[oT Workshop

Trygve Laugstgl <trygvisQtrygvis.io>

What is IoT

What is IoT

¢ Not “a computer connected to the internet”
— Then it is really just another computer connected to the internet
e Must be something else
— It is simply devices that are resource constrained
* Usually in more than one way
e Autonomous operation, the connection might not be permanent

IoT is just a concept

o The Internet of Things (IoT) is the network of physical devices, vehicles,
home appliances and other items embedded with electronics, software, sen-
sors, actuators, and connectivity which enables these objects to connect
and exchange data.'

What is an IoT Device?

As for their definition.

What differentiates a computer from an IoT device?

What is an IoT Device?

o Constrained in (one or more of):
— Memory
- CPU
— Network bandwidth and/or latency
— Storage

I'Wikipedia “Internet of Things”

¢ Connected
Bluetooth
Wi-Fi

— NB-IoT
LTE Cat-M
— IR

UART

— CAN

Typical IoT chips - Bluetooth 4/5

Chip CPU Freq RAM Flash Price

nRF52810 Cortex-M4 64 M Hz 24k 192k $1.88
High perf ormance, entry -level Bl uetooth 4/ANT/2.4GHz SoC

nRF52832 Cortex-M4F 32k 256k $2.54 64k 512k $2.59 High performance Blue-
tooth 4/ANT/2.4GHz SoC

nRF52840 Cortex-M4F 256k 1024k $3.85 Advanced multi-protocol System-on-
Chip Supporting: Bluetooth 5, ANT/ANT+, 802.15.4 and 2.4GHz proprietary

All quantities are 1000 pieces

nRF51: https://www.digikey.no/products/en/rf-if-and-rfid /rf-transceiver-
ics/8797k=nrf51822

nRF52832: these have different packagings, not only difference price
https://www.digikey.no/products/en/rf-if-and-rfid /rf-transceiver-ics /8797FV=1c0001%2Ctfe0036{& quantity=

Typical IoT chips - Wi-Fi

Chip CPU Freq ROM RAM Price
ESP8266 Tensilica L106 160 MHz N/A ~50kB < $1

ESP32 - dual cpu, Wi-Fi, Bluetooth 4 ESP32-DOWDQ6 2x Xtensa @ 160MHz
$4.53 @10

The ESP8266’s RAM depends on which firmware stack is used. Physical is
probably 128k or most likely 64k.

ESP8266 details - Power usage

State Current usage
Off 0.5 pA
Deep sleep with RTC 20 pA
Light sleep (with Wi-Fi) 1 mA
Sleep with peripherials 15 mA
X 170 mA

Datasheet page 18

ESP8266 details - Arduino

https://github.com/esp8266/Arduino

Going back to basics

What is the internet again?

OSI model

Physical Layer
Data Link Layer
Network Layer
Transport Layer
Session Layer
Presentation Layer
Application Layer

Wikipedia: OSI model
o Wikipedia: OSI model#Examples

Does not match the TCP/IP stack very closely.

NS otE N e

Layer 1: Physical Layer

« 10BASE5, 10BASE2

« 10BASE-T / 100BASE-TX / 1000BASE-TX
« 802.11a/b/g/n PHY

« RS-232

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model#Examples

Ethernet: Hubs and switches (that act on this level) is not on it’s own layer. It
is more of a implementation detail in the architecture diagram.

RS-232 signaling is used in all MCUs, many have several ports available. It
is extremely flexible, both used for implementing applications and debugging.
Frequently an easy way to hack embedded devices. “USB dongles”, “USB TTL”
all use RS-232 signaling.

Note that this only applies to its logical signals, not voltage levels. The signal-
ing does not specify any max data rate, very high rates (>= 1Mbps) is often
supported.
Layer 2: Data Link Layer
e Ethernet
o WiFi
¢ Bluetooth
o Token Ring
Layer 3: Network Layer
o IP
o ICMP
o IPX
Layer 4: Transport Layer
« TCP
« UDP
Layer 5: Session Layer
e “sockets”
. NetBIOS

Layer 6: Presentation Layer

e SSL
This layer is not really much used in the IP stack

Layer 7: Application Layer

« HTTP

« DNS

« MQTT

o CoAP

o (everything else..)

Details: IP

Bit
Byte\ 0 7 8 15 16 23 24 31
0 Version IHL DSCP ECN Total length
4 Identification Flags Fragment offset
8 Time to live Protocol Header checksum
12 Source address
16 Destination address
20 - -
32 Options

Note that the “total length” field is 16 bits, 2 bytes, it’s maximum value is 64k,
65536.

Details: IP

bit| 0 7|8 15]16 31
0 version I len I TOS full length of packet

4 identification X,DM fragment Offset

8 time to live (TTL)] protocol header checksum

12 source IP address

16 destination IP address

20 IP options (variable length)

Lecture: ESP8266

NodeMCU hardware

ESP-12
ART
BSP8266 2T | opagix USB
| QSPI
Flash
NodeMCU

ESP8266 software layers

Generic
=} «
g Arduine Ethernet | ESP APIs
i
< ESP interface
ESP SDK G.CC
libe

ESP8266 Hardware

Lecture: MQTT

MQTT
o Message Queuing Telemetry Transport
o Wikipedia: MQTT

MQTT is the standard for IoT applications (and lots of other useful stuff to).
Using HTTP is just silly.

Supports SSL, and requires TCP.

Has UDP-like semantics with “fire and forget” but on a higher level (the message
always have to be delivered and ACKed by the broker, not it’s final recipient.

https://en.wikipedia.org/wiki/MQTT

Version 3.1.1 er den som gjelder, V 3.1 er rar, de andre finnes ikke (for stan-
dardisering).

MQTT - The protocol

Agents have one of two roles:

e Client
— Publishes messages
— Subscribes / unsubscribes to topics
o Broker (aka Server)
— Handles network connections
— Keeps subscriptions
— Manages client
* Disconnects
x (last) will
— Persistence of retained messages

network connections: this includes removing closed sockets, client’s that doesn’t
respons to timeouts and duplicate clients.

http://docs.oasis-open.org/maqtt /mqtt /v3.1.1/mqtt-v3.1.1.html
Subscriptions are not permanent. The connection is (unlike HTTP) stateful.

Some messages may be persistent, but only one per topic. You will often end
up with a “proper” mq on the backend if queuing is needed.

MQTT - The protocol - MQTT Topic

e Topic name: foo/bar/baz
o Topic filter

— foo/bar/?

— foo/#

MQTT - The protocol - MQTT Topic

The temperature sensor:

o Publishes on:
— myapp/$device-id/temperature
— myapp/$device-id/humidity
— myapp/$device-id/altert
o Subscribes to:
— myapp/$device-id/command

The central application:

o Subscribes to:
— myapp/#/temperature
— myapp/#/humidity
o Publishes on:
— myapp/$device-id/command

Typical first round of implementation.

Commands can be: * load new firmware (maybe an URL and firmware sig-
nature). * Set new calibration values * Change reading interval, altert levels
(autonomous operation)

MQTT - The protocol - MQTT Packet

o Size oriented

o Flags indicate type of remaining bytes
— Packet type
— Topic name
— Payload

Only packet type + flags (1 byte) is required, everything else is optional.

The size field is variable length encoded, 0-127 bytes is 1 byte, 128-16383 use 2
bytes etc, up to 4 bytes for 256MB payload.

MQTT - The protocol - MQTT Topic - more

Enten ma den holdes rett etter “## MQTT - The protocol - MQTT Topic”
ellers kanskje flyttes etter “patterns”.

The central application is split:

e An aggregating agent:
— myapp/#/temperature
— myapp/#/humidity
o Emailing agent
— myapp/$device-id/altert
o Publishes on:
— myapp/$device-id/command

MQTT - The protocol - Retained message

Message is kept by the server even after disconnect

e CONNECT

e PUBLISH
— RETAIN
— $app/$device/temperature
— 22.3

o DISCONNECT

Later on:

¢ SUBSCRIBE
— $app/#/temperature

e PUBLISH
— $app/$device/temperature
- 22.3

The last PUBLISH is an incoming message

MQTT - The protocol - Will message

Message sent when you disconnect
Client #1:

1. CONNECT
e WILL TOPIC: $app/$device/online
e WILL PAYLOAD: O
2. PUBLISH
o $app/$device/online
o 1
3. DISCONNECT

Broker

1. To all subscribers PUBLISH
o $app/$device/online
e 0

MQTT - Patterns

Ma utvides
Explain:

e Push vs pull, central applications can push to clients
o mostly mqtt, some http

e Client id - sparker ut gamle koblinger

o Keep alive / ping meldinger

o Alternative transporter - websockets(!)

MQTT - Implementations

e Mosquitto
o Eclipse Paho
¢ RabbitMQ
o ActiveMQ

RabbitMQ has a separate connector that must be installed Not sure about
ActiveMQ but it is at least a part of the project so it is releases at the same
time.

MQTT Cloud Connectors

e Cloud

— Amazon IoT

— Google Cloud IoT

— Microsoft Azure IoT

— CloudMQTT (at Heroku)
« DIY

— ThingMQ

— HiveMQ

In between are:

o self hosted
o Generic bridges

Assignments

Assignment 1: Blink a led
Assignment 2: Connect to Wi-Fi
Assignment 3: Connect to MQTT broker

Assignment 4: Network play time

e Measure round trip time/latency. Measure UDP, TCP. Measure when the
packet size is greater than the MTU

o Notice variations in RTT

10

	What is IoT
	What is IoT
	IoT is just a concept
	What is an IoT Device?
	What is an IoT Device?
	Typical IoT chips - Bluetooth 4/5
	Typical IoT chips - Wi-Fi
	ESP8266 details - Power usage
	ESP8266 details - Arduino

	Going back to basics
	What is the internet again?
	OSI model
	Layer 1: Physical Layer
	Layer 2: Data Link Layer
	Layer 3: Network Layer
	Layer 4: Transport Layer
	Layer 5: Session Layer
	Layer 6: Presentation Layer
	Layer 7: Application Layer
	Details: IP
	Details: IP

	Lecture: ESP8266
	NodeMCU hardware
	ESP8266 software layers

	Lecture: MQTT
	MQTT
	MQTT - The protocol
	MQTT - The protocol - MQTT Topic
	MQTT - The protocol - MQTT Topic
	MQTT - The protocol - MQTT Packet
	MQTT - The protocol - MQTT Topic - more
	MQTT - The protocol - Retained message
	MQTT - The protocol - Will message
	MQTT - Patterns
	MQTT - Implementations
	MQTT Cloud Connectors

	Assignments
	Assignment 1: Blink a led
	Assignment 2: Connect to Wi-Fi
	Assignment 3: Connect to MQTT broker
	Assignment 4: Network play time

