
IoT Workshop

Trygve Laugstøl <trygvis@trygvis.io>

NodeMCU

NodeMCU hardware

1

NodeMCU hardware

Flash

ESP8266 CP201x USB

QSPI

UART

ESP-12

NodeMCU

ESP8266 software layers

ESP8266 Hardware

ESP SDK GCC
libc

ESP interface

Generic
Arduino Ethernet ESP APIs

A
rd
ui
no

ESP8266 + Arduino

• Standard Arduino IDE
• ESP8266 Arduino core

– https://github.com/esp8266/Arduino

2

Arduino IDE

Arduino code structure

void setup() {
// Called once

}

void loop() {
// Called repeatedly

}

MCU programming is often structured into:

• Configure
– CPU
– GPIO ports
– MCU’s peripherals
– The rest of the board
– Configure application and callbacks.

• Sleep

Arduino chooses to run the cpu at 100% instead of the sleep step..

3

Arduino file structure

foo/
foo.ino
config.h

foo.ino must always be in a foo directory.

config.h is created by “new tab”.

Generic Arduino APIs

// Pin: D0, D1, etc.
// Mode: OUTPUT, INPUT, INPUT_PULLUP
void pinMode(uint8_t pin, uint8_t mode);

// State: HIGH, LOW, true/false, 1/0
void digitalWrite(uint8_t pin, uint8_t state);
int digitalRead(uint8_t pin);

unsigned long now millis();
unsigned long now micros();

ESP Arduino APIs

class {
void restart();
uint32_t getFreeHeap();
uint32_t getChipId();

...
} ESP;

// Usage
ESP.restart();

ESP Arduino APIs

class {
String macAddress();

wl_status_t status();
int32_t RSSI();

4

IPAddress localIP();
IPAddress subnetMask();
IPAddress gatewayIP();
IPAddress dnsIP(uint8_t dns_no = 0);

...
} WiFi;

// Usage:

Serial.println(WiFi.localIP().toString());

http://arduino-esp8266.readthedocs.io/en/latest/libraries.html

What is IoT

What is IoT

• Not “a computer connected to the internet”
– Then it is really just another computer connected to the internet

• Must be something else
– It is simply devices that are resource constrained

∗ Usually in more than one way
• Autonomous operation, the connection might not be permanent

IoT is just a concept

• The Internet of Things (IoT) is the network of physical devices, vehicles,
home appliances and other items embedded with electronics, software, sen-
sors, actuators, and connectivity which enables these objects to connect
and exchange data.1

What is an IoT Device?

As for their definition.

What differentiates a computer from an IoT device?

What is an IoT Device?

• Constrained in (one or more of):
1Wikipedia “Internet of Things”

5

– Memory
– CPU
– Network bandwidth and/or latency
– Storage

• Has connectivity
– Bluetooth
– Wi-Fi
– NB-IoT
– LTE Cat-M
– LoRA
– Proprietary radio

Might not have:

• RTC

Extra features:

• IR
• UART
• CAN

Sparkfun and Adafruit etc sell modules with all of these technologies.

IoT Devices - Bluetooth 4/5 chips

Chip CPU Freq RAM Flash Price
nRF52810 Cortex-M4 64 MHz 24k 192k $1.88
nRF52832 Cortex-M4F 32k 256k $2.54

64k 512k $2.59
nRF52840 Cortex-M4F 256k 1024k $3.85

• nRF52810: High performance, entry-level Bluetooth 4/ANT/2.4GHz SoC
• nRF52832: High performance Bluetooth 4/ANT/2.4GHz SoC
• nRF52840: Advanced multi-protocol System-on-Chip Supporting: Blue-

tooth 5, ANT/ANT+, 802.15.4 and 2.4GHz proprietary

All quantities are 1000 pieces

nRF51: https://www.digikey.no/products/en/rf-if-and-rfid/rf-transceiver-
ics/879?k=nrf51822

nRF52832: these have different packagings, not only difference price

https://www.digikey.no/products/en/rf-if-and-rfid/rf-transceiver-ics/879?FV=1c0001%2Cffe0036f&quantity=3000&ColumnSort=1000011&page=1&k=nrf52832&pageSize=500&pkeyword=nrf52810

nRF52810: High performance, entry-level Bluetooth 4/ANT/2.4GHz SoC
nRF52832: High performance Bluetooth 4/ANT/2.4GHz SoC nRF52840: Ad-

6

vanced multi-protocol System-on-Chip Supporting: Bluetooth 5, ANT/ANT+,
802.15.4 and 2.4GHz proprietary

IoT Devices - LoRA

Modules

Module Data Rate Price
RN2483A-I/RM104 $12.05 @ 250
CMWX1ZZABZ-078 SX1276 $10.74 @ 1000
RF-LORA-868-SO SX1272 $16.55 @ 1000

Chips

Chip Price
SX1281 $3.23
SX1272 $4.25
SX1276 $4.25
SX1279 $4.74

These modules require an external MCU, so does the chips.

IoT Devices - NB-IoT

Module Price
uBlox SARA-N210 ~$10 @ 100
Sierra Wireless HL7800_1103933 $15.72

IoT Devices - Wi-Fi

Chip CPU Freq ROM RAM Price
ESP8266 Tensilica L106 160 MHz N/A ~50 kB < $1

ESP32 - dual cpu, Wi-Fi, Bluetooth 4 ESP32-D0WDQ6 2x Xtensa @ 160MHz
$ 4.53 @ 10

7

The ESP8266’s RAM depends on which firmware stack is used. Physical is
probably 128k or most likely 64k.

ESP8266 details - Power usage

State Current usage
Off 0.5 µA
Deep sleep with RTC 20 µA
Light sleep (with Wi-Fi) 1 mA
Sleep with peripherials 15 mA
TX 170 mA

Datasheet page 18

Going back to basics

What is the internet again?

OSI model

1. Physical Layer
2. Data Link Layer
3. Network Layer
4. Transport Layer
5. Session Layer
6. Presentation Layer
7. Application Layer

• Wikipedia: OSI model
• Wikipedia: OSI model#Examples

Does not match the TCP/IP stack very closely.

Layer 1: Physical Layer

• 10BASE5, 10BASE2
• 10BASE-T / 100BASE-TX / 1000BASE-TX
• 802.11a/b/g/n PHY
• RS-232

8

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model#Examples

Ethernet: Hubs and switches (that act on this level) is not on it’s own layer. It
is more of a implementation detail in the architecture diagram.

RS-232 signaling is used in all MCUs, many have several ports available. It
is extremely flexible, both used for implementing applications and debugging.
Frequently an easy way to hack embedded devices. “USB dongles”, “USB TTL”
all use RS-232 signaling.

Note that this only applies to its logical signals, not voltage levels. The signal-
ing does not specify any max data rate, very high rates (>= 1Mbps) is often
supported.

Layer 2: Data Link Layer

• Ethernet
• WiFi
• Bluetooth
• Token Ring

Layer 3: Network Layer

• IP
• ICMP
• IPX

Layer 4: Transport Layer

• TCP
• UDP

Layer 5: Session Layer

• “sockets”
• NetBIOS

Layer 6: Presentation Layer

• SSL

This layer is not really much used in the IP stack

9

Layer 7: Application Layer

• HTTP
• DNS
• MQTT
• CoAP
• (everything else..)

Details: IP
0 7 8 15 16 31bit

0

4

8

12

16

20

version len TOS full length of packet

identification X D M fragment Offset

time to live (TTL) protocol header checksum

source IP address

destination IP address
IP options (variable length)

payload

Details: UDP

Offsets

Octet

Octet

Bit

source port destination port

length checksum

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

32

0

4

Lecture: MQTT

MQTT

• Message Queuing Telemetry Transport
• Wikipedia: MQTT

MQTT is the standard for IoT applications (and lots of other useful stuff to).
Using HTTP is just silly.

Supports SSL, and requires TCP.

Has UDP-like semantics with “fire and forget” but on a higher level (the message
always have to be delivered and ACKed by the broker, not it’s final recipient.

Version 3.1.1 er den som gjelder, V 3.1 er rar, de andre finnes ikke (før stan-
dardisering).

10

https://en.wikipedia.org/wiki/MQTT

Device and application architecture with MQTT

Device #1 Device #2 Device #3

Broker

Central

MQTT - Implementations

• Mosquitto
• Eclipse Paho
• RabbitMQ
• ActiveMQ

RabbitMQ has a separate connector that must be installed Not sure about
ActiveMQ but it is at least a part of the project so it is releases at the same
time.

MQTT Cloud Connectors

• Cloud
– Amazon IoT
– Google Cloud IoT
– Microsoft Azure IoT
– CloudMQTT (at Heroku)

• DIY
– ThingMQ
– HiveMQ

11

In between are:

• self hosted
• Generic bridges

MQTT - The protocol

Agents have one of two roles:

• Client
– Publishes messages
– Subscribes / unsubscribes to topics

• Broker (aka Server)
– Handles network connections
– Keeps subscriptions
– Manages client

∗ Disconnects
∗ (last) will

– Persistence of retained messages

network connections: this includes removing closed sockets, client’s that doesn’t
respons to timeouts and duplicate clients.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

Subscriptions are not permanent. The connection is (unlike HTTP) stateful.

Some messages may be persistent, but only one per topic. You will often end
up with a “proper” mq on the backend if queuing is needed.

Push vs pull, central applications can push to clients

MQTT - The protocol - MQTT Packet

• Size oriented
• Flags indicate type of remaining bytes

– Packet type
– Topic name
– Payload

Only packet type + flags (1 byte) is required, everything else is optional.

The size field is variable length encoded, 0-127 bytes is 1 byte, 128-16383 use 2
bytes etc, up to 4 bytes for 256MB payload.

MQTT Connect

• CONNECT

12

– clientId
– username
– password
– keepAlive

• Keep alive
– PINGREQ
– PINGRESP

MQTT - The protocol - MQTT Topic

• Topic name: foo/bar/baz
• Topic filter

– foo/bar/?
– foo/#

MQTT - The protocol - Retained message

Message is kept by the server even after disconnect

• CONNECT
• PUBLISH

– RETAIN
– $app/$device/temperature
– 22.3

• DISCONNECT

Later on:

• SUBSCRIBE
– $app/#/temperature

• PUBLISH
– $app/$device/temperature
– 22.3

The last PUBLISH is an incoming message

MQTT - The protocol - Will message

Message sent when you disconnect

Client #1:

1. CONNECT
• WILL TOPIC: $app/$device/online
• WILL PAYLOAD: 0

13

2. PUBLISH
• $app/$device/online
• 1

3. DISCONNECT

Broker

1. To all subscribers PUBLISH
• $app/$device/online
• 0

MQTT Topic

The temperature sensor:

• Publishes on:
– myapp/$device-id/temperature
– myapp/$device-id/humidity
– myapp/$device-id/altert

• Subscribes to:
– myapp/$device-id/command

The central application:

• Subscribes to:
– myapp/#/temperature
– myapp/#/humidity

• Publishes on:
– myapp/$device-id/command

Typical first round of implementation.

Commands can be: * load new firmware (maybe an URL and firmware sig-
nature). * Set new calibration values * Change reading interval, altert levels
(autonomous operation)

MQTT on Arduino

PubSubClient is our MQTT client implementation.

WiFiClient wifiClient;
PubSubClient mqtt(wifiClient);

void callback(char* topic,
byte* payload,
unsigned int length);

void setup() {

14

// Configure WiFi
mqtt.setServer(mqtt_server, 1883);
mqtt.setCallback(callback);

}

MQTT on Arduino

void loop() {
if (!mqtt.connected())

reconnect();
else

mqtt.loop();
// Do work

}

void reconnect() {
while (!mqtt.connect(client_id));

mqtt.subscribe(topic_pattern);
}

This is blocking!

Assignment

• mqtt

MQTT topic architecture

The central application is split:

• An aggregating agent:
– myapp/#/temperature
– myapp/#/humidity

• Emailing agent
– myapp/$device-id/altert

• Publishes on:
– myapp/$device-id/command

15

MQTT topic architecture

Device #1 Device #2 Device #3

Broker

Central

MQTT topic architecture

Device #1 Device #2 Device #3

Broker

Aggregator Email

16

MQTT - Patterns

• Combining MQTT and HTTP
• Using web sockets transport

Assignment

• mqtt2

Assignment

• mqtt3

discussion: how to connect these two devices?

17

	NodeMCU
	NodeMCU hardware
	NodeMCU hardware
	ESP8266 software layers
	ESP8266 + Arduino
	Arduino IDE
	Arduino code structure
	Arduino file structure
	Generic Arduino APIs
	ESP Arduino APIs
	ESP Arduino APIs

	What is IoT
	What is IoT
	IoT is just a concept
	What is an IoT Device?
	What is an IoT Device?
	IoT Devices - Bluetooth 4/5 chips
	IoT Devices - LoRA
	Modules
	Chips

	IoT Devices - NB-IoT
	IoT Devices - Wi-Fi
	ESP8266 details - Power usage

	Going back to basics
	What is the internet again?
	OSI model
	Layer 1: Physical Layer
	Layer 2: Data Link Layer
	Layer 3: Network Layer
	Layer 4: Transport Layer
	Layer 5: Session Layer
	Layer 6: Presentation Layer
	Layer 7: Application Layer
	Details: IP
	Details: UDP

	Lecture: MQTT
	MQTT
	Device and application architecture with MQTT
	MQTT - Implementations
	MQTT Cloud Connectors
	MQTT - The protocol
	MQTT - The protocol - MQTT Packet
	MQTT Connect
	MQTT - The protocol - MQTT Topic
	MQTT - The protocol - Retained message
	MQTT - The protocol - Will message
	MQTT Topic
	MQTT on Arduino
	MQTT on Arduino
	Assignment
	MQTT topic architecture
	MQTT topic architecture
	MQTT topic architecture
	MQTT - Patterns
	Assignment
	Assignment

