From 3061ecca3d0fdfb87dabbf5f63c9e06c2a30f53a Mon Sep 17 00:00:00 2001 From: Trygve Laugstøl Date: Thu, 23 Aug 2018 17:08:59 +0200 Subject: o Initial import. --- .../components/libraries/fds/fds.c | 2164 ++++++++++++++++++++ 1 file changed, 2164 insertions(+) create mode 100644 thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c (limited to 'thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c') diff --git a/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c new file mode 100644 index 0000000..99ddc66 --- /dev/null +++ b/thirdparty/nRF5_SDK_15.0.0_a53641a/components/libraries/fds/fds.c @@ -0,0 +1,2164 @@ +/** + * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form, except as embedded into a Nordic + * Semiconductor ASA integrated circuit in a product or a software update for + * such product, must reproduce the above copyright notice, this list of + * conditions and the following disclaimer in the documentation and/or other + * materials provided with the distribution. + * + * 3. Neither the name of Nordic Semiconductor ASA nor the names of its + * contributors may be used to endorse or promote products derived from this + * software without specific prior written permission. + * + * 4. This software, with or without modification, must only be used with a + * Nordic Semiconductor ASA integrated circuit. + * + * 5. Any software provided in binary form under this license must not be reverse + * engineered, decompiled, modified and/or disassembled. + * + * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS + * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE + * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT + * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ +#include "sdk_common.h" +#if NRF_MODULE_ENABLED(FDS) +#include "fds.h" +#include "fds_internal_defs.h" + +#include +#include +#include +#include "nrf_error.h" +#include "nrf_atomic.h" +#include "nrf_atfifo.h" + +#include "nrf_fstorage.h" +#if (FDS_BACKEND == NRF_FSTORAGE_SD) +#include "nrf_fstorage_sd.h" +#elif (FDS_BACKEND == NRF_FSTORAGE_NVMC) +#include "nrf_fstorage_nvmc.h" +#else +#error Invalid FDS backend. +#endif + +#if (FDS_CRC_CHECK_ON_READ) +#include "crc16.h" +#endif + + +static void fs_event_handler(nrf_fstorage_evt_t * evt); + +NRF_FSTORAGE_DEF(nrf_fstorage_t m_fs) = +{ + // The flash area boundaries are set in fds_init(). + .evt_handler = fs_event_handler, +}; + +// Internal status flags. +static struct +{ + bool volatile initialized; + nrf_atomic_flag_t initializing; +} m_flags; + +// The number of queued operations. +// Incremented by queue_start() and decremented by queue_has_next(). +static nrf_atomic_u32_t m_queued_op_cnt; + +// The number of registered users and their callback functions. +static nrf_atomic_u32_t m_users; +static fds_cb_t m_cb_table[FDS_MAX_USERS]; + +// The latest (largest) record ID written so far. +static nrf_atomic_u32_t m_latest_rec_id; + +// Queue of fds operations. +NRF_ATFIFO_DEF(m_queue, fds_op_t, FDS_OP_QUEUE_SIZE); + +// Structures used to hold informations about virtual pages. +static fds_page_t m_pages[FDS_DATA_PAGES]; +static fds_swap_page_t m_swap_page; + +// Garbage collection data. +static fds_gc_data_t m_gc; + + +static void event_send(fds_evt_t const * const p_evt) +{ + for (uint32_t user = 0; user < FDS_MAX_USERS; user++) + { + if (m_cb_table[user] != NULL) + { + m_cb_table[user](p_evt); + } + } +} + + +static void event_prepare(fds_op_t const * const p_op, fds_evt_t * const p_evt) +{ + switch (p_op->op_code) + { + case FDS_OP_INIT: + p_evt->id = FDS_EVT_INIT; + break; + + case FDS_OP_WRITE: + p_evt->id = FDS_EVT_WRITE; + p_evt->write.file_id = p_op->write.header.file_id; + p_evt->write.record_key = p_op->write.header.record_key; + p_evt->write.record_id = p_op->write.header.record_id; + p_evt->write.is_record_updated = 0; + break; + + case FDS_OP_UPDATE: + p_evt->id = FDS_EVT_UPDATE; + p_evt->write.file_id = p_op->write.header.file_id; + p_evt->write.record_key = p_op->write.header.record_key; + p_evt->write.record_id = p_op->write.header.record_id; + p_evt->write.is_record_updated = (p_op->write.step == FDS_OP_WRITE_DONE); + break; + + case FDS_OP_DEL_RECORD: + p_evt->id = FDS_EVT_DEL_RECORD; + p_evt->del.file_id = p_op->del.file_id; + p_evt->del.record_key = p_op->del.record_key; + p_evt->del.record_id = p_op->del.record_to_delete; + break; + + case FDS_OP_DEL_FILE: + p_evt->id = FDS_EVT_DEL_FILE; + p_evt->del.file_id = p_op->del.file_id; + p_evt->del.record_key = FDS_RECORD_KEY_DIRTY; + p_evt->del.record_id = 0; + break; + + case FDS_OP_GC: + p_evt->id = FDS_EVT_GC; + break; + + default: + // Should not happen. + break; + } +} + + +static bool header_has_next(fds_header_t const * p_hdr, uint32_t const * p_page_end) +{ + uint32_t const * const p_hdr32 = (uint32_t*)p_hdr; + return ( ( p_hdr32 < p_page_end) + && (*p_hdr32 != FDS_ERASED_WORD)); // Check last to be on the safe side (dereference) +} + + +// Jump to the next header. +static fds_header_t const * header_jump(fds_header_t const * const p_hdr) +{ + return (fds_header_t*)((uint32_t*)p_hdr + FDS_HEADER_SIZE + p_hdr->length_words); +} + + +static fds_header_status_t header_check(fds_header_t const * p_hdr, uint32_t const * p_page_end) +{ + if (((uint32_t*)header_jump(p_hdr) > p_page_end)) + { + // The length field would jump across the page boundary. + // FDS won't allow writing such a header, therefore it has been corrupted. + return FDS_HEADER_CORRUPT; + } + + if ( (p_hdr->file_id == FDS_FILE_ID_INVALID) + || (p_hdr->record_key == FDS_RECORD_KEY_DIRTY)) + { + return FDS_HEADER_DIRTY; + } + + return FDS_HEADER_VALID; +} + + +static bool address_is_valid(uint32_t const * const p_addr) +{ + return ((p_addr != NULL) && + (p_addr >= (uint32_t*)m_fs.start_addr) && + (p_addr <= (uint32_t*)m_fs.end_addr) && + (is_word_aligned(p_addr))); +} + + +// Reads a page tag, and determines if the page is used to store data or as swap. +static fds_page_type_t page_identify(uint32_t const * const p_page_addr) +{ + if ( (p_page_addr == NULL) // Should never happen. + || (p_page_addr[FDS_PAGE_TAG_WORD_0] != FDS_PAGE_TAG_MAGIC)) + { + return FDS_PAGE_UNDEFINED; + } + + switch (p_page_addr[FDS_PAGE_TAG_WORD_1]) + { + case FDS_PAGE_TAG_SWAP: + return FDS_PAGE_SWAP; + + case FDS_PAGE_TAG_DATA: + return FDS_PAGE_DATA; + + default: + return FDS_PAGE_UNDEFINED; + } +} + + +static bool page_is_erased(uint32_t const * const p_page_addr) +{ + for (uint32_t i = 0; i < FDS_PAGE_SIZE; i++) + { + if (*(p_page_addr + i) != FDS_ERASED_WORD) + { + return false; + } + } + + return true; +} + + +// NOTE: Must be called from within a critical section. +static bool page_has_space(uint16_t page, uint16_t length_words) +{ + length_words += m_pages[page].write_offset; + length_words += m_pages[page].words_reserved; + return (length_words < FDS_PAGE_SIZE); +} + + +// Given a pointer to a record, find the index of the page on which it is stored. +// Returns FDS_SUCCESS if the page is found, FDS_ERR_NOT_FOUND otherwise. +static ret_code_t page_from_record(uint16_t * const p_page, uint32_t const * const p_rec) +{ + ret_code_t ret = FDS_ERR_NOT_FOUND; + + CRITICAL_SECTION_ENTER(); + for (uint16_t i = 0; i < FDS_DATA_PAGES; i++) + { + if ((p_rec > m_pages[i].p_addr) && + (p_rec < m_pages[i].p_addr + FDS_PAGE_SIZE)) + { + ret = FDS_SUCCESS; + *p_page = i; + break; + } + } + CRITICAL_SECTION_EXIT(); + + return ret; +} + + +// Scan a page to determine how many words have been written to it. +// This information is used to set the page write offset during initialization. +// Additionally, this function updates the latest record ID as it proceeds. +// If an invalid record header is found, the can_gc argument is set to true. +static void page_scan(uint32_t const * p_addr, + uint16_t * const words_written, + bool * const can_gc) +{ + uint32_t const * const p_page_end = p_addr + FDS_PAGE_SIZE; + + p_addr += FDS_PAGE_TAG_SIZE; + *words_written = FDS_PAGE_TAG_SIZE; + + fds_header_t const * p_header = (fds_header_t*)p_addr; + + while (header_has_next(p_header, p_page_end)) + { + fds_header_status_t hdr = header_check(p_header, p_page_end); + + if (hdr == FDS_HEADER_VALID) + { + // Update the latest (largest) record ID. + if (p_header->record_id > m_latest_rec_id) + { + m_latest_rec_id = p_header->record_id; + } + } + else + { + if (can_gc != NULL) + { + *can_gc = true; + } + + if (hdr == FDS_HEADER_CORRUPT) + { + // It could happen that a record has a corrupt header which would set a + // wrong offset for this page. In such cases, update this value to its maximum, + // to ensure that no new records will be written to this page and to enable + // correct statistics reporting by fds_stat(). + *words_written = FDS_PAGE_SIZE; + + // We can't continue to scan this page. + return; + } + } + + *words_written += (FDS_HEADER_SIZE + p_header->length_words); + p_header = header_jump(p_header); + } +} + + +static void page_offsets_update(fds_page_t * const p_page, fds_op_t const * p_op) +{ + // If the first part of the header has been written correctly, update the offset as normal. + // Even if the record has not been written completely, fds is still able to continue normal + // operation. Incomplete records will be deleted the next time garbage collection is run. + // If we failed at the very beginning of the write operation, restore the offset + // to the previous value so that no holes will be left in the flash. + if (p_op->write.step > FDS_OP_WRITE_RECORD_ID) + { + p_page->write_offset += (FDS_HEADER_SIZE + p_op->write.header.length_words); + } + + p_page->words_reserved -= (FDS_HEADER_SIZE + p_op->write.header.length_words); +} + + +// Tags a page as swap, i.e., reserved for GC. +static ret_code_t page_tag_write_swap(void) +{ + // The tag needs to be statically allocated since it is not buffered by fstorage. + static uint32_t const page_tag_swap[] = {FDS_PAGE_TAG_MAGIC, FDS_PAGE_TAG_SWAP}; + return nrf_fstorage_write(&m_fs, (uint32_t)m_swap_page.p_addr, page_tag_swap, FDS_PAGE_TAG_SIZE * sizeof(uint32_t), NULL); +} + + +// Tags a page as data, i.e, ready for storage. +static ret_code_t page_tag_write_data(uint32_t const * const p_page_addr) +{ + // The tag needs to be statically allocated since it is not buffered by fstorage. + static uint32_t const page_tag_data[] = {FDS_PAGE_TAG_MAGIC, FDS_PAGE_TAG_DATA}; + return nrf_fstorage_write(&m_fs, (uint32_t)p_page_addr, page_tag_data, FDS_PAGE_TAG_SIZE * sizeof(uint32_t), NULL); +} + + +// Reserve space on a page. +// NOTE: this function takes into the account the space required for the record header. +static ret_code_t write_space_reserve(uint16_t length_words, uint16_t * p_page) +{ + bool space_reserved = false; + uint16_t const total_len_words = length_words + FDS_HEADER_SIZE; + + if (total_len_words >= FDS_PAGE_SIZE - FDS_PAGE_TAG_SIZE) + { + return FDS_ERR_RECORD_TOO_LARGE; + } + + CRITICAL_SECTION_ENTER(); + for (uint16_t page = 0; page < FDS_DATA_PAGES; page++) + { + if ((m_pages[page].page_type == FDS_PAGE_DATA) && + (page_has_space(page, total_len_words))) + { + space_reserved = true; + *p_page = page; + + m_pages[page].words_reserved += total_len_words; + break; + } + } + CRITICAL_SECTION_EXIT(); + + return (space_reserved) ? FDS_SUCCESS : FDS_ERR_NO_SPACE_IN_FLASH; +} + + +// Undo a write_space_reserve() call. +// NOTE: Must be called within a critical section. +static void write_space_free(uint16_t length_words, uint16_t page) +{ + m_pages[page].words_reserved -= (length_words + FDS_HEADER_SIZE); +} + + +static uint32_t record_id_new(void) +{ + return nrf_atomic_u32_add(&m_latest_rec_id, 1); +} + + +// Given a page and a record, find the next valid record on that page. +// If p_record is NULL, search from the beginning of the page, +// otherwise, resume searching from p_record. +// Return true if a record is found, false otherwise. +// If no record is found, p_record is unchanged. +static bool record_find_next(uint16_t page, uint32_t const ** p_record) +{ + uint32_t const * p_page_end = (m_pages[page].p_addr + FDS_PAGE_SIZE); + + // If this is the first call on this page, start searching from its beginning. + // Otherwise, jump to the next record. + fds_header_t const * p_header = (fds_header_t*)(*p_record); + + if (p_header != NULL) + { + p_header = header_jump(p_header); + } + else + { + p_header = (fds_header_t*)(m_pages[page].p_addr + FDS_PAGE_TAG_SIZE); + } + + // Read records from the page until: + // - a valid record is found or + // - the last record on a page is found + + while (header_has_next(p_header, p_page_end)) + { + switch (header_check(p_header, p_page_end)) + { + case FDS_HEADER_VALID: + *p_record = (uint32_t*)p_header; + return true; + + case FDS_HEADER_DIRTY: + p_header = header_jump(p_header); + break; + + case FDS_HEADER_CORRUPT: + // We can't reliably jump over this record. + // There is nothing more we can do on this page. + return false; + } + } + + // No more valid records on this page. + return false; +} + + +// Find a record given its descriptor and retrive the page in which the record is stored. +// NOTE: Do not pass NULL as an argument for p_page. +static bool record_find_by_desc(fds_record_desc_t * const p_desc, uint16_t * const p_page) +{ + // If the gc_run_count field in the descriptor matches our counter, then the record has + // not been moved. If the address is valid, and the record ID matches, there is no need + // to find the record again. Only lookup the page in which the record is stored. + + if ((address_is_valid(p_desc->p_record)) && + (p_desc->gc_run_count == m_gc.run_count) && + (p_desc->record_id == ((fds_header_t*)p_desc->p_record)->record_id)) + { + return (page_from_record(p_page, p_desc->p_record) == FDS_SUCCESS); + } + + // Otherwise, find the record in flash. + for (*p_page = 0; *p_page < FDS_DATA_PAGES; (*p_page)++) + { + // Set p_record to NULL to make record_find_next() search from the beginning of the page. + uint32_t const * p_record = NULL; + + while (record_find_next(*p_page, &p_record)) + { + fds_header_t const * const p_header = (fds_header_t*)p_record; + if (p_header->record_id == p_desc->record_id) + { + p_desc->p_record = p_record; + p_desc->gc_run_count = m_gc.run_count; + return true; + } + } + } + + return false; +} + + +// Search for a record and return its descriptor. +// If p_file_id is NULL, only the record key will be used for matching. +// If p_record_key is NULL, only the file ID will be used for matching. +// If both are NULL, it will iterate through all records. +static ret_code_t record_find(uint16_t const * p_file_id, + uint16_t const * p_record_key, + fds_record_desc_t * p_desc, + fds_find_token_t * p_token) +{ + if (!m_flags.initialized) + { + return FDS_ERR_NOT_INITIALIZED; + } + + if (p_desc == NULL || p_token == NULL) + { + return FDS_ERR_NULL_ARG; + } + + // Begin (or resume) searching for a record. + for (; p_token->page < FDS_DATA_PAGES; p_token->page++) + { + if (m_pages[p_token->page].page_type != FDS_PAGE_DATA) + { + // It might be that the page is FDS_PAGE_UNDEFINED. + // Skip this page. + continue; + } + + while (record_find_next(p_token->page, &p_token->p_addr)) + { + fds_header_t const * p_header = (fds_header_t*)p_token->p_addr; + + // A valid record was found, check its header for a match. + if ((p_file_id != NULL) && + (p_header->file_id != *p_file_id)) + { + continue; + } + + if ((p_record_key != NULL) && + (p_header->record_key != *p_record_key)) + { + continue; + } + + // Record found; update the descriptor. + p_desc->record_id = p_header->record_id; + p_desc->p_record = p_token->p_addr; + p_desc->gc_run_count = m_gc.run_count; + + return FDS_SUCCESS; + } + + // We have scanned an entire page. Set the address in the token to NULL + // so that it will be updated in the next iteration. + p_token->p_addr = NULL; + } + + return FDS_ERR_NOT_FOUND; +} + + +// Retrieve statistics about dirty records on a page. +static void records_stat(uint16_t page, + uint16_t * p_valid_records, + uint16_t * p_dirty_records, + uint16_t * p_freeable_words, + bool * p_corruption) +{ + fds_header_t const * p_header = (fds_header_t*)(m_pages[page].p_addr + FDS_PAGE_TAG_SIZE); + uint32_t const * const p_page_end = (m_pages[page].p_addr + FDS_PAGE_SIZE); + + while (header_has_next(p_header, p_page_end)) + { + switch (header_check(p_header, p_page_end)) + { + case FDS_HEADER_DIRTY: + *p_dirty_records += 1; + *p_freeable_words += FDS_HEADER_SIZE + p_header->length_words; + p_header = header_jump(p_header); + break; + + case FDS_HEADER_VALID: + *p_valid_records += 1; + p_header = header_jump(p_header); + break; + + case FDS_HEADER_CORRUPT: + { + *p_dirty_records += 1; + *p_freeable_words += (p_page_end - (uint32_t*)p_header); + *p_corruption = true; + // We can't continue on this page. + return; + } + + default: + break; + } + } +} + + +// Get a buffer on the queue of operations. +static fds_op_t * queue_buf_get(nrf_atfifo_item_put_t * p_iput_ctx) +{ + fds_op_t * const p_op = (fds_op_t*) nrf_atfifo_item_alloc(m_queue, p_iput_ctx); + + memset(p_op, 0x00, sizeof(fds_op_t)); + return p_op; +} + + +// Commit a buffer to the queue of operations. +static void queue_buf_store(nrf_atfifo_item_put_t * p_iput_ctx) +{ + (void) nrf_atfifo_item_put(m_queue, p_iput_ctx); +} + + +// Load the next operation from the queue. +static fds_op_t * queue_load(nrf_atfifo_item_get_t * p_iget_ctx) +{ + return (fds_op_t*) nrf_atfifo_item_get(m_queue, p_iget_ctx); +} + + +// Free the currently loaded operation. +static void queue_free(nrf_atfifo_item_get_t * p_iget_ctx) +{ + // Free the current queue element. + (void) nrf_atfifo_item_free(m_queue, p_iget_ctx); +} + + +static bool queue_has_next(void) +{ + // Decrement the number of queued operations. + ASSERT(m_queued_op_cnt != 0); + return nrf_atomic_u32_sub(&m_queued_op_cnt, 1); +} + + +// This function is called during initialization to setup the page structure (m_pages) and +// provide additional information regarding eventual further initialization steps. +static fds_init_opts_t pages_init(void) +{ + uint32_t ret = NO_PAGES; + uint16_t page = 0; + uint16_t total_pages_available = FDS_VIRTUAL_PAGES; + bool swap_set_but_not_found = false; + + for (uint16_t i = 0; i < FDS_VIRTUAL_PAGES; i++) + { + uint32_t const * const p_page_addr = (uint32_t*)m_fs.start_addr + (i * FDS_PAGE_SIZE); + fds_page_type_t const page_type = page_identify(p_page_addr); + + switch (page_type) + { + case FDS_PAGE_UNDEFINED: + { + if (page_is_erased(p_page_addr)) + { + if (m_swap_page.p_addr != NULL) + { + // If a swap page is already set, flag the page as erased (in m_pages) + // and try to tag it as data (in flash) later on during initialization. + m_pages[page].page_type = FDS_PAGE_ERASED; + m_pages[page].p_addr = p_page_addr; + m_pages[page].write_offset = FDS_PAGE_TAG_SIZE; + + // This is a candidate for a potential new swap page, in case the + // current swap is going to be promoted to complete a GC instance. + m_gc.cur_page = page; + page++; + } + else + { + // If there is no swap page yet, use this one. + m_swap_page.p_addr = p_page_addr; + m_swap_page.write_offset = FDS_PAGE_TAG_SIZE; + swap_set_but_not_found = true; + } + + ret |= PAGE_ERASED; + } + else + { + // The page contains non-FDS data. + // Do not initialize or use this page. + total_pages_available--; + m_pages[page].p_addr = p_page_addr; + m_pages[page].page_type = FDS_PAGE_UNDEFINED; + page++; + } + } break; + + case FDS_PAGE_DATA: + { + m_pages[page].page_type = FDS_PAGE_DATA; + m_pages[page].p_addr = p_page_addr; + + // Scan the page to compute its write offset and determine whether or not the page + // can be garbage collected. Additionally, update the latest kwown record ID. + page_scan(p_page_addr, &m_pages[page].write_offset, &m_pages[page].can_gc); + + ret |= PAGE_DATA; + page++; + } break; + + case FDS_PAGE_SWAP: + { + if (swap_set_but_not_found) + { + m_pages[page].page_type = FDS_PAGE_ERASED; + m_pages[page].p_addr = m_swap_page.p_addr; + m_pages[page].write_offset = FDS_PAGE_TAG_SIZE; + + page++; + } + + m_swap_page.p_addr = p_page_addr; + // If the swap is promoted, this offset should be kept, otherwise, + // it should be set to FDS_PAGE_TAG_SIZE. + page_scan(p_page_addr, &m_swap_page.write_offset, NULL); + + ret |= (m_swap_page.write_offset == FDS_PAGE_TAG_SIZE) ? + PAGE_SWAP_CLEAN : PAGE_SWAP_DIRTY; + } break; + + default: + // Shouldn't happen. + break; + } + } + + if (total_pages_available < 2) + { + ret &= NO_PAGES; + } + + return (fds_init_opts_t)ret; +} + + +// Write the first part of a record header (the key and length). +static ret_code_t record_header_write_begin(fds_op_t * const p_op, uint32_t * const p_addr) +{ + ret_code_t ret; + + // Write the record ID next. + p_op->write.step = FDS_OP_WRITE_RECORD_ID; + + ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_TL), + &p_op->write.header.record_key, FDS_HEADER_SIZE_TL * sizeof(uint32_t), NULL); + + return (ret == NRF_SUCCESS) ? FDS_SUCCESS : FDS_ERR_BUSY; +} + + +static ret_code_t record_header_write_id(fds_op_t * const p_op, uint32_t * const p_addr) +{ + ret_code_t ret; + + // If this record has no data, write the last part of the header directly. + // Otherwise, write the record data next. + p_op->write.step = (p_op->write.p_data != NULL) ? + FDS_OP_WRITE_DATA : FDS_OP_WRITE_HEADER_FINALIZE; + + ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_ID), + &p_op->write.header.record_id, FDS_HEADER_SIZE_ID * sizeof(uint32_t), NULL); + + return (ret == NRF_SUCCESS) ? FDS_SUCCESS : FDS_ERR_BUSY; +} + + +static ret_code_t record_header_write_finalize(fds_op_t * const p_op, uint32_t * const p_addr) +{ + ret_code_t ret; + + // If this is a simple write operation, then this is the last step. + // If this is an update instead, delete the old record next. + p_op->write.step = (p_op->op_code == FDS_OP_UPDATE) ? + FDS_OP_WRITE_FLAG_DIRTY : FDS_OP_WRITE_DONE; + + ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_IC), + &p_op->write.header.file_id, FDS_HEADER_SIZE_IC * sizeof(uint32_t), NULL); + + return (ret == NRF_SUCCESS) ? FDS_SUCCESS : FDS_ERR_BUSY; +} + + +static ret_code_t record_header_flag_dirty(uint32_t * const p_record, uint16_t page_to_gc) +{ + // Used to flag a record as dirty, i.e. ready for garbage collection. + // Must be statically allocated since it will be written to flash. + __ALIGN(4) static uint32_t const dirty_header = {0xFFFF0000}; + + // Flag the record as dirty. + ret_code_t ret; + + ret = nrf_fstorage_write(&m_fs, (uint32_t)p_record, + &dirty_header, FDS_HEADER_SIZE_TL * sizeof(uint32_t), NULL); + + if (ret != NRF_SUCCESS) + { + return FDS_ERR_BUSY; + } + + m_pages[page_to_gc].can_gc = true; + + return FDS_SUCCESS; +} + + +static ret_code_t record_find_and_delete(fds_op_t * const p_op) +{ + ret_code_t ret; + uint16_t page; + fds_record_desc_t desc = {0}; + + desc.record_id = p_op->del.record_to_delete; + + if (record_find_by_desc(&desc, &page)) + { + fds_header_t const * const p_header = (fds_header_t const *)desc.p_record; + + // Copy the record key and file ID, so that they can be returned in the event. + // In case this function is run as part of an update, there is no need to copy + // the file ID and record key since they are present in the header stored + // in the queue element. + + p_op->del.file_id = p_header->file_id; + p_op->del.record_key = p_header->record_key; + + // Flag the record as dirty. + ret = record_header_flag_dirty((uint32_t*)desc.p_record, page); + } + else + { + // The record never existed, or it has already been deleted. + ret = FDS_ERR_NOT_FOUND; + } + + return ret; +} + + +// Finds a record within a file and flags it as dirty. +static ret_code_t file_find_and_delete(fds_op_t * const p_op) +{ + ret_code_t ret; + fds_record_desc_t desc; + + // This token must persist across calls. + static fds_find_token_t tok = {0}; + + // Pass NULL to ignore the record key. + ret = record_find(&p_op->del.file_id, NULL, &desc, &tok); + + if (ret == FDS_SUCCESS) + { + // A record was found: flag it as dirty. + ret = record_header_flag_dirty((uint32_t*)desc.p_record, tok.page); + } + else // FDS_ERR_NOT_FOUND + { + // No more records were found. Zero the token, so that it can be reused. + memset(&tok, 0x00, sizeof(fds_find_token_t)); + } + + return ret; +} + + +// Writes record data to flash. +static ret_code_t record_write_data(fds_op_t * const p_op, uint32_t * const p_addr) +{ + ret_code_t ret; + + p_op->write.step = FDS_OP_WRITE_HEADER_FINALIZE; + + ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_DATA), + p_op->write.p_data, p_op->write.header.length_words * sizeof(uint32_t), NULL); + + return (ret == NRF_SUCCESS) ? FDS_SUCCESS : FDS_ERR_BUSY; +} + + +#if (FDS_CRC_CHECK_ON_READ) +static bool crc_verify_success(uint16_t crc, uint16_t len_words, uint32_t const * const p_data) +{ + uint16_t computed_crc; + + // The CRC is computed on the entire record, except the CRC field itself. + // The record header is 12 bytes, out of these we have to skip bytes 6 to 8 where the + // CRC itself is stored. Then we compute the CRC for the rest of the record, from byte 8 of + // the header (where the record ID begins) to the end of the record data. + computed_crc = crc16_compute((uint8_t const *)p_data, 6, NULL); + computed_crc = crc16_compute((uint8_t const *)p_data + 8, + (FDS_HEADER_SIZE_ID + len_words) * sizeof(uint32_t), + &computed_crc); + + return (computed_crc == crc); +} +#endif + + +static void gc_init(void) +{ + m_gc.run_count++; + m_gc.cur_page = 0; + m_gc.resume = false; + + // Setup which pages to GC. Defer checking for open records and the can_gc flag, + // as other operations might change those while GC is running. + for (uint16_t i = 0; i < FDS_DATA_PAGES; i++) + { + m_gc.do_gc_page[i] = (m_pages[i].page_type == FDS_PAGE_DATA); + } +} + + +// Obtain the next page to be garbage collected. +// Returns true if there are pages left to garbage collect, returns false otherwise. +static bool gc_page_next(uint16_t * const p_next_page) +{ + bool ret = false; + + for (uint16_t i = 0; i < FDS_DATA_PAGES; i++) + { + if (m_gc.do_gc_page[i]) + { + // Do not attempt to GC this page again. + m_gc.do_gc_page[i] = false; + + // Only GC pages with no open records and with some records which have been deleted. + if ((m_pages[i].records_open == 0) && (m_pages[i].can_gc == true)) + { + *p_next_page = i; + ret = true; + break; + } + } + } + + return ret; +} + + +static ret_code_t gc_swap_erase(void) +{ + m_gc.state = GC_DISCARD_SWAP; + m_swap_page.write_offset = FDS_PAGE_TAG_SIZE; + + return nrf_fstorage_erase(&m_fs, (uint32_t)m_swap_page.p_addr, FDS_PHY_PAGES_IN_VPAGE, NULL); +} + + +// Erase the page being garbage collected, or erase the swap in case there are any open +// records on the page being garbage collected. +static ret_code_t gc_page_erase(void) +{ + uint32_t ret; + uint16_t const gc = m_gc.cur_page; + + if (m_pages[gc].records_open == 0) + { + m_gc.state = GC_ERASE_PAGE; + + ret = nrf_fstorage_erase(&m_fs, (uint32_t)m_pages[gc].p_addr, FDS_PHY_PAGES_IN_VPAGE, NULL); + } + else + { + // If there are open records, stop garbage collection on this page. + // Discard the swap and try to garbage collect another page. + ret = gc_swap_erase(); + } + + return ret; +} + + +// Copy the current record to swap. +static ret_code_t gc_record_copy(void) +{ + fds_header_t const * const p_header = (fds_header_t*)m_gc.p_record_src; + uint32_t const * const p_dest = m_swap_page.p_addr + m_swap_page.write_offset; + uint16_t const record_len = FDS_HEADER_SIZE + p_header->length_words; + + m_gc.state = GC_COPY_RECORD; + + // Copy the record to swap; it is guaranteed to fit in the destination page, + // so there is no need to check its size. This will either succeed or timeout. + return nrf_fstorage_write(&m_fs, (uint32_t)p_dest, m_gc.p_record_src, + record_len * sizeof(uint32_t), + NULL); +} + + +static ret_code_t gc_record_find_next(void) +{ + ret_code_t ret; + + // Find the next valid record to copy. + if (record_find_next(m_gc.cur_page, &m_gc.p_record_src)) + { + ret = gc_record_copy(); + } + else + { + // No more records left to copy on this page; swap pages. + ret = gc_page_erase(); + } + + return ret; +} + + +// Promote the swap by tagging it as a data page. +static ret_code_t gc_swap_promote(void) +{ + m_gc.state = GC_PROMOTE_SWAP; + return page_tag_write_data(m_pages[m_gc.cur_page].p_addr); +} + + +// Tag the page just garbage collected as swap. +static ret_code_t gc_tag_new_swap(void) +{ + m_gc.state = GC_TAG_NEW_SWAP; + m_gc.p_record_src = NULL; + return page_tag_write_swap(); +} + + +static ret_code_t gc_next_page(void) +{ + if (!gc_page_next(&m_gc.cur_page)) + { + // No pages left to GC; GC has terminated. Reset the state. + m_gc.state = GC_BEGIN; + m_gc.cur_page = 0; + m_gc.p_record_src = NULL; + + return FDS_OP_COMPLETED; + } + + return gc_record_find_next(); +} + + +// Update the swap page offeset after a record has been successfully copied to it. +static void gc_update_swap_offset(void) +{ + fds_header_t const * const p_header = (fds_header_t*)m_gc.p_record_src; + uint16_t const record_len = FDS_HEADER_SIZE + p_header->length_words; + + m_swap_page.write_offset += record_len; +} + + +static void gc_swap_pages(void) +{ + // The page being garbage collected will be the new swap page, + // and the current swap will be used as a data page (promoted). + uint32_t const * const p_addr = m_swap_page.p_addr; + + m_swap_page.p_addr = m_pages[m_gc.cur_page].p_addr; + m_pages[m_gc.cur_page].p_addr = p_addr; + + // Keep the offset for this page, but reset it for the swap. + m_pages[m_gc.cur_page].write_offset = m_swap_page.write_offset; + m_swap_page.write_offset = FDS_PAGE_TAG_SIZE; +} + + +static void gc_state_advance(void) +{ + switch (m_gc.state) + { + case GC_BEGIN: + gc_init(); + m_gc.state = GC_NEXT_PAGE; + break; + + // A record was successfully copied. + case GC_COPY_RECORD: + gc_update_swap_offset(); + m_gc.state = GC_FIND_NEXT_RECORD; + break; + + // A page was successfully erased. Prepare to promote the swap. + case GC_ERASE_PAGE: + gc_swap_pages(); + m_gc.state = GC_PROMOTE_SWAP; + break; + + // Swap was discarded because the page being GC'ed had open records. + case GC_DISCARD_SWAP: + // Swap was successfully promoted. + case GC_PROMOTE_SWAP: + // Prepare to tag the page just GC'ed as swap. + m_gc.state = GC_TAG_NEW_SWAP; + break; + + case GC_TAG_NEW_SWAP: + m_gc.state = GC_NEXT_PAGE; + break; + + default: + // Should not happen. + break; + } +} + + +// Initialize the filesystem. +static ret_code_t init_execute(uint32_t prev_ret, fds_op_t * const p_op) +{ + ret_code_t ret = FDS_ERR_INTERNAL; + + if (prev_ret != NRF_SUCCESS) + { + // A previous operation has timed out. + m_flags.initializing = false; + return FDS_ERR_OPERATION_TIMEOUT; + } + + switch (p_op->init.step) + { + case FDS_OP_INIT_TAG_SWAP: + { + // The page write offset was determined previously by pages_init(). + p_op->init.step = FDS_OP_INIT_TAG_DATA; + ret = page_tag_write_swap(); + } break; + + case FDS_OP_INIT_TAG_DATA: + { + // Tag remaining erased pages as data. + bool write_reqd = false; + for (uint16_t i = 0; i < FDS_DATA_PAGES; i++) + { + if (m_pages[i].page_type == FDS_PAGE_ERASED) + { + m_pages[i].page_type = FDS_PAGE_DATA; + write_reqd = true; + ret = page_tag_write_data(m_pages[i].p_addr); + break; + } + } + if (!write_reqd) + { + m_flags.initialized = true; + m_flags.initializing = false; + return FDS_OP_COMPLETED; + } + } break; + + case FDS_OP_INIT_ERASE_SWAP: + { + // If the swap is going to be discarded then reset its write_offset. + p_op->init.step = FDS_OP_INIT_TAG_SWAP; + m_swap_page.write_offset = FDS_PAGE_TAG_SIZE; + + ret = nrf_fstorage_erase(&m_fs, (uint32_t)m_swap_page.p_addr, FDS_PHY_PAGES_IN_VPAGE, NULL); + } break; + + case FDS_OP_INIT_PROMOTE_SWAP: + { + p_op->init.step = FDS_OP_INIT_TAG_SWAP; + + // When promoting the swap, keep the write_offset set by pages_init(). + ret = page_tag_write_data(m_swap_page.p_addr); + + uint16_t const gc = m_gc.cur_page; + uint32_t const * const p_old_swap = m_swap_page.p_addr; + + // Execute the swap. + m_swap_page.p_addr = m_pages[gc].p_addr; + m_pages[gc].p_addr = p_old_swap; + + // Copy the offset from the swap to the new page. + m_pages[gc].write_offset = m_swap_page.write_offset; + m_swap_page.write_offset = FDS_PAGE_TAG_SIZE; + + m_pages[gc].page_type = FDS_PAGE_DATA; + } break; + + default: + // Should not happen. + break; + } + + if (ret != FDS_SUCCESS) + { + // fstorage queue was full. + m_flags.initializing = false; + return FDS_ERR_BUSY; + } + + return FDS_OP_EXECUTING; +} + + +// Executes write and update operations. +static ret_code_t write_execute(uint32_t prev_ret, fds_op_t * const p_op) +{ + ret_code_t ret; + uint32_t * p_write_addr; + fds_page_t * const p_page = &m_pages[p_op->write.page]; + + // This must persist across calls. + static fds_record_desc_t desc = {0}; + // When a record is updated, this variable will hold the page where the old + // copy was stored. This will be used to set the can_gc flag when the header is + // invalidated (FDS_OP_WRITE_FLAG_DIRTY). + static uint16_t page; + + if (prev_ret != NRF_SUCCESS) + { + // The previous operation has timed out, update offsets. + page_offsets_update(p_page, p_op); + return FDS_ERR_OPERATION_TIMEOUT; + } + + // Compute the address where to write data. + p_write_addr = (uint32_t*)(p_page->p_addr + p_page->write_offset); + + // Execute the current step of the operation, and set one to be executed next. + switch (p_op->write.step) + { + case FDS_OP_WRITE_FIND_RECORD: + { + // The first step of updating a record constists of locating the copy to be deleted. + // If the old copy couldn't be found for any reason then the update should fail. + // This prevents duplicates when queuing multiple updates of the same record. + desc.p_record = NULL; + desc.record_id = p_op->write.record_to_delete; + + if (!record_find_by_desc(&desc, &page)) + { + return FDS_ERR_NOT_FOUND; + } + // Setting the step is redundant since we are falling through. + } + // Fallthrough to FDS_OP_WRITE_HEADER_BEGIN. + + case FDS_OP_WRITE_HEADER_BEGIN: + ret = record_header_write_begin(p_op, p_write_addr); + break; + + case FDS_OP_WRITE_RECORD_ID: + ret = record_header_write_id(p_op, p_write_addr); + break; + + case FDS_OP_WRITE_DATA: + ret = record_write_data(p_op, p_write_addr); + break; + + case FDS_OP_WRITE_HEADER_FINALIZE: + ret = record_header_write_finalize(p_op, p_write_addr); + break; + + case FDS_OP_WRITE_FLAG_DIRTY: + p_op->write.step = FDS_OP_WRITE_DONE; + ret = record_header_flag_dirty((uint32_t*)desc.p_record, page); + break; + + case FDS_OP_WRITE_DONE: + ret = FDS_OP_COMPLETED; + +#if (FDS_CRC_CHECK_ON_WRITE) + if (!crc_verify_success(p_op->write.header.crc16, + p_op->write.header.length_words, + p_write_addr)) + { + ret = FDS_ERR_CRC_CHECK_FAILED; + } +#endif + break; + + default: + ret = FDS_ERR_INTERNAL; + break; + } + + // An operation has either completed or failed. It may have failed because fstorage + // ran out of memory, or because the user tried to delete a record which did not exist. + if (ret != FDS_OP_EXECUTING) + { + // There won't be another callback for this operation, so update the page offset now. + page_offsets_update(p_page, p_op); + } + + return ret; +} + + +static ret_code_t delete_execute(uint32_t prev_ret, fds_op_t * const p_op) +{ + ret_code_t ret; + + if (prev_ret != NRF_SUCCESS) + { + return FDS_ERR_OPERATION_TIMEOUT; + } + + switch (p_op->del.step) + { + case FDS_OP_DEL_RECORD_FLAG_DIRTY: + p_op->del.step = FDS_OP_DEL_DONE; + ret = record_find_and_delete(p_op); + break; + + case FDS_OP_DEL_FILE_FLAG_DIRTY: + ret = file_find_and_delete(p_op); + if (ret == FDS_ERR_NOT_FOUND) + { + // No more records could be found. + // There won't be another callback for this operation, so return now. + ret = FDS_OP_COMPLETED; + } + break; + + case FDS_OP_DEL_DONE: + ret = FDS_OP_COMPLETED; + break; + + default: + ret = FDS_ERR_INTERNAL; + break; + } + + return ret; +} + + +static ret_code_t gc_execute(uint32_t prev_ret) +{ + ret_code_t ret; + + if (prev_ret != NRF_SUCCESS) + { + return FDS_ERR_OPERATION_TIMEOUT; + } + + if (m_gc.resume) + { + m_gc.resume = false; + } + else + { + gc_state_advance(); + } + + switch (m_gc.state) + { + case GC_NEXT_PAGE: + ret = gc_next_page(); + break; + + case GC_FIND_NEXT_RECORD: + ret = gc_record_find_next(); + break; + + case GC_COPY_RECORD: + ret = gc_record_copy(); + break; + + case GC_ERASE_PAGE: + ret = gc_page_erase(); + break; + + case GC_PROMOTE_SWAP: + ret = gc_swap_promote(); + break; + + case GC_TAG_NEW_SWAP: + ret = gc_tag_new_swap(); + break; + + default: + // Should not happen. + ret = FDS_ERR_INTERNAL; + break; + } + + // Either FDS_OP_EXECUTING, FDS_OP_COMPLETED, FDS_ERR_BUSY or FDS_ERR_INTERNAL. + return ret; +} + + +static void queue_process(ret_code_t result) +{ + static fds_op_t * m_p_cur_op; // Current fds operation. + static nrf_atfifo_item_get_t m_iget_ctx; // Queue context for the current operation. + + while (true) + { + if (m_p_cur_op == NULL) + { + // Load the next from the queue if no operation is being executed. + m_p_cur_op = queue_load(&m_iget_ctx); + } + + /* We can reach here in three ways: + * from queue_start(): something was just queued + * from the fstorage event handler: an operation is being executed + * looping: we only loop if there are operations still in the queue + * + * In all these three cases, m_p_cur_op != NULL. + */ + ASSERT(m_p_cur_op != NULL); + + switch (m_p_cur_op->op_code) + { + case FDS_OP_INIT: + result = init_execute(result, m_p_cur_op); + break; + + case FDS_OP_WRITE: + case FDS_OP_UPDATE: + result = write_execute(result, m_p_cur_op); + break; + + case FDS_OP_DEL_RECORD: + case FDS_OP_DEL_FILE: + result = delete_execute(result, m_p_cur_op); + break; + + case FDS_OP_GC: + result = gc_execute(result); + break; + + default: + result = FDS_ERR_INTERNAL; + break; + } + + if (result == FDS_OP_EXECUTING) + { + // The operation has not completed yet. Wait for the next system event. + break; + } + + // The operation has completed (either successfully or with an error). + // - send an event to the user + // - free the operation buffer + // - execute any other queued operations + + fds_evt_t evt = + { + // The operation might have failed for one of the following reasons: + // FDS_ERR_BUSY - flash subsystem can't accept the operation + // FDS_ERR_OPERATION_TIMEOUT - flash subsystem timed out + // FDS_ERR_CRC_CHECK_FAILED - a CRC check failed + // FDS_ERR_NOT_FOUND - no record found (delete/update) + .result = (result == FDS_OP_COMPLETED) ? FDS_SUCCESS : result, + }; + + event_prepare(m_p_cur_op, &evt); + event_send(&evt); + + // Zero the pointer to the current operation so that this function + // will fetch a new one from the queue next time it is run. + m_p_cur_op = NULL; + + // The result of the operation must be reset upon re-entering the loop to ensure + // the next operation won't be affected by eventual errors in previous operations. + result = NRF_SUCCESS; + + // Free the queue element used by the current operation. + queue_free(&m_iget_ctx); + + if (!queue_has_next()) + { + // No more elements left. Nothing to do. + break; + } + } +} + + +static void queue_start(void) +{ + if (!nrf_atomic_u32_fetch_add(&m_queued_op_cnt, 1)) + { + queue_process(NRF_SUCCESS); + } +} + + +static void fs_event_handler(nrf_fstorage_evt_t * p_evt) +{ + queue_process(p_evt->result); +} + + +// Enqueues write and update operations. +static ret_code_t write_enqueue(fds_record_desc_t * const p_desc, + fds_record_t const * const p_record, + fds_reserve_token_t const * const p_tok, + fds_op_code_t op_code) +{ + ret_code_t ret; + uint16_t page; + uint16_t crc = 0; + uint16_t length_words = 0; + fds_op_t * p_op; + nrf_atfifo_item_put_t iput_ctx; + + if (!m_flags.initialized) + { + return FDS_ERR_NOT_INITIALIZED; + } + + if (p_record == NULL) + { + return FDS_ERR_NULL_ARG; + } + + if ((p_record->file_id == FDS_FILE_ID_INVALID) || + (p_record->key == FDS_RECORD_KEY_DIRTY)) + { + return FDS_ERR_INVALID_ARG; + } + + if (!is_word_aligned(p_record->data.p_data)) + { + return FDS_ERR_UNALIGNED_ADDR; + } + + // No space was previously reserved in flash for this operation. + if (p_tok == NULL) + { + // Find a page where to write data. + length_words = p_record->data.length_words; + ret = write_space_reserve(length_words, &page); + + if (ret != FDS_SUCCESS) + { + // There is either not enough space in flash (FDS_ERR_NO_SPACE_IN_FLASH) or + // the record exceeds the size of virtual page (FDS_ERR_RECORD_TOO_LARGE). + return ret; + } + } + else + { + page = p_tok->page; + length_words = p_tok->length_words; + } + + // Get a buffer on the queue of operations. + p_op = queue_buf_get(&iput_ctx); + if (p_op == NULL) + { + CRITICAL_SECTION_ENTER(); + write_space_free(length_words, page); + CRITICAL_SECTION_EXIT(); + return FDS_ERR_NO_SPACE_IN_QUEUES; + } + + // Initialize the operation. + p_op->op_code = op_code; + p_op->write.step = FDS_OP_WRITE_HEADER_BEGIN; + p_op->write.page = page; + p_op->write.p_data = p_record->data.p_data; + p_op->write.header.record_id = record_id_new(); + p_op->write.header.file_id = p_record->file_id; + p_op->write.header.record_key = p_record->key; + p_op->write.header.length_words = length_words; + + if (op_code == FDS_OP_UPDATE) + { + p_op->write.step = FDS_OP_WRITE_FIND_RECORD; + // Save the record ID of the record to be updated. + p_op->write.record_to_delete = p_desc->record_id; + } + +#if (FDS_CRC_CHECK_ON_READ) + // First, compute the CRC for the first 6 bytes of the header which contain the + // record key, length and file ID, then, compute the CRC of the record ID (4 bytes). + crc = crc16_compute((uint8_t*)&p_op->write.header, 6, NULL); + crc = crc16_compute((uint8_t*)&p_op->write.header.record_id, 4, &crc); + + // Compute the CRC for the record data. + crc = crc16_compute((uint8_t*)p_record->data.p_data, + p_record->data.length_words * sizeof(uint32_t), &crc); +#endif + + p_op->write.header.crc16 = crc; + + queue_buf_store(&iput_ctx); + + // Initialize the record descriptor, if provided. + if (p_desc != NULL) + { + p_desc->p_record = NULL; + // Don't invoke record_id_new() again ! + p_desc->record_id = p_op->write.header.record_id; + p_desc->record_is_open = false; + p_desc->gc_run_count = m_gc.run_count; + } + + // Start processing the queue, if necessary. + queue_start(); + + return FDS_SUCCESS; +} + + +ret_code_t fds_register(fds_cb_t cb) +{ + ret_code_t ret; + + if (m_users == FDS_MAX_USERS) + { + ret = FDS_ERR_USER_LIMIT_REACHED; + } + else + { + m_cb_table[m_users] = cb; + (void) nrf_atomic_u32_add(&m_users, 1); + + ret = FDS_SUCCESS; + } + + return ret; +} + + +static uint32_t flash_end_addr(void) +{ + uint32_t const bootloader_addr = NRF_UICR->NRFFW[0]; + uint32_t const page_sz = NRF_FICR->CODEPAGESIZE; +#ifndef NRF52810_XXAA + uint32_t const code_sz = NRF_FICR->CODESIZE; +#else + // Number of flash pages, necessary to emulate the NRF52810 on NRF52832. + uint32_t const code_sz = 48; +#endif + + return (bootloader_addr != 0xFFFFFFFF) ? bootloader_addr : (code_sz * page_sz); +} + + +static void flash_bounds_set(void) +{ + uint32_t flash_size = (FDS_PHY_PAGES * FDS_PHY_PAGE_SIZE * sizeof(uint32_t)); + m_fs.end_addr = flash_end_addr(); + m_fs.start_addr = m_fs.end_addr - flash_size; +} + + +static ret_code_t flash_subsystem_init(void) +{ + flash_bounds_set(); + + #if (FDS_BACKEND == NRF_FSTORAGE_SD) + return nrf_fstorage_init(&m_fs, &nrf_fstorage_sd, NULL); + #elif (FDS_BACKEND == NRF_FSTORAGE_NVMC) + return nrf_fstorage_init(&m_fs, &nrf_fstorage_nvmc, NULL); + #else + #error Invalid FDS_BACKEND. + #endif +} + + +static void queue_init(void) +{ + (void) NRF_ATFIFO_INIT(m_queue); +} + + +ret_code_t fds_init(void) +{ + ret_code_t ret; + fds_evt_t const evt_success = + { + .id = FDS_EVT_INIT, + .result = FDS_SUCCESS, + }; + + if (m_flags.initialized) + { + // No initialization is necessary. Notify the application immediately. + event_send(&evt_success); + return FDS_SUCCESS; + } + + if (nrf_atomic_flag_set_fetch(&m_flags.initializing)) + { + // If we were already initializing, return. + return FDS_SUCCESS; + } + + // Otherwise, the flag is set and we proceed to initialization. + + ret = flash_subsystem_init(); + if (ret != NRF_SUCCESS) + { + return ret; + } + + queue_init(); + + // Initialize the page structure (m_pages), and determine which + // initialization steps are required given the current state of the filesystem. + + fds_init_opts_t init_opts = pages_init(); + + switch (init_opts) + { + case NO_PAGES: + case NO_SWAP: + return FDS_ERR_NO_PAGES; + + case ALREADY_INSTALLED: + { + // No initialization is necessary. Notify the application immediately. + m_flags.initialized = true; + m_flags.initializing = false; + event_send(&evt_success); + return FDS_SUCCESS; + } + + default: + break; + } + + // A write operation is necessary to initialize the fileystem. + + nrf_atfifo_item_put_t iput_ctx; + + fds_op_t * p_op = queue_buf_get(&iput_ctx); + if (p_op == NULL) + { + return FDS_ERR_NO_SPACE_IN_QUEUES; + } + + p_op->op_code = FDS_OP_INIT; + + switch (init_opts) + { + case FRESH_INSTALL: + case TAG_SWAP: + p_op->init.step = FDS_OP_INIT_TAG_SWAP; + break; + + case PROMOTE_SWAP: + case PROMOTE_SWAP_INST: + p_op->init.step = FDS_OP_INIT_PROMOTE_SWAP; + break; + + case DISCARD_SWAP: + p_op->init.step = FDS_OP_INIT_ERASE_SWAP; + break; + + case TAG_DATA: + case TAG_DATA_INST: + p_op->init.step = FDS_OP_INIT_TAG_DATA; + break; + + default: + // Should not happen. + break; + } + + queue_buf_store(&iput_ctx); + queue_start(); + + return FDS_SUCCESS; +} + + +ret_code_t fds_record_open(fds_record_desc_t * const p_desc, + fds_flash_record_t * const p_flash_rec) +{ + uint16_t page; + + if ((p_desc == NULL) || (p_flash_rec == NULL)) + { + return FDS_ERR_NULL_ARG; + } + + // Find the record if necessary. + if (record_find_by_desc(p_desc, &page)) + { + fds_header_t const * const p_header = (fds_header_t*)p_desc->p_record; + +#if (FDS_CRC_CHECK_ON_READ) + if (!crc_verify_success(p_header->crc16, + p_header->length_words, + p_desc->p_record)) + { + return FDS_ERR_CRC_CHECK_FAILED; + } +#endif + + (void) nrf_atomic_u32_add(&m_pages[page].records_open, 1); + + // Initialize p_flash_rec. + p_flash_rec->p_header = p_header; + p_flash_rec->p_data = (p_desc->p_record + FDS_HEADER_SIZE); + + // Set the record as open in the descriptor. + p_desc->record_is_open = true; + + return FDS_SUCCESS; + } + + // The record could not be found. + // It either never existed or it has been deleted. + return FDS_ERR_NOT_FOUND; +} + + +ret_code_t fds_record_close(fds_record_desc_t * const p_desc) +{ + ret_code_t ret; + uint16_t page; + + if (p_desc == NULL) + { + return FDS_ERR_NULL_ARG; + } + + if (record_find_by_desc((fds_record_desc_t*)p_desc, &page)) + { + CRITICAL_SECTION_ENTER(); + if ((m_pages[page].records_open > 0) && (p_desc->record_is_open)) + { + + m_pages[page].records_open--; + p_desc->record_is_open = false; + + ret = FDS_SUCCESS; + } + else + { + ret = FDS_ERR_NO_OPEN_RECORDS; + } + CRITICAL_SECTION_EXIT(); + } + else + { + ret = FDS_ERR_NOT_FOUND; + } + + return ret; +} + + +ret_code_t fds_reserve(fds_reserve_token_t * const p_tok, uint16_t length_words) +{ + ret_code_t ret; + uint16_t page; + + if (!m_flags.initialized) + { + return FDS_ERR_NOT_INITIALIZED; + } + + if (p_tok == NULL) + { + return FDS_ERR_NULL_ARG; + } + + ret = write_space_reserve(length_words, &page); + + if (ret == FDS_SUCCESS) + { + p_tok->page = page; + p_tok->length_words = length_words; + } + + return ret; +} + + +ret_code_t fds_reserve_cancel(fds_reserve_token_t * const p_tok) +{ + ret_code_t ret; + + if (!m_flags.initialized) + { + return FDS_ERR_NOT_INITIALIZED; + } + + if (p_tok == NULL) + { + return FDS_ERR_NULL_ARG; + } + + if (p_tok->page > FDS_DATA_PAGES) + { + // The page does not exist. This shouldn't happen. + return FDS_ERR_INVALID_ARG; + } + + fds_page_t const * const p_page = &m_pages[p_tok->page]; + + CRITICAL_SECTION_ENTER(); + if ((FDS_HEADER_SIZE + p_tok->length_words) <= p_page->words_reserved) + { + // Free reserved space. + write_space_free(p_tok->length_words, p_tok->page); + + // Clean the token. + p_tok->page = 0; + p_tok->length_words = 0; + ret = FDS_SUCCESS; + } + else + { + // We are trying to cancel a reservation of more words than how many are + // currently reserved on the page. Clearly, this shouldn't happen. + ret = FDS_ERR_INVALID_ARG; + } + CRITICAL_SECTION_EXIT(); + + return ret; +} + + +ret_code_t fds_record_write(fds_record_desc_t * const p_desc, + fds_record_t const * const p_record) +{ + return write_enqueue(p_desc, p_record, NULL, FDS_OP_WRITE); +} + + +ret_code_t fds_record_write_reserved(fds_record_desc_t * const p_desc, + fds_record_t const * const p_record, + fds_reserve_token_t const * const p_tok) +{ + // A NULL token is not allowed when writing to a reserved space. + if (p_tok == NULL) + { + return FDS_ERR_NULL_ARG; + } + + return write_enqueue(p_desc, p_record, p_tok, FDS_OP_WRITE); +} + + +ret_code_t fds_record_update(fds_record_desc_t * const p_desc, + fds_record_t const * const p_record) +{ + // A NULL descriptor is not allowed when updating a record. + if (p_desc == NULL) + { + return FDS_ERR_NULL_ARG; + } + + return write_enqueue(p_desc, p_record, NULL, FDS_OP_UPDATE); +} + + +ret_code_t fds_record_delete(fds_record_desc_t * const p_desc) +{ + fds_op_t * p_op; + nrf_atfifo_item_put_t iput_ctx; + + if (!m_flags.initialized) + { + return FDS_ERR_NOT_INITIALIZED; + } + + if (p_desc == NULL) + { + return FDS_ERR_NULL_ARG; + } + + p_op = queue_buf_get(&iput_ctx); + if (p_op == NULL) + { + return FDS_ERR_NO_SPACE_IN_QUEUES; + } + + p_op->op_code = FDS_OP_DEL_RECORD; + p_op->del.step = FDS_OP_DEL_RECORD_FLAG_DIRTY; + p_op->del.record_to_delete = p_desc->record_id; + + queue_buf_store(&iput_ctx); + queue_start(); + + return FDS_SUCCESS; +} + + +ret_code_t fds_file_delete(uint16_t file_id) +{ + fds_op_t * p_op; + nrf_atfifo_item_put_t iput_ctx; + + if (!m_flags.initialized) + { + return FDS_ERR_NOT_INITIALIZED; + } + + if (file_id == FDS_FILE_ID_INVALID) + { + return FDS_ERR_INVALID_ARG; + } + + p_op = queue_buf_get(&iput_ctx); + if (p_op == NULL) + { + return FDS_ERR_NO_SPACE_IN_QUEUES; + } + + p_op->op_code = FDS_OP_DEL_FILE; + p_op->del.step = FDS_OP_DEL_FILE_FLAG_DIRTY; + p_op->del.file_id = file_id; + + queue_buf_store(&iput_ctx); + queue_start(); + + return FDS_SUCCESS; +} + + +ret_code_t fds_gc(void) +{ + fds_op_t * p_op; + nrf_atfifo_item_put_t iput_ctx; + + if (!m_flags.initialized) + { + return FDS_ERR_NOT_INITIALIZED; + } + + p_op = queue_buf_get(&iput_ctx); + if (p_op == NULL) + { + return FDS_ERR_NO_SPACE_IN_QUEUES; + } + + p_op->op_code = FDS_OP_GC; + + queue_buf_store(&iput_ctx); + + if (m_gc.state != GC_BEGIN) + { + // Resume GC by retrying the last step. + m_gc.resume = true; + } + + queue_start(); + + return FDS_SUCCESS; +} + + +ret_code_t fds_record_iterate(fds_record_desc_t * const p_desc, + fds_find_token_t * const p_token) +{ + return record_find(NULL, NULL, p_desc, p_token); +} + + +ret_code_t fds_record_find(uint16_t file_id, + uint16_t record_key, + fds_record_desc_t * const p_desc, + fds_find_token_t * const p_token) +{ + return record_find(&file_id, &record_key, p_desc, p_token); +} + + +ret_code_t fds_record_find_by_key(uint16_t record_key, + fds_record_desc_t * const p_desc, + fds_find_token_t * const p_token) +{ + return record_find(NULL, &record_key, p_desc, p_token); +} + + +ret_code_t fds_record_find_in_file(uint16_t file_id, + fds_record_desc_t * const p_desc, + fds_find_token_t * const p_token) +{ + return record_find(&file_id, NULL, p_desc, p_token); +} + + +ret_code_t fds_descriptor_from_rec_id(fds_record_desc_t * const p_desc, + uint32_t record_id) +{ + if (p_desc == NULL) + { + return FDS_ERR_NULL_ARG; + } + + // Zero the descriptor and set the record_id field. + memset(p_desc, 0x00, sizeof(fds_record_desc_t)); + p_desc->record_id = record_id; + + return FDS_SUCCESS; +} + + +ret_code_t fds_record_id_from_desc(fds_record_desc_t const * const p_desc, + uint32_t * const p_record_id) +{ + if ((p_desc == NULL) || (p_record_id == NULL)) + { + return FDS_ERR_NULL_ARG; + } + + *p_record_id = p_desc->record_id; + + return FDS_SUCCESS; +} + + +ret_code_t fds_stat(fds_stat_t * const p_stat) +{ + uint16_t const words_in_page = FDS_PAGE_SIZE; + // The largest number of free contiguous words on any page. + uint16_t contig_words = 0; + + if (!m_flags.initialized) + { + return FDS_ERR_NOT_INITIALIZED; + } + + if (p_stat == NULL) + { + return FDS_ERR_NULL_ARG; + } + + memset(p_stat, 0x00, sizeof(fds_stat_t)); + + p_stat->pages_available = FDS_VIRTUAL_PAGES; + + for (uint16_t page = 0; page < FDS_DATA_PAGES; page++) + { + uint16_t const words_used = m_pages[page].write_offset + m_pages[page].words_reserved; + + if (page_identify(m_pages[page].p_addr) == FDS_PAGE_UNDEFINED) + { + p_stat->pages_available--; + } + + p_stat->open_records += m_pages[page].records_open; + p_stat->words_reserved += m_pages[page].words_reserved; + p_stat->words_used += words_used; + + contig_words = (words_in_page - words_used); + if (contig_words > p_stat->largest_contig) + { + p_stat->largest_contig = contig_words; + } + + records_stat(page, + &p_stat->valid_records, + &p_stat->dirty_records, + &p_stat->freeable_words, + &p_stat->corruption); + } + + return FDS_SUCCESS; +} + +#endif //NRF_MODULE_ENABLED(FDS) -- cgit v1.2.3