/** * Copyright (c) 2016 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include "ble.h" #include "ble_srv_common.h" #include "cgms_sst.h" #include "cgms_socp.h" #define NRF_BLE_CGMS_PLUS_INFINTE 0x07FE #define NRF_BLE_CGMS_MINUS_INFINTE 0x0802 /**@brief Specific Operation Control Point opcodes. */ #define SOCP_OPCODE_RESERVED 0x00 /**< Specific Operation Control Point opcode - Reserved for future use. */ #define SOCP_WRITE_CGM_COMMUNICATION_INTERVAL 0x01 #define SOCP_READ_CGM_COMMUNICATION_INTERVAL 0x02 #define SOCP_READ_CGM_COMMUNICATION_INTERVAL_RESPONSE 0x03 #define SOCP_WRITE_GLUCOSE_CALIBRATION_VALUE 0x04 #define SOCP_READ_GLUCOSE_CALIBRATION_VALUE 0x05 #define SOCP_READ_GLUCOSE_CALIBRATION_VALUE_RESPONSE 0x06 #define SOCP_WRITE_PATIENT_HIGH_ALERT_LEVEL 0x07 #define SOCP_READ_PATIENT_HIGH_ALERT_LEVEL 0x08 #define SOCP_READ_PATIENT_HIGH_ALERT_LEVEL_RESPONSE 0x09 #define SOCP_WRITE_PATIENT_LOW_ALERT_LEVEL 0x0A #define SOCP_READ_PATIENT_LOW_ALERT_LEVEL 0x0B #define SOCP_READ_PATIENT_LOW_ALERT_LEVEL_RESPONSE 0x0C #define SOCP_SET_HYPO_ALERT_LEVEL 0x0D /**Set Hypo Alert Level Hypo Alert Level value in mg/dL The response to this control point is Response Code. */ #define SOCP_GET_HYPO_ALERT_LEVEL 0x0E /**Get Hypo Alert Level N/A The normal response to this control point is Op Code 0x0F. For error conditions, the response is Response Code */ #define SOCP_HYPO_ALERT_LEVEL_RESPONSE 0x0F /**Hypo Alert Level Response Hypo Alert Level value in mg/dL This is the normal response to Op Code 0x0E */ #define SOCP_SET_HYPER_ALERT_LEVEL 0x10 /**Set Hyper Alert Level Hyper Alert Level value in mg/dL The response to this control point is Response Code. */ #define SOCP_GET_HYPER_ALERT_LEVEL 0x11 /**Get Hyper Alert Level N/A The normal response to this control point is Op Code 0x12. For error conditions, the response is Response Code */ #define SOCP_HYPER_ALERT_LEVEL_RESPONSE 0x12 /**Hyper Alert Level Response Hyper Alert Level value in mg/dL This is the normal response to Op Code 0x11 */ #define SOCP_SET_RATE_OF_DECREASE_ALERT_LEVEL 0x13 /**Set Rate of Decrease Alert Level Rate of Decrease Alert Level value in mg/dL/min The response to this control point is Response Code. */ #define SOCP_GET_RATE_OF_DECREASE_ALERT_LEVEL 0x14 /**Get Rate of Decrease Alert Level N/A The normal response to this control point is Op Code 0x15. For error conditions, the response is Response Code */ #define SOCP_RATE_OF_DECREASE_ALERT_LEVEL_RESPONSE 0x15 /**Rate of Decrease Alert Level Response Rate of Decrease Alert Level value in mg/dL/min This is the normal response to Op Code 0x14 */ #define SOCP_SET_RATE_OF_INCREASE_ALERT_LEVEL 0x16 /**Set Rate of Increase Alert Level Rate of Increase Alert Level value in mg/dL/min The response to this control point is Response Code. */ #define SOCP_GET_RATE_OF_INCREASE_ALERT_LEVEL 0x17 /**Get Rate of Increase Alert Level N/A The normal response to this control point is Op Code 0x18. For error conditions, the response is Response Code */ #define SOCP_RATE_OF_INCREASE_ALERT_LEVEL_RESPONSE 0x18 /**Rate of Increase Alert Level Response Rate of Increase Alert Level value in mg/dL/min This is the normal response to Op Code 0x17 */ #define SOCP_RESET_DEVICE_SPECIFIC_ALERT 0x19 /**Reset Device Specific Alert N/A The response to this control point is Response Code. */ #define SOCP_START_THE_SESSION 0x1A #define SOCP_STOP_THE_SESSION 0x1B #define SOCP_RESPONSE_CODE 0x1C #define SOCP_RSP_RESERVED_FOR_FUTURE_USE 0x00 #define SOCP_RSP_SUCCESS 0x01 #define SOCP_RSP_OP_CODE_NOT_SUPPORTED 0x02 #define SOCP_RSP_INVALID_OPERAND 0x03 #define SOCP_RSP_PROCEDURE_NOT_COMPLETED 0x04 #define SOCP_RSP_OUT_OF_RANGE 0x05 static void ble_socp_decode(uint8_t data_len, uint8_t const * p_data, ble_cgms_socp_value_t * p_socp_val) { p_socp_val->opcode = 0xFF; p_socp_val->operand_len = 0; p_socp_val->p_operand = NULL; if (data_len > 0) { p_socp_val->opcode = p_data[0]; } if (data_len > 1) { p_socp_val->operand_len = data_len - 1; p_socp_val->p_operand = (uint8_t*)&p_data[1]; // lint !e416 } } uint8_t ble_socp_encode(const ble_socp_rsp_t * p_socp_rsp, uint8_t * p_data) { uint8_t len = 0; int i; if (p_data != NULL) { p_data[len++] = p_socp_rsp->opcode; if ( (p_socp_rsp->opcode != SOCP_READ_CGM_COMMUNICATION_INTERVAL_RESPONSE) && (p_socp_rsp->opcode != SOCP_READ_PATIENT_HIGH_ALERT_LEVEL_RESPONSE) && (p_socp_rsp->opcode != SOCP_READ_PATIENT_LOW_ALERT_LEVEL_RESPONSE) && (p_socp_rsp->opcode != SOCP_HYPO_ALERT_LEVEL_RESPONSE) && (p_socp_rsp->opcode != SOCP_HYPER_ALERT_LEVEL_RESPONSE) && (p_socp_rsp->opcode != SOCP_RATE_OF_DECREASE_ALERT_LEVEL_RESPONSE) && (p_socp_rsp->opcode != SOCP_RATE_OF_INCREASE_ALERT_LEVEL_RESPONSE) && (p_socp_rsp->opcode != SOCP_READ_GLUCOSE_CALIBRATION_VALUE_RESPONSE) ) { p_data[len++] = p_socp_rsp->req_opcode; p_data[len++] = p_socp_rsp->rsp_code; } for (i = 0; i < p_socp_rsp->size_val; i++) { p_data[len++] = p_socp_rsp->resp_val[i]; } } return len; } /**@brief Function for adding a characteristic for the Specific Operations Control Point. * * @param[in] p_cgms Service instance. * * @return NRF_SUCCESS if characteristic was successfully added, otherwise an error code. */ ret_code_t cgms_socp_char_add(nrf_ble_cgms_t * p_cgms) { ble_add_char_params_t add_char_params; memset(&add_char_params, 0, sizeof(add_char_params)); add_char_params.uuid = BLE_UUID_CGM_SPECIFIC_OPS_CTRLPT; add_char_params.max_len = BLE_GATT_ATT_MTU_DEFAULT; add_char_params.init_len = 0; add_char_params.p_init_value = 0; add_char_params.is_var_len = true; add_char_params.char_props.indicate = true; add_char_params.char_props.write = true; add_char_params.write_access = SEC_JUST_WORKS; add_char_params.cccd_write_access = SEC_JUST_WORKS; add_char_params.is_defered_write = 1; return characteristic_add(p_cgms->service_handle, &add_char_params, &p_cgms->char_handles.socp); } /**@brief Function for sending a response from the Specific Operation Control Point. * * @param[in] p_cgms Service instance. */ static void socp_send(nrf_ble_cgms_t * p_cgms) { uint32_t err_code; uint8_t encoded_resp[25]; uint8_t len; uint16_t hvx_len; ble_gatts_hvx_params_t hvx_params; // Send indication len = ble_socp_encode(&(p_cgms->socp_response), encoded_resp); hvx_len = len; memset(&hvx_params, 0, sizeof(hvx_params)); hvx_params.handle = p_cgms->char_handles.socp.value_handle; hvx_params.type = BLE_GATT_HVX_INDICATION; hvx_params.offset = 0; hvx_params.p_len = &hvx_len; hvx_params.p_data = encoded_resp; err_code = sd_ble_gatts_hvx(p_cgms->conn_handle, &hvx_params); // Error handling if ((err_code == NRF_SUCCESS) && (hvx_len != len)) { err_code = NRF_ERROR_DATA_SIZE; } switch (err_code) { case NRF_SUCCESS: // Wait for HVC event. p_cgms->cgms_com_state = STATE_SOCP_RESPONSE_IND_VERIF; break; case NRF_ERROR_RESOURCES: // Wait for TX_COMPLETE event to retry transmission. p_cgms->cgms_com_state = STATE_SOCP_RESPONSE_PENDING; break; case NRF_ERROR_INVALID_STATE: // Make sure state machine returns to the default state. p_cgms->cgms_com_state = STATE_NO_COMM; break; default: // Report error to application. if (p_cgms->error_handler != NULL) { p_cgms->error_handler(err_code); } // Make sure state machine returns to the default state. p_cgms->cgms_com_state = STATE_NO_COMM; break; } } void encode_get_response(uint8_t rsp_code, ble_socp_rsp_t * p_rsp, uint16_t in_val) { p_rsp->opcode = rsp_code; p_rsp->rsp_code = SOCP_RSP_SUCCESS; p_rsp->size_val += uint16_encode(in_val, &(p_rsp->resp_val[p_rsp->size_val])); } void decode_set_opcode(nrf_ble_cgms_t * p_cgms, ble_cgms_socp_value_t * rcv_val, uint16_t min, uint16_t max, uint16_t * p_val) { uint16_t rcvd_val = uint16_decode(rcv_val->p_operand); if ((rcvd_val == NRF_BLE_CGMS_PLUS_INFINTE) || (rcvd_val == NRF_BLE_CGMS_MINUS_INFINTE) || (rcvd_val > max) || (rcvd_val < min)) { p_cgms->socp_response.rsp_code = SOCP_RSP_OUT_OF_RANGE; } else { p_cgms->socp_response.rsp_code = SOCP_RSP_SUCCESS; *p_val = rcvd_val; } } static bool is_feature_present(nrf_ble_cgms_t * p_cgms, uint32_t feature) { return (p_cgms->feature.feature & feature); } /**@brief Function for handling a write event to the Specific Operation Control Point. * * @param[in] p_cgms Service instance. * @param[in] p_evt_write WRITE event to be handled. */ static void on_socp_value_write(nrf_ble_cgms_t * p_cgms, ble_gatts_evt_write_t const * p_evt_write) { ble_cgms_socp_value_t socp_request; nrf_ble_cgms_evt_t evt; ble_gatts_rw_authorize_reply_params_t auth_reply; uint32_t err_code; memset(&auth_reply, 0, sizeof(auth_reply)); auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE; auth_reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS; auth_reply.params.write.update = 1; err_code = sd_ble_gatts_rw_authorize_reply(p_cgms->conn_handle, &auth_reply); if (err_code != NRF_SUCCESS) { if (p_cgms->error_handler != NULL) { p_cgms->error_handler(err_code); } return; } // Decode request ble_socp_decode(p_evt_write->len, p_evt_write->data, &socp_request); p_cgms->socp_response.opcode = SOCP_RESPONSE_CODE; p_cgms->socp_response.req_opcode = socp_request.opcode; p_cgms->socp_response.rsp_code = SOCP_RSP_OP_CODE_NOT_SUPPORTED; p_cgms->socp_response.size_val = 0; switch (socp_request.opcode) { case SOCP_WRITE_CGM_COMMUNICATION_INTERVAL: p_cgms->socp_response.rsp_code = SOCP_RSP_SUCCESS; p_cgms->comm_interval = socp_request.p_operand[0]; evt.evt_type = NRF_BLE_CGMS_EVT_WRITE_COMM_INTERVAL; p_cgms->evt_handler(p_cgms, &evt); break; case SOCP_READ_CGM_COMMUNICATION_INTERVAL: p_cgms->socp_response.opcode = SOCP_READ_CGM_COMMUNICATION_INTERVAL_RESPONSE; p_cgms->socp_response.resp_val[0] = p_cgms->comm_interval; p_cgms->socp_response.size_val++; break; case SOCP_START_THE_SESSION: if (p_cgms->is_session_started) { p_cgms->socp_response.rsp_code = SOCP_RSP_PROCEDURE_NOT_COMPLETED; } else if ((p_cgms->nb_run_session != 0) && !(is_feature_present(p_cgms, NRF_BLE_CGMS_FEAT_MULTIPLE_SESSIONS_SUPPORTED))) { p_cgms->socp_response.rsp_code = SOCP_RSP_PROCEDURE_NOT_COMPLETED; } else { p_cgms->socp_response.rsp_code = SOCP_RSP_SUCCESS; p_cgms->is_session_started = true; p_cgms->nb_run_session++; if (p_cgms->evt_handler != NULL) { evt.evt_type = NRF_BLE_CGMS_EVT_START_SESSION; p_cgms->evt_handler(p_cgms, &evt); } ble_cgms_sst_t sst; memset(&sst, 0, sizeof(ble_cgms_sst_t)); err_code = cgms_sst_set(p_cgms, &sst); if (err_code != NRF_SUCCESS) { if (p_cgms->error_handler != NULL) { p_cgms->error_handler(err_code); } } p_cgms->sensor_status.time_offset = 0; p_cgms->sensor_status.status.status &= (~NRF_BLE_CGMS_STATUS_SESSION_STOPPED); err_code = nrf_ble_cgms_update_status(p_cgms, &p_cgms->sensor_status); if (err_code != NRF_SUCCESS) { if (p_cgms->error_handler != NULL) { p_cgms->error_handler(err_code); } } } break; case SOCP_STOP_THE_SESSION: { nrf_ble_cgm_status_t status; memset(&status, 0, sizeof(nrf_ble_cgm_status_t)); p_cgms->evt_handler(p_cgms, &evt); p_cgms->socp_response.rsp_code = SOCP_RSP_SUCCESS; p_cgms->is_session_started = false; status.time_offset = p_cgms->sensor_status.time_offset; status.status.status = p_cgms->sensor_status.status.status | NRF_BLE_CGMS_STATUS_SESSION_STOPPED; if (p_cgms->evt_handler != NULL) { evt.evt_type = NRF_BLE_CGMS_EVT_STOP_SESSION; p_cgms->evt_handler(p_cgms, &evt); } err_code = nrf_ble_cgms_update_status(p_cgms, &status); if (err_code != NRF_SUCCESS) { if (p_cgms->error_handler != NULL) { p_cgms->error_handler(err_code); } } break; } default: p_cgms->socp_response.rsp_code = SOCP_RSP_OP_CODE_NOT_SUPPORTED; break; } socp_send(p_cgms); } void cgms_socp_on_rw_auth_req(nrf_ble_cgms_t * p_cgms, ble_gatts_evt_rw_authorize_request_t const * p_auth_req) { if (p_auth_req->type == BLE_GATTS_AUTHORIZE_TYPE_WRITE) { if (p_auth_req->request.write.handle == p_cgms->char_handles.socp.value_handle) { on_socp_value_write(p_cgms, &p_auth_req->request.write); } } } void cgms_socp_on_tx_complete(nrf_ble_cgms_t * p_cgms) { if (p_cgms->cgms_com_state == STATE_SOCP_RESPONSE_PENDING) { socp_send(p_cgms); } }