/** * Copyright (c) 2012 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* Attention! * To maintain compliance with Nordic Semiconductor ASA's Bluetooth profile * qualification listings, this section of source code must not be modified. */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(BLE_HRS) #include "ble_hrs.h" #include #include "ble_srv_common.h" #define OPCODE_LENGTH 1 /**< Length of opcode inside Heart Rate Measurement packet. */ #define HANDLE_LENGTH 2 /**< Length of handle inside Heart Rate Measurement packet. */ #define MAX_HRM_LEN (NRF_SDH_BLE_GATT_MAX_MTU_SIZE - OPCODE_LENGTH - HANDLE_LENGTH) /**< Maximum size of a transmitted Heart Rate Measurement. */ #define INITIAL_VALUE_HRM 0 /**< Initial Heart Rate Measurement value. */ // Heart Rate Measurement flag bits #define HRM_FLAG_MASK_HR_VALUE_16BIT (0x01 << 0) /**< Heart Rate Value Format bit. */ #define HRM_FLAG_MASK_SENSOR_CONTACT_DETECTED (0x01 << 1) /**< Sensor Contact Detected bit. */ #define HRM_FLAG_MASK_SENSOR_CONTACT_SUPPORTED (0x01 << 2) /**< Sensor Contact Supported bit. */ #define HRM_FLAG_MASK_EXPENDED_ENERGY_INCLUDED (0x01 << 3) /**< Energy Expended Status bit. Feature Not Supported */ #define HRM_FLAG_MASK_RR_INTERVAL_INCLUDED (0x01 << 4) /**< RR-Interval bit. */ /**@brief Function for handling the Connect event. * * @param[in] p_hrs Heart Rate Service structure. * @param[in] p_ble_evt Event received from the BLE stack. */ static void on_connect(ble_hrs_t * p_hrs, ble_evt_t const * p_ble_evt) { p_hrs->conn_handle = p_ble_evt->evt.gap_evt.conn_handle; } /**@brief Function for handling the Disconnect event. * * @param[in] p_hrs Heart Rate Service structure. * @param[in] p_ble_evt Event received from the BLE stack. */ static void on_disconnect(ble_hrs_t * p_hrs, ble_evt_t const * p_ble_evt) { UNUSED_PARAMETER(p_ble_evt); p_hrs->conn_handle = BLE_CONN_HANDLE_INVALID; } /**@brief Function for handling write events to the Heart Rate Measurement characteristic. * * @param[in] p_hrs Heart Rate Service structure. * @param[in] p_evt_write Write event received from the BLE stack. */ static void on_hrm_cccd_write(ble_hrs_t * p_hrs, ble_gatts_evt_write_t const * p_evt_write) { if (p_evt_write->len == 2) { // CCCD written, update notification state if (p_hrs->evt_handler != NULL) { ble_hrs_evt_t evt; if (ble_srv_is_notification_enabled(p_evt_write->data)) { evt.evt_type = BLE_HRS_EVT_NOTIFICATION_ENABLED; } else { evt.evt_type = BLE_HRS_EVT_NOTIFICATION_DISABLED; } p_hrs->evt_handler(p_hrs, &evt); } } } /**@brief Function for handling the Write event. * * @param[in] p_hrs Heart Rate Service structure. * @param[in] p_ble_evt Event received from the BLE stack. */ static void on_write(ble_hrs_t * p_hrs, ble_evt_t const * p_ble_evt) { ble_gatts_evt_write_t const * p_evt_write = &p_ble_evt->evt.gatts_evt.params.write; if (p_evt_write->handle == p_hrs->hrm_handles.cccd_handle) { on_hrm_cccd_write(p_hrs, p_evt_write); } } void ble_hrs_on_ble_evt(ble_evt_t const * p_ble_evt, void * p_context) { ble_hrs_t * p_hrs = (ble_hrs_t *) p_context; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: on_connect(p_hrs, p_ble_evt); break; case BLE_GAP_EVT_DISCONNECTED: on_disconnect(p_hrs, p_ble_evt); break; case BLE_GATTS_EVT_WRITE: on_write(p_hrs, p_ble_evt); break; default: // No implementation needed. break; } } /**@brief Function for encoding a Heart Rate Measurement. * * @param[in] p_hrs Heart Rate Service structure. * @param[in] heart_rate Measurement to be encoded. * @param[out] p_encoded_buffer Buffer where the encoded data will be written. * * @return Size of encoded data. */ static uint8_t hrm_encode(ble_hrs_t * p_hrs, uint16_t heart_rate, uint8_t * p_encoded_buffer) { uint8_t flags = 0; uint8_t len = 1; int i; // Set sensor contact related flags if (p_hrs->is_sensor_contact_supported) { flags |= HRM_FLAG_MASK_SENSOR_CONTACT_SUPPORTED; } if (p_hrs->is_sensor_contact_detected) { flags |= HRM_FLAG_MASK_SENSOR_CONTACT_DETECTED; } // Encode heart rate measurement if (heart_rate > 0xff) { flags |= HRM_FLAG_MASK_HR_VALUE_16BIT; len += uint16_encode(heart_rate, &p_encoded_buffer[len]); } else { p_encoded_buffer[len++] = (uint8_t)heart_rate; } // Encode rr_interval values if (p_hrs->rr_interval_count > 0) { flags |= HRM_FLAG_MASK_RR_INTERVAL_INCLUDED; } for (i = 0; i < p_hrs->rr_interval_count; i++) { if (len + sizeof(uint16_t) > p_hrs->max_hrm_len) { // Not all stored rr_interval values can fit into the encoded hrm, // move the remaining values to the start of the buffer. memmove(&p_hrs->rr_interval[0], &p_hrs->rr_interval[i], (p_hrs->rr_interval_count - i) * sizeof(uint16_t)); break; } len += uint16_encode(p_hrs->rr_interval[i], &p_encoded_buffer[len]); } p_hrs->rr_interval_count -= i; // Add flags p_encoded_buffer[0] = flags; return len; } /**@brief Function for adding the Heart Rate Measurement characteristic. * * @param[in] p_hrs Heart Rate Service structure. * @param[in] p_hrs_init Information needed to initialize the service. * * @return NRF_SUCCESS on success, otherwise an error code. */ static uint32_t heart_rate_measurement_char_add(ble_hrs_t * p_hrs, const ble_hrs_init_t * p_hrs_init) { ble_gatts_char_md_t char_md; ble_gatts_attr_md_t cccd_md; ble_gatts_attr_t attr_char_value; ble_uuid_t ble_uuid; ble_gatts_attr_md_t attr_md; uint8_t encoded_initial_hrm[MAX_HRM_LEN]; memset(&cccd_md, 0, sizeof(cccd_md)); BLE_GAP_CONN_SEC_MODE_SET_OPEN(&cccd_md.read_perm); cccd_md.write_perm = p_hrs_init->hrs_hrm_attr_md.cccd_write_perm; cccd_md.vloc = BLE_GATTS_VLOC_STACK; memset(&char_md, 0, sizeof(char_md)); char_md.char_props.notify = 1; char_md.p_char_user_desc = NULL; char_md.p_char_pf = NULL; char_md.p_user_desc_md = NULL; char_md.p_cccd_md = &cccd_md; char_md.p_sccd_md = NULL; BLE_UUID_BLE_ASSIGN(ble_uuid, BLE_UUID_HEART_RATE_MEASUREMENT_CHAR); memset(&attr_md, 0, sizeof(attr_md)); attr_md.read_perm = p_hrs_init->hrs_hrm_attr_md.read_perm; attr_md.write_perm = p_hrs_init->hrs_hrm_attr_md.write_perm; attr_md.vloc = BLE_GATTS_VLOC_STACK; attr_md.rd_auth = 0; attr_md.wr_auth = 0; attr_md.vlen = 1; memset(&attr_char_value, 0, sizeof(attr_char_value)); attr_char_value.p_uuid = &ble_uuid; attr_char_value.p_attr_md = &attr_md; attr_char_value.init_len = hrm_encode(p_hrs, INITIAL_VALUE_HRM, encoded_initial_hrm); attr_char_value.init_offs = 0; attr_char_value.max_len = MAX_HRM_LEN; attr_char_value.p_value = encoded_initial_hrm; return sd_ble_gatts_characteristic_add(p_hrs->service_handle, &char_md, &attr_char_value, &p_hrs->hrm_handles); } /**@brief Function for adding the Body Sensor Location characteristic. * * @param[in] p_hrs Heart Rate Service structure. * @param[in] p_hrs_init Information needed to initialize the service. * * @return NRF_SUCCESS on success, otherwise an error code. */ static uint32_t body_sensor_location_char_add(ble_hrs_t * p_hrs, const ble_hrs_init_t * p_hrs_init) { ble_gatts_char_md_t char_md; ble_gatts_attr_t attr_char_value; ble_uuid_t ble_uuid; ble_gatts_attr_md_t attr_md; memset(&char_md, 0, sizeof(char_md)); char_md.char_props.read = 1; char_md.p_char_user_desc = NULL; char_md.p_char_pf = NULL; char_md.p_user_desc_md = NULL; char_md.p_cccd_md = NULL; char_md.p_sccd_md = NULL; BLE_UUID_BLE_ASSIGN(ble_uuid, BLE_UUID_BODY_SENSOR_LOCATION_CHAR); memset(&attr_md, 0, sizeof(attr_md)); attr_md.read_perm = p_hrs_init->hrs_bsl_attr_md.read_perm; attr_md.write_perm = p_hrs_init->hrs_bsl_attr_md.write_perm; attr_md.vloc = BLE_GATTS_VLOC_STACK; attr_md.rd_auth = 0; attr_md.wr_auth = 0; attr_md.vlen = 0; memset(&attr_char_value, 0, sizeof(attr_char_value)); attr_char_value.p_uuid = &ble_uuid; attr_char_value.p_attr_md = &attr_md; attr_char_value.init_len = sizeof (uint8_t); attr_char_value.init_offs = 0; attr_char_value.max_len = sizeof (uint8_t); attr_char_value.p_value = p_hrs_init->p_body_sensor_location; return sd_ble_gatts_characteristic_add(p_hrs->service_handle, &char_md, &attr_char_value, &p_hrs->bsl_handles); } uint32_t ble_hrs_init(ble_hrs_t * p_hrs, const ble_hrs_init_t * p_hrs_init) { uint32_t err_code; ble_uuid_t ble_uuid; // Initialize service structure p_hrs->evt_handler = p_hrs_init->evt_handler; p_hrs->is_sensor_contact_supported = p_hrs_init->is_sensor_contact_supported; p_hrs->conn_handle = BLE_CONN_HANDLE_INVALID; p_hrs->is_sensor_contact_detected = false; p_hrs->rr_interval_count = 0; p_hrs->max_hrm_len = MAX_HRM_LEN; // Add service BLE_UUID_BLE_ASSIGN(ble_uuid, BLE_UUID_HEART_RATE_SERVICE); err_code = sd_ble_gatts_service_add(BLE_GATTS_SRVC_TYPE_PRIMARY, &ble_uuid, &p_hrs->service_handle); if (err_code != NRF_SUCCESS) { return err_code; } // Add heart rate measurement characteristic err_code = heart_rate_measurement_char_add(p_hrs, p_hrs_init); if (err_code != NRF_SUCCESS) { return err_code; } if (p_hrs_init->p_body_sensor_location != NULL) { // Add body sensor location characteristic err_code = body_sensor_location_char_add(p_hrs, p_hrs_init); if (err_code != NRF_SUCCESS) { return err_code; } } return NRF_SUCCESS; } uint32_t ble_hrs_heart_rate_measurement_send(ble_hrs_t * p_hrs, uint16_t heart_rate) { uint32_t err_code; // Send value if connected and notifying if (p_hrs->conn_handle != BLE_CONN_HANDLE_INVALID) { uint8_t encoded_hrm[MAX_HRM_LEN]; uint16_t len; uint16_t hvx_len; ble_gatts_hvx_params_t hvx_params; len = hrm_encode(p_hrs, heart_rate, encoded_hrm); hvx_len = len; memset(&hvx_params, 0, sizeof(hvx_params)); hvx_params.handle = p_hrs->hrm_handles.value_handle; hvx_params.type = BLE_GATT_HVX_NOTIFICATION; hvx_params.offset = 0; hvx_params.p_len = &hvx_len; hvx_params.p_data = encoded_hrm; err_code = sd_ble_gatts_hvx(p_hrs->conn_handle, &hvx_params); if ((err_code == NRF_SUCCESS) && (hvx_len != len)) { err_code = NRF_ERROR_DATA_SIZE; } } else { err_code = NRF_ERROR_INVALID_STATE; } return err_code; } void ble_hrs_rr_interval_add(ble_hrs_t * p_hrs, uint16_t rr_interval) { if (p_hrs->rr_interval_count == BLE_HRS_MAX_BUFFERED_RR_INTERVALS) { // The rr_interval buffer is full, delete the oldest value memmove(&p_hrs->rr_interval[0], &p_hrs->rr_interval[1], (BLE_HRS_MAX_BUFFERED_RR_INTERVALS - 1) * sizeof(uint16_t)); p_hrs->rr_interval_count--; } // Add new value p_hrs->rr_interval[p_hrs->rr_interval_count++] = rr_interval; } bool ble_hrs_rr_interval_buffer_is_full(ble_hrs_t * p_hrs) { return (p_hrs->rr_interval_count == BLE_HRS_MAX_BUFFERED_RR_INTERVALS); } uint32_t ble_hrs_sensor_contact_supported_set(ble_hrs_t * p_hrs, bool is_sensor_contact_supported) { // Check if we are connected to peer if (p_hrs->conn_handle == BLE_CONN_HANDLE_INVALID) { p_hrs->is_sensor_contact_supported = is_sensor_contact_supported; return NRF_SUCCESS; } else { return NRF_ERROR_INVALID_STATE; } } void ble_hrs_sensor_contact_detected_update(ble_hrs_t * p_hrs, bool is_sensor_contact_detected) { p_hrs->is_sensor_contact_detected = is_sensor_contact_detected; } uint32_t ble_hrs_body_sensor_location_set(ble_hrs_t * p_hrs, uint8_t body_sensor_location) { ble_gatts_value_t gatts_value; // Initialize value struct. memset(&gatts_value, 0, sizeof(gatts_value)); gatts_value.len = sizeof(uint8_t); gatts_value.offset = 0; gatts_value.p_value = &body_sensor_location; return sd_ble_gatts_value_set(p_hrs->conn_handle, p_hrs->bsl_handles.value_handle, &gatts_value); } void ble_hrs_on_gatt_evt(ble_hrs_t * p_hrs, nrf_ble_gatt_evt_t const * p_gatt_evt) { if ( (p_hrs->conn_handle == p_gatt_evt->conn_handle) && (p_gatt_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { p_hrs->max_hrm_len = p_gatt_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; } } #endif // NRF_MODULE_ENABLED(BLE_HRS)