/** * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(PEER_MANAGER) #include "peer_database.h" #include #include "peer_manager_types.h" #include "peer_manager_internal.h" #include "peer_data_storage.h" #include "pm_buffer.h" /**@brief Macro for verifying that the data ID is among the values eligible for using the write buffer. * * @param[in] data_id The data ID to verify. */ // @note emdi: could this maybe be a function? #define VERIFY_DATA_ID_WRITE_BUF(data_id) \ do \ { \ if (((data_id) != PM_PEER_DATA_ID_BONDING) && ((data_id) != PM_PEER_DATA_ID_GATT_LOCAL)) \ { \ return NRF_ERROR_INVALID_PARAM; \ } \ } while (0) // The number of registered event handlers. #define PDB_EVENT_HANDLERS_CNT (sizeof(m_evt_handlers) / sizeof(m_evt_handlers[0])) // Peer Database event handlers in other Peer Manager submodules. extern void pm_pdb_evt_handler(pm_evt_t * p_event); extern void sm_pdb_evt_handler(pm_evt_t * p_event); #if !defined(PM_SERVICE_CHANGED_ENABLED) || (PM_SERVICE_CHANGED_ENABLED == 1) extern void gscm_pdb_evt_handler(pm_evt_t * p_event); #endif extern void gcm_pdb_evt_handler(pm_evt_t * p_event); // Peer Database events' handlers. // The number of elements in this array is PDB_EVENT_HANDLERS_CNT. static pm_evt_handler_internal_t const m_evt_handlers[] = { pm_pdb_evt_handler, sm_pdb_evt_handler, #if !defined(PM_SERVICE_CHANGED_ENABLED) || (PM_SERVICE_CHANGED_ENABLED == 1) gscm_pdb_evt_handler, #endif gcm_pdb_evt_handler, }; /**@brief Struct for keeping track of one write buffer, from allocation, until it is fully written * or cancelled. */ typedef struct { pm_peer_id_t peer_id; /**< The peer ID this buffer belongs to. */ pm_peer_data_id_t data_id; /**< The data ID this buffer belongs to. */ pm_prepare_token_t prepare_token; /**< Token given by Peer Data Storage if room in flash has been reserved. */ pm_store_token_t store_token; /**< Token given by Peer Data Storage when a flash write has been successfully requested. This is used as the check for whether such an operation has been successfully requested. */ uint8_t n_bufs; /**< The number of buffer blocks containing peer data. */ uint8_t buffer_block_id; /**< The index of the first (or only) buffer block containing peer data. */ uint8_t store_flash_full : 1; /**< Flag indicating that the buffer was attempted written to flash, but a flash full error was returned and the operation should be retried after room has been made. */ uint8_t store_busy : 1; /**< Flag indicating that the buffer was attempted written to flash, but a busy error was returned and the operation should be retried. */ } pdb_buffer_record_t; static bool m_module_initialized; static pm_buffer_t m_write_buffer; /**< The internal states of the write buffer. */ static pdb_buffer_record_t m_write_buffer_records[PM_FLASH_BUFFERS]; /**< The available write buffer records. */ static bool m_pending_store = false; /**< Whether there are any pending (Not yet successfully requested in Peer Data Storage) store operations. This flag is for convenience only. The real bookkeeping is in the records (@ref m_write_buffer_records). */ /**@brief Function for invalidating a record of a write buffer allocation. * * @param[in] p_record The record to invalidate. */ static void write_buffer_record_invalidate(pdb_buffer_record_t * p_record) { p_record->peer_id = PM_PEER_ID_INVALID; p_record->data_id = PM_PEER_DATA_ID_INVALID; p_record->buffer_block_id = PM_BUFFER_INVALID_ID; p_record->store_busy = false; p_record->store_flash_full = false; p_record->n_bufs = 0; p_record->prepare_token = PDS_PREPARE_TOKEN_INVALID; p_record->store_token = PM_STORE_TOKEN_INVALID; } /**@brief Function for finding a record of a write buffer allocation. * * @param[in] peer_id The peer ID in the record. * @param[inout] p_index In: The starting index, out: The index of the record * * @return A pointer to the matching record, or NULL if none was found. */ static pdb_buffer_record_t * write_buffer_record_find_next(pm_peer_id_t peer_id, uint32_t * p_index) { for (uint32_t i = *p_index; i < PM_FLASH_BUFFERS; i++) { if ((m_write_buffer_records[i].peer_id == peer_id)) { *p_index = i; return &m_write_buffer_records[i]; } } return NULL; } /**@brief Function for finding a record of a write buffer allocation. * * @param[in] peer_id The peer ID in the record. * @param[in] data_id The data ID in the record. * * @return A pointer to the matching record, or NULL if none was found. */ static pdb_buffer_record_t * write_buffer_record_find(pm_peer_id_t peer_id, pm_peer_data_id_t data_id) { uint32_t index = 0; pdb_buffer_record_t * p_record = write_buffer_record_find_next(peer_id, &index); while ((p_record != NULL) && ( (p_record->data_id != data_id) || (p_record->store_busy) || (p_record->store_flash_full) || (p_record->store_token != PM_STORE_TOKEN_INVALID))) { index++; p_record = write_buffer_record_find_next(peer_id, &index); } return p_record; } /**@brief Function for finding a record of a write buffer allocation that has been sent to be stored. * * @param[in] store_token The store token received when store was called for the record. * * @return A pointer to the matching record, or NULL if none was found. */ static pdb_buffer_record_t * write_buffer_record_find_stored(pm_store_token_t store_token) { for (int i = 0; i < PM_FLASH_BUFFERS; i++) { if (m_write_buffer_records[i].store_token == store_token) { return &m_write_buffer_records[i]; } } return NULL; } /**@brief Function for finding an available record for write buffer allocation. * * @return A pointer to the available record, or NULL if none was found. */ static pdb_buffer_record_t * write_buffer_record_find_unused(void) { return write_buffer_record_find(PM_PEER_ID_INVALID, PM_PEER_DATA_ID_INVALID); } /**@brief Function for gracefully deactivating a write buffer record. * * @details This function will first release any buffers, then invalidate the record. * * @param[inout] p_write_buffer_record The record to release. * * @return A pointer to the matching record, or NULL if none was found. */ static void write_buffer_record_release(pdb_buffer_record_t * p_write_buffer_record) { for (uint32_t i = 0; i < p_write_buffer_record->n_bufs; i++) { pm_buffer_release(&m_write_buffer, p_write_buffer_record->buffer_block_id + i); } write_buffer_record_invalidate(p_write_buffer_record); } /**@brief Function for claiming and activating a write buffer record. * * @param[out] pp_write_buffer_record The claimed record. * @param[in] peer_id The peer ID this record should have. * @param[in] data_id The data ID this record should have. */ static void write_buffer_record_acquire(pdb_buffer_record_t ** pp_write_buffer_record, pm_peer_id_t peer_id, pm_peer_data_id_t data_id) { if (pp_write_buffer_record == NULL) { return; } *pp_write_buffer_record = write_buffer_record_find_unused(); if (*pp_write_buffer_record == NULL) { // This also means the buffer is full. return; } (*pp_write_buffer_record)->peer_id = peer_id; (*pp_write_buffer_record)->data_id = data_id; } /**@brief Function for dispatching outbound events to all registered event handlers. * * @param[in] p_event The event to dispatch. */ static void pdb_evt_send(pm_evt_t * p_event) { for (uint32_t i = 0; i < PDB_EVENT_HANDLERS_CNT; i++) { m_evt_handlers[i](p_event); } } /**@brief Function for resetting the internal state of the Peer Database module. * * @param[out] p_event The event to dispatch. */ static void internal_state_reset() { for (uint32_t i = 0; i < PM_FLASH_BUFFERS; i++) { write_buffer_record_invalidate(&m_write_buffer_records[i]); } } static void peer_data_point_to_buffer(pm_peer_data_t * p_peer_data, pm_peer_data_id_t data_id, uint8_t * p_buffer_memory, uint16_t n_bufs) { uint16_t n_bytes = n_bufs * PDB_WRITE_BUF_SIZE; p_peer_data->data_id = data_id; p_peer_data->p_all_data = (pm_peer_data_bonding_t *)p_buffer_memory; p_peer_data->length_words = BYTES_TO_WORDS(n_bytes); } static void peer_data_const_point_to_buffer(pm_peer_data_const_t * p_peer_data, pm_peer_data_id_t data_id, uint8_t * p_buffer_memory, uint32_t n_bufs) { peer_data_point_to_buffer((pm_peer_data_t*)p_peer_data, data_id, p_buffer_memory, n_bufs); } static void write_buf_length_words_set(pm_peer_data_const_t * p_peer_data) { switch (p_peer_data->data_id) { case PM_PEER_DATA_ID_BONDING: p_peer_data->length_words = PM_BONDING_DATA_N_WORDS(); break; case PM_PEER_DATA_ID_SERVICE_CHANGED_PENDING: p_peer_data->length_words = PM_SC_STATE_N_WORDS(); break; case PM_PEER_DATA_ID_PEER_RANK: p_peer_data->length_words = PM_USAGE_INDEX_N_WORDS(); break; case PM_PEER_DATA_ID_GATT_LOCAL: p_peer_data->length_words = PM_LOCAL_DB_N_WORDS(p_peer_data->p_local_gatt_db->len); break; default: // No action needed. break; } } /**@brief Function for writing data into persistent storage. Writing happens asynchronously. * * @note This will unlock the data after it has been written. * * @param[in] p_write_buffer_record The write buffer record to write into persistent storage. * * @retval NRF_SUCCESS Data storing was successfully started. * @retval NRF_ERROR_STORAGE_FULL No space available in persistent storage. Please clear some * space, the operation will be reattempted after the next compress * procedure. This error will not happen if * @ref pdb_write_buf_store_prepare is called beforehand. * @retval NRF_ERROR_INVALID_PARAM Data ID was invalid. * @retval NRF_ERROR_INVALID_STATE Module is not initialized. * @retval NRF_ERROR_INTERNAL Unexpected internal error. */ ret_code_t write_buf_store(pdb_buffer_record_t * p_write_buffer_record) { ret_code_t err_code = NRF_SUCCESS; pm_peer_data_const_t peer_data = {.data_id = p_write_buffer_record->data_id}; uint8_t * p_buffer_memory; p_buffer_memory = pm_buffer_ptr_get(&m_write_buffer, p_write_buffer_record->buffer_block_id); if (p_buffer_memory == NULL) { return NRF_ERROR_INTERNAL; } peer_data_const_point_to_buffer(&peer_data, p_write_buffer_record->data_id, p_buffer_memory, p_write_buffer_record->n_bufs); write_buf_length_words_set(&peer_data); err_code = pds_peer_data_store(p_write_buffer_record->peer_id, &peer_data, p_write_buffer_record->prepare_token, &p_write_buffer_record->store_token); switch (err_code) { case NRF_SUCCESS: p_write_buffer_record->store_busy = false; p_write_buffer_record->store_flash_full = false; break; case NRF_ERROR_BUSY: p_write_buffer_record->store_busy = true; p_write_buffer_record->store_flash_full = false; m_pending_store = true; err_code = NRF_SUCCESS; break; case NRF_ERROR_STORAGE_FULL: p_write_buffer_record->store_busy = false; p_write_buffer_record->store_flash_full = true; m_pending_store = true; break; case NRF_ERROR_INVALID_PARAM: // No action. break; default: err_code = NRF_ERROR_INTERNAL; break; } return err_code; } /**@brief This calls @ref write_buf_store and sends events based on the return value. * * See @ref write_buf_store for more info. * * @return Whether or not the store operation succeeded. */ static bool write_buf_store_in_event(pdb_buffer_record_t * p_write_buffer_record) { ret_code_t err_code; pm_evt_t event; err_code = write_buf_store(p_write_buffer_record); if (err_code != NRF_SUCCESS) { event.conn_handle = BLE_CONN_HANDLE_INVALID; event.peer_id = p_write_buffer_record->peer_id; if (err_code == NRF_ERROR_STORAGE_FULL) { event.evt_id = PM_EVT_STORAGE_FULL; } else { event.evt_id = PM_EVT_ERROR_UNEXPECTED; event.params.error_unexpected.error = err_code; } pdb_evt_send(&event); return false; } return true; } /**@brief This reattempts store operations on write buffers, that previously failed because of @ref * NRF_ERROR_BUSY or @ref NRF_ERROR_STORAGE_FULL errors. * * param[in] retry_flash_full Whether to retry operations that failed because of an * @ref NRF_ERROR_STORAGE_FULL error. */ static void reattempt_previous_operations(bool retry_flash_full) { bool found_pending_operation = false; if (!m_pending_store) { return; } for (uint32_t i = 0; i < PM_FLASH_BUFFERS; i++) { if ((m_write_buffer_records[i].store_busy) || (m_write_buffer_records[i].store_flash_full && retry_flash_full)) { found_pending_operation = true; bool success = write_buf_store_in_event(&m_write_buffer_records[i]); if (!success) { return; } } } if (!found_pending_operation) { // All records have been searched and none were pending. // Clear flag so records aren't searched. m_pending_store = false; } } /**@brief Function for handling events from the Peer Data Storage module. * This function is extern in Peer Data Storage. * * @param[in] p_event The event to handle. */ void pdb_pds_evt_handler(pm_evt_t * p_event) { pdb_buffer_record_t * p_write_buffer_record; bool evt_send = true; bool retry_flash_full = false; p_write_buffer_record = write_buffer_record_find_stored(p_event->params.peer_data_update_succeeded.token); switch (p_event->evt_id) { case PM_EVT_PEER_DATA_UPDATE_SUCCEEDED: if ( (p_event->params.peer_data_update_succeeded.action == PM_PEER_DATA_OP_UPDATE) && (p_write_buffer_record != NULL)) { // The write came from PDB. write_buffer_record_release(p_write_buffer_record); } break; case PM_EVT_PEER_DATA_UPDATE_FAILED: if ( (p_event->params.peer_data_update_succeeded.action == PM_PEER_DATA_OP_UPDATE) && (p_write_buffer_record != NULL)) { // The write came from PDB, retry. p_write_buffer_record->store_token = PM_STORE_TOKEN_INVALID; p_write_buffer_record->store_busy = true; m_pending_store = true; evt_send = false; } break; case PM_EVT_FLASH_GARBAGE_COLLECTED: retry_flash_full = true; break; default: break; } if (evt_send) { // Forward the event to all registered Peer Database event handlers. pdb_evt_send(p_event); } reattempt_previous_operations(retry_flash_full); } ret_code_t pdb_init() { ret_code_t ret; NRF_PM_DEBUG_CHECK(!m_module_initialized); internal_state_reset(); PM_BUFFER_INIT(&m_write_buffer, PM_FLASH_BUFFERS, PDB_WRITE_BUF_SIZE, ret); if (ret != NRF_SUCCESS) { return NRF_ERROR_INTERNAL; } m_module_initialized = true; return NRF_SUCCESS; } pm_peer_id_t pdb_peer_allocate(void) { NRF_PM_DEBUG_CHECK(m_module_initialized); return pds_peer_id_allocate(); } ret_code_t pdb_peer_free(pm_peer_id_t peer_id) { ret_code_t err_code_in = NRF_SUCCESS; ret_code_t err_code_out = NRF_SUCCESS; NRF_PM_DEBUG_CHECK(m_module_initialized); uint32_t index = 0; pdb_buffer_record_t * p_record = write_buffer_record_find_next(peer_id, &index); while (p_record != NULL) { err_code_in = pdb_write_buf_release(peer_id, p_record->data_id); if ( (err_code_in != NRF_SUCCESS) && (err_code_in != NRF_ERROR_NOT_FOUND)) { err_code_out = NRF_ERROR_INTERNAL; } index++; p_record = write_buffer_record_find_next(peer_id, &index); } if (err_code_out == NRF_SUCCESS) { err_code_in = pds_peer_id_free(peer_id); if (err_code_in == NRF_SUCCESS) { // No action needed. } else if (err_code_in == NRF_ERROR_INVALID_PARAM) { err_code_out = NRF_ERROR_INVALID_PARAM; } else { err_code_out = NRF_ERROR_INTERNAL; } } return err_code_out; } ret_code_t pdb_peer_data_ptr_get(pm_peer_id_t peer_id, pm_peer_data_id_t data_id, pm_peer_data_flash_t * const p_peer_data) { NRF_PM_DEBUG_CHECK(m_module_initialized); NRF_PM_DEBUG_CHECK(p_peer_data != NULL); // Pass NULL to only retrieve a pointer. return pds_peer_data_read(peer_id, data_id, (pm_peer_data_t*)p_peer_data, NULL); } ret_code_t pdb_write_buf_get(pm_peer_id_t peer_id, pm_peer_data_id_t data_id, uint32_t n_bufs, pm_peer_data_t * p_peer_data) { NRF_PM_DEBUG_CHECK(m_module_initialized); VERIFY_PARAM_NOT_NULL(p_peer_data); VERIFY_DATA_ID_WRITE_BUF(data_id); if ( (n_bufs == 0) || (n_bufs > PM_FLASH_BUFFERS) || !pds_peer_id_is_allocated(peer_id)) { return NRF_ERROR_INVALID_PARAM; } pdb_buffer_record_t * p_write_buffer_record; uint8_t * p_buffer_memory; bool new_record = false; p_write_buffer_record = write_buffer_record_find(peer_id, data_id); if (p_write_buffer_record == NULL) { // No buffer exists. write_buffer_record_acquire(&p_write_buffer_record, peer_id, data_id); if (p_write_buffer_record == NULL) { return NRF_ERROR_BUSY; } } else if (p_write_buffer_record->n_bufs != n_bufs) { // Buffer exists with a different n_bufs from what was requested. return NRF_ERROR_FORBIDDEN; } if (p_write_buffer_record->buffer_block_id == PM_BUFFER_INVALID_ID) { p_write_buffer_record->buffer_block_id = pm_buffer_block_acquire(&m_write_buffer, n_bufs); if (p_write_buffer_record->buffer_block_id == PM_BUFFER_INVALID_ID) { write_buffer_record_invalidate(p_write_buffer_record); return NRF_ERROR_BUSY; } new_record = true; } p_write_buffer_record->n_bufs = n_bufs; p_buffer_memory = pm_buffer_ptr_get(&m_write_buffer, p_write_buffer_record->buffer_block_id); if (p_buffer_memory == NULL) { return NRF_ERROR_INTERNAL; } peer_data_point_to_buffer(p_peer_data, data_id, p_buffer_memory, n_bufs); if (new_record && (data_id == PM_PEER_DATA_ID_GATT_LOCAL)) { p_peer_data->p_local_gatt_db->len = PM_LOCAL_DB_LEN(p_peer_data->length_words); } return NRF_SUCCESS; } ret_code_t pdb_write_buf_release(pm_peer_id_t peer_id, pm_peer_data_id_t data_id) { NRF_PM_DEBUG_CHECK(m_module_initialized); ret_code_t err_code = NRF_SUCCESS; pdb_buffer_record_t * p_write_buffer_record; p_write_buffer_record = write_buffer_record_find(peer_id, data_id); if (p_write_buffer_record == NULL) { return NRF_ERROR_NOT_FOUND; } if (p_write_buffer_record->prepare_token != PDS_PREPARE_TOKEN_INVALID) { err_code = pds_space_reserve_cancel(p_write_buffer_record->prepare_token); if (err_code != NRF_SUCCESS) { err_code = NRF_ERROR_INTERNAL; } } write_buffer_record_release(p_write_buffer_record); return err_code; } ret_code_t pdb_write_buf_store_prepare(pm_peer_id_t peer_id, pm_peer_data_id_t data_id) { NRF_PM_DEBUG_CHECK(m_module_initialized); VERIFY_DATA_ID_WRITE_BUF(data_id); ret_code_t err_code = NRF_SUCCESS; pdb_buffer_record_t * p_write_buffer_record; p_write_buffer_record = write_buffer_record_find(peer_id, data_id); if (p_write_buffer_record == NULL) { return NRF_ERROR_NOT_FOUND; } if (p_write_buffer_record->prepare_token == PDS_PREPARE_TOKEN_INVALID) { uint8_t * p_buffer_memory = pm_buffer_ptr_get(&m_write_buffer, p_write_buffer_record->buffer_block_id); pm_peer_data_const_t peer_data = {.data_id = data_id}; if (p_buffer_memory == NULL) { return NRF_ERROR_INTERNAL; } peer_data_const_point_to_buffer(&peer_data, data_id, p_buffer_memory, p_write_buffer_record->n_bufs); write_buf_length_words_set(&peer_data); err_code = pds_space_reserve(&peer_data, &p_write_buffer_record->prepare_token); if (err_code == NRF_ERROR_INVALID_LENGTH) { return NRF_ERROR_INTERNAL; } } return err_code; } ret_code_t pdb_write_buf_store(pm_peer_id_t peer_id, pm_peer_data_id_t data_id, pm_peer_id_t new_peer_id) { NRF_PM_DEBUG_CHECK(m_module_initialized); VERIFY_DATA_ID_WRITE_BUF(data_id); pdb_buffer_record_t * p_write_buffer_record = write_buffer_record_find(peer_id, data_id); if (p_write_buffer_record == NULL) { return NRF_ERROR_NOT_FOUND; } p_write_buffer_record->peer_id = new_peer_id; p_write_buffer_record->data_id = data_id; return write_buf_store(p_write_buffer_record); } ret_code_t pdb_clear(pm_peer_id_t peer_id, pm_peer_data_id_t data_id) { NRF_PM_DEBUG_CHECK(m_module_initialized); return pds_peer_data_delete(peer_id, data_id); } uint32_t pdb_n_peers(void) { NRF_PM_DEBUG_CHECK(m_module_initialized); return pds_peer_count_get(); } pm_peer_id_t pdb_next_peer_id_get(pm_peer_id_t prev_peer_id) { NRF_PM_DEBUG_CHECK(m_module_initialized); return pds_next_peer_id_get(prev_peer_id); } pm_peer_id_t pdb_next_deleted_peer_id_get(pm_peer_id_t prev_peer_id) { NRF_PM_DEBUG_CHECK(m_module_initialized); return pds_next_deleted_peer_id_get(prev_peer_id); } ret_code_t pdb_peer_data_load(pm_peer_id_t peer_id, pm_peer_data_id_t data_id, pm_peer_data_t * const p_peer_data) { NRF_PM_DEBUG_CHECK(m_module_initialized); NRF_PM_DEBUG_CHECK(p_peer_data != NULL); // Provide the buffer length in bytes. uint32_t const data_len_bytes = (p_peer_data->length_words * sizeof(uint32_t)); return pds_peer_data_read(peer_id, data_id, p_peer_data, &data_len_bytes); } ret_code_t pdb_raw_store(pm_peer_id_t peer_id, pm_peer_data_const_t * p_peer_data, pm_store_token_t * p_store_token) { NRF_PM_DEBUG_CHECK(m_module_initialized); return pds_peer_data_store(peer_id, p_peer_data, PDS_PREPARE_TOKEN_INVALID, p_store_token); } #endif // NRF_MODULE_ENABLED(PEER_MANAGER)