Top of file
#include <ESP8266WiFi.h>

// In setup()
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());

ESP Arduino APIs

class {
String macAddress();

wl_status_t status();
int32_t RSSI();

IPAddress localIP();
IPAddress subnetMask();
IPAddress gatewayIP();
IPAddress dnsIP(uint8_t dns_no = 0);

...
} WiFi;

// Usage:

Serial.println(WiFi.localIP().toString());

What is IoT

What is IoT

▶ Not “a computer connected to the internet”
▶ Then it is really just another computer connected to the internet

▶ Must be something else
▶ It is simply devices that are resource constrained

▶ Usually in more than one way

▶ Autonomous operation, the connection might not be permanent

IoT is just a concept

▶ The Internet of Things (IoT) is the network of physical devices,

vehicles, home appliances and other items embedded with

electronics, software, sensors, actuators, and connectivity which

enables these objects to connect and exchange data.1

1Wikipedia “Internet of Things”

What is an IoT Device?

What is an IoT Device?

▶ Constrained in (one or more of):
▶ Memory
▶ CPU
▶ Network bandwidth and/or latency
▶ Storage

▶ Has connectivity
▶ Bluetooth
▶ Wi-Fi
▶ NB-IoT
▶ LTE Cat-M
▶ LoRa
▶ Proprietary radio

IoT Devices - Example chips

Protocol Chip Specs

Bluetooth 4/5 nRF52x 32-64 MHz, Cortex-M0/M4F,

24-256k RAM, 192-1024 k Flash,

$1.88-$3.85

WiFi ESP8266/ESP32 80MHz-160MHz, 1-2 cores,

~80k RAM, < $1 - $4.53

LoRa Semtech $3.23 - $4.74

ESP8266 details - Power usage

State Current usage

Off 0.5 µA

Deep sleep with RTC 20 µA

Light sleep (with Wi-Fi) 1 mA

Sleep with peripherials 15 mA

TX 170 mA

Lecture: MQTT

MQTT

▶ Message Queuing Telemetry Transport
▶ Wikipedia: MQTT

https://en.wikipedia.org/wiki/MQTT

Device and application architecture with MQTT

Device #1 Device #2 Device #3

Broker

Central

MQTT Topic

The temperature sensor:

▶ Publishes on:
▶ myapp/$device-id/temperature
▶ myapp/$device-id/humidity
▶ myapp/$device-id/altert

▶ Subscribes to:
▶ myapp/$device-id/command

The central application:

▶ Subscribes to:
▶ myapp/#/temperature
▶ myapp/#/humidity

▶ Publishes on:
▶ myapp/$device-id/command

MQTT - Implementations

▶ Mosquitto
▶ Eclipse Paho
▶ RabbitMQ
▶ ActiveMQ

MQTT Cloud Connectors

▶ Cloud
▶ Amazon IoT
▶ Google Cloud IoT
▶ Microsoft Azure IoT
▶ CloudMQTT (at Heroku)

▶ DIY
▶ ThingMQ
▶ HiveMQ

MQTT - The protocol

Agents have one of two roles:

▶ Client
▶ Publishes messages
▶ Subscribes / unsubscribes to topics
▶ Keep alive

▶ Broker (aka Server)
▶ Handles network connections
▶ Keeps subscriptions
▶ Manages client

▶ Timeouts and disconnects
▶ (last) will

▶ Persistence of retained messages

MQTT - The protocol - MQTT Topic

▶ Topic name: foo/bar/baz
▶ Topic filter

▶ foo/bar/?
▶ foo/#

MQTT - The protocol - Retained message

Message is kept by the server even after disconnect

▶ CONNECT
▶ PUBLISH

▶ RETAIN
▶ $app/$device/temperature
▶ 22.3

▶ DISCONNECT

Later on:

▶ SUBSCRIBE
▶ $app/#/temperature

▶ PUBLISH
▶ $app/$device/temperature
▶ 22.3

MQTT - The protocol - Will message

Message sent when you disconnect

Client #1:

1. CONNECT
▶ WILL TOPIC: $app/$device/online
▶ WILL PAYLOAD: 0

2. PUBLISH
▶ $app/$device/online
▶ 1

3. DISCONNECT

Broker

1. To all subscribers PUBLISH
▶ $app/$device/online
▶ 0

MQTT on Arduino

PubSubClient is our MQTT client implementation.

#include <PubSubClient.h>

WiFiClient wifiClient;
PubSubClient mqtt(wifiClient);

void callback(char* topic,
byte* payload,
unsigned int length);

void setup() {
// Configure WiFi
mqtt.setServer(mqtt_server, 1883);
mqtt.setCallback(callback);

}

MQTT on Arduino
void loop() {

if (!mqtt.connected()) {
reconnect();

}
else {

mqtt.loop();
}

// Do work
}

void reconnect() {
do {

Serial.println("Connecting to MQTT");
} while (!mqtt.connect(client_id));
Serial.println("Connected to MQTT server");

// Subscribe to any topics you need
mqtt.subscribe(topic_pattern);

}

Assignment

▶ mqtt

MQTT topic architecture

The central application is split:

▶ An aggregating agent:
▶ myapp/#/temperature
▶ myapp/#/humidity

▶ Emailing agent
▶ myapp/$device-id/altert

▶ Publishes on:
▶ myapp/$device-id/command

MQTT topic architecture

Device #1 Device #2 Device #3

Broker

Central

MQTT topic architecture

Device #1 Device #2 Device #3

Broker

Aggregator Email

MQTT - Patterns

▶ Combining MQTT and HTTP
▶ Using web sockets transport

Assignment

▶ mqtt2

Assignment

▶ mqtt3

	NodeMCU
	What is IoT
	Lecture: MQTT

