/** * Copyright (c) 2012 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup app_util Utility Functions and Definitions * @{ * @ingroup app_common * * @brief Various types and definitions available to all applications. */ #ifndef APP_UTIL_H__ #define APP_UTIL_H__ #include #include #include #include "compiler_abstraction.h" #include "nordic_common.h" #include "nrf.h" #ifdef __cplusplus extern "C" { #endif /** * @cond (NODOX) */ /*lint -save -e27 -e10 -e19 */ #if defined (__LINT__) #define STACK_BASE 0x1F000 // Arbitrary value. #define STACK_TOP 0x20000 // Arbitrary value. #elif defined ( __CC_ARM ) extern char STACK$$Base; extern char STACK$$Length; #define STACK_BASE &STACK$$Base #define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&STACK$$Length)) #elif defined ( __ICCARM__ ) extern char CSTACK$$Base; extern char CSTACK$$Length; #define STACK_BASE &CSTACK$$Base #define STACK_TOP ((void*)((uint32_t)STACK_BASE + (uint32_t)&CSTACK$$Length)) #elif defined ( __GNUC__ ) extern uint32_t __StackTop; extern uint32_t __StackLimit; #define STACK_BASE &__StackLimit #define STACK_TOP &__StackTop #endif /* These macros are valid only when absolute placement is used for the application * image. The macros are not compile time symbols. They cannot be used as a * constant expression, for example, inside a static assert or linker script * at-placement. */ #if defined (__LINT__) #define CODE_START (0) // Arbitrary value. #define CODE_END (0x1000) // Arbitrary value. #define CODE_SIZE (0x1000) // Arbitrary value. #elif defined ( __CC_ARM ) extern char Load$$LR$$LR_IROM1$$Base; extern char Load$$LR$$LR_IROM1$$Length; extern char Load$$LR$$LR_IROM1$$Limit; #define CODE_START ((uint32_t)&Load$$LR$$LR_IROM1$$Base) #define CODE_END ((uint32_t)&Load$$LR$$LR_IROM1$$Limit) #define CODE_SIZE ((uint32_t)&Load$$LR$$LR_IROM1$$Length) #elif defined ( __ICCARM__ ) extern void * __vector_table; extern char RO_END$$Base; #define CODE_START ((uint32_t)&__vector_table) #define CODE_END ((uint32_t)&RO_END$$Base) #define CODE_SIZE (CODE_END - CODE_START) #elif defined(__SES_ARM) extern uint32_t * _vectors; extern uint32_t __FLASH_segment_used_end__; #define CODE_START ((uint32_t)&_vectors) #define CODE_END ((uint32_t)&__FLASH_segment_used_end__) #define CODE_SIZE (CODE_END - CODE_START) #elif defined ( __GNUC__ ) extern uint32_t __isr_vector; extern uint32_t __etext; #define CODE_START ((uint32_t)&__isr_vector) #define CODE_END ((uint32_t)&__etext) #define CODE_SIZE (CODE_END - CODE_START) #endif /** @} * @endcond */ /* lint -restore */ enum { UNIT_0_625_MS = 625, /**< Number of microseconds in 0.625 milliseconds. */ UNIT_1_25_MS = 1250, /**< Number of microseconds in 1.25 milliseconds. */ UNIT_10_MS = 10000 /**< Number of microseconds in 10 milliseconds. */ }; /** * @brief Counts number of bits required for the given value * * The macro technically searches for the highest bit set. * For value 0 it returns 0. * * @param val Value to be processed * * @return Number of bits required for the given value */ //lint -emacro(572,VBITS) #define VBITS(val) VBITS_32(val) /** * @def VBITS_1 * @brief Internal macro used by @ref VBITS */ /** * @def VBITS_2 * @brief Internal macro used by @ref VBITS */ /** * @def VBITS_4 * @brief Internal macro used by @ref VBITS */ /** * @def VBITS_8 * @brief Internal macro used by @ref VBITS */ /** * @def VBITS_16 * @brief Internal macro used by @ref VBITS */ /** * @def VBITS_32 * @brief Internal macro used by @ref VBITS */ #define VBITS_1( v) ((((v) & (0x0001U << 0)) != 0) ? 1U : 0U) #define VBITS_2( v) ((((v) & (0x0001U << 1)) != 0) ? VBITS_1 ((v) >> 1) + 1 : VBITS_1 (v)) #define VBITS_4( v) ((((v) & (0x0003U << 2)) != 0) ? VBITS_2 ((v) >> 2) + 2 : VBITS_2 (v)) #define VBITS_8( v) ((((v) & (0x000fU << 4)) != 0) ? VBITS_4 ((v) >> 4) + 4 : VBITS_4 (v)) #define VBITS_16(v) ((((v) & (0x00ffU << 8)) != 0) ? VBITS_8 ((v) >> 8) + 8 : VBITS_8 (v)) #define VBITS_32(v) ((((v) & (0xffffU << 16)) != 0) ? VBITS_16((v) >> 16) + 16 : VBITS_16(v)) /*Segger embedded studio originally has offsetof macro which cannot be used in macros (like STATIC_ASSERT). This redefinition is to allow using that. */ #if defined(__SES_ARM) && defined(__GNUC__) #undef offsetof #define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER) #endif /**@brief Implementation specific macro for delayed macro expansion used in string concatenation * * @param[in] lhs Left hand side in concatenation * @param[in] rhs Right hand side in concatenation */ #define STRING_CONCATENATE_IMPL(lhs, rhs) lhs ## rhs /**@brief Macro used to concatenate string using delayed macro expansion * * @note This macro will delay concatenation until the expressions have been resolved * * @param[in] lhs Left hand side in concatenation * @param[in] rhs Right hand side in concatenation */ #define STRING_CONCATENATE(lhs, rhs) STRING_CONCATENATE_IMPL(lhs, rhs) #ifndef __LINT__ #ifdef __GNUC__ #define STATIC_ASSERT_SIMPLE(EXPR) _Static_assert(EXPR, "unspecified message") #define STATIC_ASSERT_MSG(EXPR, MSG) _Static_assert(EXPR, MSG) #endif #ifdef __CC_ARM #define STATIC_ASSERT_SIMPLE(EXPR) extern char (*_do_assert(void)) [sizeof(char[1 - 2*!(EXPR)])] #define STATIC_ASSERT_MSG(EXPR, MSG) extern char (*_do_assert(void)) [sizeof(char[1 - 2*!(EXPR)])] #endif #ifdef __ICCARM__ #define STATIC_ASSERT_SIMPLE(EXPR) static_assert(EXPR, "unspecified message") #define STATIC_ASSERT_MSG(EXPR, MSG) static_assert(EXPR, MSG) #endif #else // __LINT__ #define STATIC_ASSERT_SIMPLE(EXPR) extern char (*_ignore(void)) #define STATIC_ASSERT_MSG(EXPR, MSG) extern char (*_ignore(void)) #endif #define _SELECT_ASSERT_FUNC(x, EXPR, MSG, ASSERT_MACRO, ...) ASSERT_MACRO /** * @brief Static (i.e. compile time) assert macro. * * @note The output of STATIC_ASSERT can be different across compilers. * * Usage: * STATIC_ASSERT(expression); * STATIC_ASSERT(expression, message); * * @hideinitializer */ //lint -save -esym(???, STATIC_ASSERT) #define STATIC_ASSERT(...) \ _SELECT_ASSERT_FUNC(x, ##__VA_ARGS__, \ STATIC_ASSERT_MSG(__VA_ARGS__), \ STATIC_ASSERT_SIMPLE(__VA_ARGS__)) //lint -restore /**@brief Implementation details for NUM_VAR_ARGS */ #define NUM_VA_ARGS_IMPL( \ _0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \ _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \ _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \ _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \ _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, \ _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, \ _61, _62, N, ...) N /**@brief Macro to get the number of arguments in a call variadic macro call * * param[in] ... List of arguments * * @retval Number of variadic arguments in the argument list */ #define NUM_VA_ARGS(...) NUM_VA_ARGS_IMPL(__VA_ARGS__, 63, 62, 61, \ 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \ 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \ 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \ 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) /**@brief Implementation details for NUM_VAR_ARGS */ #define NUM_VA_ARGS_LESS_1_IMPL( \ _ignored, \ _0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \ _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \ _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \ _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \ _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, \ _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, \ _61, _62, N, ...) N /**@brief Macro to get the number of arguments in a call variadic macro call. * First argument is not counted. * * param[in] ... List of arguments * * @retval Number of variadic arguments in the argument list */ #define NUM_VA_ARGS_LESS_1(...) NUM_VA_ARGS_LESS_1_IMPL(__VA_ARGS__, 63, 62, 61, \ 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \ 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \ 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \ 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, ~) /**@brief type for holding an encoded (i.e. little endian) 16 bit unsigned integer. */ typedef uint8_t uint16_le_t[2]; /**@brief Type for holding an encoded (i.e. little endian) 32 bit unsigned integer. */ typedef uint8_t uint32_le_t[4]; /**@brief Byte array type. */ typedef struct { uint16_t size; /**< Number of array entries. */ uint8_t * p_data; /**< Pointer to array entries. */ } uint8_array_t; /**@brief Macro for performing rounded integer division (as opposed to truncating the result). * * @param[in] A Numerator. * @param[in] B Denominator. * * @return Rounded (integer) result of dividing A by B. */ #define ROUNDED_DIV(A, B) (((A) + ((B) / 2)) / (B)) /**@brief Macro for checking if an integer is a power of two. * * @param[in] A Number to be tested. * * @return true if value is power of two. * @return false if value not power of two. */ #define IS_POWER_OF_TWO(A) ( ((A) != 0) && ((((A) - 1) & (A)) == 0) ) /**@brief Macro for converting milliseconds to ticks. * * @param[in] TIME Number of milliseconds to convert. * @param[in] RESOLUTION Unit to be converted to in [us/ticks]. */ #define MSEC_TO_UNITS(TIME, RESOLUTION) (((TIME) * 1000) / (RESOLUTION)) /**@brief Macro for performing integer division, making sure the result is rounded up. * * @details One typical use for this is to compute the number of objects with size B is needed to * hold A number of bytes. * * @param[in] A Numerator. * @param[in] B Denominator. * * @return Integer result of dividing A by B, rounded up. */ #define CEIL_DIV(A, B) \ (((A) + (B) - 1) / (B)) /**@brief Macro for creating a buffer aligned to 4 bytes. * * @param[in] NAME Name of the buffor. * @param[in] MIN_SIZE Size of this buffor (it will be rounded up to multiples of 4 bytes). */ #define WORD_ALIGNED_MEM_BUFF(NAME, MIN_SIZE) static uint32_t NAME[CEIL_DIV(MIN_SIZE, sizeof(uint32_t))] /**@brief Macro for calculating the number of words that are needed to hold a number of bytes. * * @details Adds 3 and divides by 4. * * @param[in] n_bytes The number of bytes. * * @return The number of words that @p n_bytes take up (rounded up). */ #define BYTES_TO_WORDS(n_bytes) (((n_bytes) + 3) >> 2) /**@brief The number of bytes in a word. */ #define BYTES_PER_WORD (4) /**@brief Macro for increasing a number to the nearest (larger) multiple of another number. * * @param[in] alignment The number to align to. * @param[in] number The number to align (increase). * * @return The aligned (increased) @p number. */ #define ALIGN_NUM(alignment, number) (((number) - 1) + (alignment) - (((number) - 1) % (alignment))) /**@brief Macro for getting first of 2 parameters. * * @param[in] a1 First parameter. * @param[in] a2 Second parameter. */ #define GET_ARG_1(a1, a2) a1 /**@brief Macro for getting second of 2 parameters. * * @param[in] a1 First parameter. * @param[in] a2 Second parameter. */ #define GET_ARG_2(a1, a2) a2 /**@brief Container of macro (borrowed from Linux kernel). * * This macro returns parent structure address basing on child member address. * * @param ptr Address of child type. * @param type Type of parent structure. * @param member Name of child field in parent structure. * * @return Parent structure address. * */ #define CONTAINER_OF(ptr, type, member) \ (type *)((char *)ptr - offsetof(type, member)) /** * @brief Define Bit-field mask * * Macro that defined the mask with selected number of bits set, starting from * provided bit number. * * @param[in] bcnt Number of bits in the bit-field * @param[in] boff Lowest bit number */ #define BF_MASK(bcnt, boff) ( ((1U << (bcnt)) - 1U) << (boff) ) /** * @brief Get bit-field * * Macro that extracts selected bit-field from provided value * * @param[in] val Value from witch selected bit-field would be extracted * @param[in] bcnt Number of bits in the bit-field * @param[in] boff Lowest bit number * * @return Value of the selected bits */ #define BF_GET(val, bcnt, boff) ( ( (val) & BF_MASK((bcnt), (boff)) ) >> (boff) ) /** * @brief Create bit-field value * * Value is masked and shifted to match given bit-field * * @param[in] val Value to set on bit-field * @param[in] bcnt Number of bits for bit-field * @param[in] boff Offset of bit-field * * @return Value positioned of given bit-field. */ #define BF_VAL(val, bcnt, boff) ( (((uint32_t)(val)) << (boff)) & BF_MASK(bcnt, boff) ) /** * @name Configuration of complex bit-field * * @sa BF_CX * @{ */ /** @brief Position of bit count in complex bit-field value */ #define BF_CX_BCNT_POS 0U /** @brief Mask of bit count in complex bit-field value */ #define BF_CX_BCNT_MASK (0xffU << BF_CX_BCNT_POS) /** @brief Position of bit position in complex bit-field value */ #define BF_CX_BOFF_POS 8U /** @brief Mask of bit position in complex bit-field value */ #define BF_CX_BOFF_MASK (0xffU << BF_CX_BOFF_POS) /** @} */ /** * @brief Define complex bit-field * * Complex bit-field would contain its position and size in one number. * @sa BF_CX_MASK * @sa BF_CX_POS * @sa BF_CX_GET * * @param[in] bcnt Number of bits in the bit-field * @param[in] boff Lowest bit number * * @return The single number that describes the bit-field completely. */ #define BF_CX(bcnt, boff) ( ((((uint32_t)(bcnt)) << BF_CX_BCNT_POS) & BF_CX_BCNT_MASK) | ((((uint32_t)(boff)) << BF_CX_BOFF_POS) & BF_CX_BOFF_MASK) ) /** * @brief Get number of bits in bit-field * * @sa BF_CX * * @param bf_cx Complex bit-field * * @return Number of bits in given bit-field */ #define BF_CX_BCNT(bf_cx) ( ((bf_cx) & BF_CX_BCNT_MASK) >> BF_CX_BCNT_POS ) /** * @brief Get lowest bit number in the field * * @sa BF_CX * * @param[in] bf_cx Complex bit-field * * @return Lowest bit number in given bit-field */ #define BF_CX_BOFF(bf_cx) ( ((bf_cx) & BF_CX_BOFF_MASK) >> BF_CX_BOFF_POS ) /** * @brief Get bit mask of the selected field * * @sa BF_CX * * @param[in] bf_cx Complex bit-field * * @return Mask of given bit-field */ #define BF_CX_MASK(bf_cx) BF_MASK(BF_CX_BCNT(bf_cx), BF_CX_BOFF(bf_cx)) /** * @brief Get bit-field * * Macro that extracts selected bit-field from provided value. * Bit-field is given as a complex value. * * @sa BF_CX * @sa BF_GET * * @param[in] val Value from witch selected bit-field would be extracted * @param[in] bf_cx Complex bit-field * * @return Value of the selected bits. */ #define BF_CX_GET(val, bf_cx) BF_GET(val, BF_CX_BCNT(bf_cx), BF_CX_BOFF(bf_cx)) /** * @brief Create bit-field value * * Value is masked and shifted to match given bit-field. * * @param[in] val Value to set on bit-field * @param[in] bf_cx Complex bit-field * * @return Value positioned of given bit-field. */ #define BF_CX_VAL(val, bf_cx) BF_VAL(val, BF_CX_BCNT(bf_cx), BF_CX_BOFF(bf_cx)) /** * @brief Extracting data from the brackets * * This macro get rid of brackets around the argument. * It can be used to pass multiple arguments in logical one argument to a macro. * Call it with arguments inside brackets: * @code * #define ARGUMENTS (a, b, c) * BRACKET_EXTRACT(ARGUMENTS) * @endcode * It would produce: * @code * a, b, c * @endcode * * @param a Argument with anything inside brackets * @return Anything that appears inside the brackets of the argument * * @note * The argument of the macro have to be inside brackets. * In other case the compilation would fail. */ #define BRACKET_EXTRACT(a) BRACKET_EXTRACT_(a) #define BRACKET_EXTRACT_(a) BRACKET_EXTRACT__ a #define BRACKET_EXTRACT__(...) __VA_ARGS__ /** * @brief Check if number of parameters is more than 1 * * @param ... Arguments to count * * @return 0 If argument count is <= 1 * @return 1 If argument count is > 1 * * @sa NUM_VA_ARGS * @sa NUM_IS_MORE_THAN_1 */ #define NUM_VA_ARGS_IS_MORE_THAN_1(...) NUM_IS_MORE_THAN_1(NUM_VA_ARGS(__VA_ARGS__)) /** * @brief Check if given numeric value is bigger than 1 * * This macro accepts numeric value, that may be the result of argument expansion. * This numeric value is then converted to 0 if it is lover than 1 or to 1 if * its value is higher than 1. * The generated result can be used to glue it into other macro mnemonic name. * * @param N Numeric value to check * * @return 0 If argument is <= 1 * @return 1 If argument is > 1 * * @note Any existing definition of a form NUM_IS_MORE_THAN_1_PROBE_[N] can * broke the result of this macro */ #define NUM_IS_MORE_THAN_1(N) NUM_IS_MORE_THAN_1_(N) #define NUM_IS_MORE_THAN_1_(N) NUM_IS_MORE_THAN_1_PROBE_(NUM_IS_MORE_THAN_1_PROBE_ ## N, 1) #define NUM_IS_MORE_THAN_1_PROBE_(...) GET_VA_ARG_1(GET_ARGS_AFTER_1(__VA_ARGS__)) #define NUM_IS_MORE_THAN_1_PROBE_0 ~, 0 #define NUM_IS_MORE_THAN_1_PROBE_1 ~, 0 /** * @brief Get the first argument * * @param ... Arguments to select * * @return First argument or empty if no arguments are provided */ #define GET_VA_ARG_1(...) GET_VA_ARG_1_(__VA_ARGS__, ) // Make sure that also for 1 argument it works #define GET_VA_ARG_1_(a1, ...) a1 /** * @brief Get all the arguments but the first one * * @param ... Arguments to select * * @return All arguments after the first one or empty if less than 2 arguments are provided */ #define GET_ARGS_AFTER_1(...) GET_ARGS_AFTER_1_(__VA_ARGS__, ) // Make sure that also for 1 argument it works #define GET_ARGS_AFTER_1_(a1, ...) __VA_ARGS__ /** * @brief Size of a field in declared structure * * Macro that returns the size of the structure field. * @param struct_type Variable type to get the field size from * @param field Field name to analyze. It can be even field inside field (field.somethingelse.and_another). * * @return Size of the field */ #define FIELD_SIZE(struct_type, field) sizeof(((struct struct_type*)NULL)->field) /** * @brief Number of elements in field array in declared structure * * Macro that returns number of elementy in structure field. * @param struct_type Variable type to get the field size from * @param field Field name to analyze. * * @return Number of elements in field array * * @sa FIELD_SIZE */ #define FIELD_ARRAY_SIZE(struct_type, field) (FIELD_SIZE(struct_type, field) / FIELD_SIZE(struct_type, field[0])) /** * @brief Mapping macro * * Macro that process all arguments using given macro * * @param ... Macro name to be used for argument processing followed by arguments to process. * Macro should have following form: MACRO(argument) * * @return All arguments processed by given macro */ #define MACRO_MAP(...) MACRO_MAP_(__VA_ARGS__) #define MACRO_MAP_(...) MACRO_MAP_N(NUM_VA_ARGS_LESS_1(__VA_ARGS__), __VA_ARGS__) // To make sure it works also for 2 arguments in total /** * @brief Mapping macro, recursive version * * Can be used in @ref MACRO_MAP macro */ #define MACRO_MAP_REC(...) MACRO_MAP_REC_(__VA_ARGS__) #define MACRO_MAP_REC_(...) MACRO_MAP_REC_N(NUM_VA_ARGS_LESS_1(__VA_ARGS__), __VA_ARGS__) // To make sure it works also for 2 arguments in total /** * @brief Mapping N arguments macro * * Macro similar to @ref MACRO_MAP but maps exact number of arguments. * If there is more arguments given, the rest would be ignored. * * @param N Number of arguments to map * @param ... Macro name to be used for argument processing followed by arguments to process. * Macro should have following form: MACRO(argument) * * @return Selected number of arguments processed by given macro */ #define MACRO_MAP_N(N, ...) MACRO_MAP_N_(N, __VA_ARGS__) #define MACRO_MAP_N_(N, ...) CONCAT_2(MACRO_MAP_, N)(__VA_ARGS__, ) /** * @brief Mapping N arguments macro, recursive version * * Can be used in @ref MACRO_MAP_N macro */ #define MACRO_MAP_REC_N(N, ...) MACRO_MAP_REC_N_(N, __VA_ARGS__) #define MACRO_MAP_REC_N_(N, ...) CONCAT_2(MACRO_MAP_REC_, N)(__VA_ARGS__, ) #define MACRO_MAP_0( ...) #define MACRO_MAP_1( macro, a, ...) macro(a) #define MACRO_MAP_2( macro, a, ...) macro(a) MACRO_MAP_1 (macro, __VA_ARGS__, ) #define MACRO_MAP_3( macro, a, ...) macro(a) MACRO_MAP_2 (macro, __VA_ARGS__, ) #define MACRO_MAP_4( macro, a, ...) macro(a) MACRO_MAP_3 (macro, __VA_ARGS__, ) #define MACRO_MAP_5( macro, a, ...) macro(a) MACRO_MAP_4 (macro, __VA_ARGS__, ) #define MACRO_MAP_6( macro, a, ...) macro(a) MACRO_MAP_5 (macro, __VA_ARGS__, ) #define MACRO_MAP_7( macro, a, ...) macro(a) MACRO_MAP_6 (macro, __VA_ARGS__, ) #define MACRO_MAP_8( macro, a, ...) macro(a) MACRO_MAP_7 (macro, __VA_ARGS__, ) #define MACRO_MAP_9( macro, a, ...) macro(a) MACRO_MAP_8 (macro, __VA_ARGS__, ) #define MACRO_MAP_10(macro, a, ...) macro(a) MACRO_MAP_9 (macro, __VA_ARGS__, ) #define MACRO_MAP_11(macro, a, ...) macro(a) MACRO_MAP_10(macro, __VA_ARGS__, ) #define MACRO_MAP_12(macro, a, ...) macro(a) MACRO_MAP_11(macro, __VA_ARGS__, ) #define MACRO_MAP_13(macro, a, ...) macro(a) MACRO_MAP_12(macro, __VA_ARGS__, ) #define MACRO_MAP_14(macro, a, ...) macro(a) MACRO_MAP_13(macro, __VA_ARGS__, ) #define MACRO_MAP_15(macro, a, ...) macro(a) MACRO_MAP_14(macro, __VA_ARGS__, ) #define MACRO_MAP_REC_0( ...) #define MACRO_MAP_REC_1( macro, a, ...) macro(a) #define MACRO_MAP_REC_2( macro, a, ...) macro(a) MACRO_MAP_REC_1 (macro, __VA_ARGS__, ) #define MACRO_MAP_REC_3( macro, a, ...) macro(a) MACRO_MAP_REC_2 (macro, __VA_ARGS__, ) #define MACRO_MAP_REC_4( macro, a, ...) macro(a) MACRO_MAP_REC_3 (macro, __VA_ARGS__, ) #define MACRO_MAP_REC_5( macro, a, ...) macro(a) MACRO_MAP_REC_4 (macro, __VA_ARGS__, ) #define MACRO_MAP_REC_6( macro, a, ...) macro(a) MACRO_MAP_REC_5 (macro, __VA_ARGS__, ) #define MACRO_MAP_REC_7( macro, a, ...) macro(a) MACRO_MAP_REC_6 (macro, __VA_ARGS__, ) #define MACRO_MAP_REC_8( macro, a, ...) macro(a) MACRO_MAP_REC_7 (macro, __VA_ARGS__, ) #define MACRO_MAP_REC_9( macro, a, ...) macro(a) MACRO_MAP_REC_8 (macro, __VA_ARGS__, ) #define MACRO_MAP_REC_10(macro, a, ...) macro(a) MACRO_MAP_REC_9 (macro, __VA_ARGS__, ) #define MACRO_MAP_REC_11(macro, a, ...) macro(a) MACRO_MAP_REC_10(macro, __VA_ARGS__, ) #define MACRO_MAP_REC_12(macro, a, ...) macro(a) MACRO_MAP_REC_11(macro, __VA_ARGS__, ) #define MACRO_MAP_REC_13(macro, a, ...) macro(a) MACRO_MAP_REC_12(macro, __VA_ARGS__, ) #define MACRO_MAP_REC_14(macro, a, ...) macro(a) MACRO_MAP_REC_13(macro, __VA_ARGS__, ) #define MACRO_MAP_REC_15(macro, a, ...) macro(a) MACRO_MAP_REC_14(macro, __VA_ARGS__, ) /** * @brief Mapping macro with current index * * Basically macro similar to @ref MACRO_MAP, but the processing function would get an argument * and current argument index (beginning from 0). * * @param ... Macro name to be used for argument processing followed by arguments to process. * Macro should have following form: MACRO(argument, index) * @return All arguments processed by given macro */ #define MACRO_MAP_FOR(...) MACRO_MAP_FOR_(__VA_ARGS__) #define MACRO_MAP_FOR_N_LIST 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 #define MACRO_MAP_FOR_(...) MACRO_MAP_FOR_N(NUM_VA_ARGS_LESS_1(__VA_ARGS__), __VA_ARGS__) /** * @brief Mapping N arguments macro with current index * * Macro is similar to @ref MACRO_MAP_FOR but maps exact number of arguments. * If there is more arguments given, the rest would be ignored. * * @param N Number of arguments to map * @param ... Macro name to be used for argument processing followed by arguments to process. * Macro should have following form: MACRO(argument, index) * * @return Selected number of arguments processed by given macro */ #define MACRO_MAP_FOR_N(N, ...) MACRO_MAP_FOR_N_(N, __VA_ARGS__) #define MACRO_MAP_FOR_N_(N, ...) CONCAT_2(MACRO_MAP_FOR_, N)((MACRO_MAP_FOR_N_LIST), __VA_ARGS__, ) #define MACRO_MAP_FOR_0( n_list, ...) #define MACRO_MAP_FOR_1( n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) #define MACRO_MAP_FOR_2( n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_1 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_3( n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_2 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_4( n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_3 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_5( n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_4 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_6( n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_5 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_7( n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_6 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_8( n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_7 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_9( n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_8 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_10(n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_9 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_11(n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_10((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_12(n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_11((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_13(n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_12((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_14(n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_13((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_15(n_list, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list))) MACRO_MAP_FOR_14((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__, ) /** * @brief Mapping macro with current index and parameter * * Version of @ref MACRO_MAP_FOR that passes also the same parameter to all macros. * * @param param Parameter that would be passed to each macro call during mapping. * @param ... Macro name to be used for argument processing followed by arguments to process. * Macro should have following form: MACRO(argument, index, param) * * @return All arguments processed by given macro */ #define MACRO_MAP_FOR_PARAM(param, ...) MACRO_MAP_FOR_PARAM_(param, __VA_ARGS__) #define MACRO_MAP_FOR_PARAM_(param, ...) MACRO_MAP_FOR_PARAM_N(NUM_VA_ARGS_LESS_1(__VA_ARGS__), param, __VA_ARGS__) /** * @brief Mapping N arguments macro with with current index and parameter * * @param N Number of arguments to map * @param param Parameter that would be passed to each macro call during mapping. * @param ... Macro name to be used for argument processing followed by arguments to process. * Macro should have following form: MACRO(argument, index, param) * * @return All arguments processed by given macro */ #define MACRO_MAP_FOR_PARAM_N(N, param, ...) MACRO_MAP_FOR_PARAM_N_(N, param, __VA_ARGS__) #define MACRO_MAP_FOR_PARAM_N_(N, param, ...) CONCAT_2(MACRO_MAP_FOR_PARAM_, N)((MACRO_MAP_FOR_N_LIST), param, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_0( n_list, param, ...) #define MACRO_MAP_FOR_PARAM_1( n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) #define MACRO_MAP_FOR_PARAM_2( n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_1 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_3( n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_2 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_4( n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_3 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_5( n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_4 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_6( n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_5 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_7( n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_6 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_8( n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_7 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_9( n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_8 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_10(n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_9 ((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_11(n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_10((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_12(n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_11((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_13(n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_12((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_14(n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_13((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) #define MACRO_MAP_FOR_PARAM_15(n_list, param, macro, a, ...) macro(a, GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), param) MACRO_MAP_FOR_PARAM_14((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), param, macro, __VA_ARGS__, ) /** * @brief Repeating macro. * * @param count Count of repeats. * @param macro Macro must have the following form: MACRO(arguments). * @param ... Arguments passed to the macro. * * @return All arguments processed by the given macro. */ #define MACRO_REPEAT(count, macro, ...) MACRO_REPEAT_(count, macro, __VA_ARGS__) #define MACRO_REPEAT_(count, macro, ...) CONCAT_2(MACRO_REPEAT_, count)(macro, __VA_ARGS__) #define MACRO_REPEAT_0(macro, ...) #define MACRO_REPEAT_1(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_0(macro, __VA_ARGS__) #define MACRO_REPEAT_2(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_1(macro, __VA_ARGS__) #define MACRO_REPEAT_3(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_2(macro, __VA_ARGS__) #define MACRO_REPEAT_4(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_3(macro, __VA_ARGS__) #define MACRO_REPEAT_5(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_4(macro, __VA_ARGS__) #define MACRO_REPEAT_6(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_5(macro, __VA_ARGS__) #define MACRO_REPEAT_7(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_6(macro, __VA_ARGS__) #define MACRO_REPEAT_8(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_7(macro, __VA_ARGS__) #define MACRO_REPEAT_9(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_8(macro, __VA_ARGS__) #define MACRO_REPEAT_10(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_9(macro, __VA_ARGS__) #define MACRO_REPEAT_11(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_10(macro, __VA_ARGS__) #define MACRO_REPEAT_12(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_11(macro, __VA_ARGS__) #define MACRO_REPEAT_13(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_12(macro, __VA_ARGS__) #define MACRO_REPEAT_14(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_13(macro, __VA_ARGS__) #define MACRO_REPEAT_15(macro, ...) macro(__VA_ARGS__) MACRO_REPEAT_14(macro, __VA_ARGS__) /** * @brief Repeating macro with current index. * * Macro similar to @ref MACRO_REPEAT but the processing function gets the arguments * and the current argument index (beginning from 0). * @param count Count of repeats. * @param macro Macro must have the following form: MACRO(index, arguments). * @param ... Arguments passed to the macro. * * @return All arguments processed by the given macro. */ #define MACRO_REPEAT_FOR(count, macro, ...) MACRO_REPEAT_FOR_(count, macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_(count, macro, ...) CONCAT_2(MACRO_REPEAT_FOR_, count)((MACRO_MAP_FOR_N_LIST), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_0(n_list, macro, ...) #define MACRO_REPEAT_FOR_1(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_0((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_2(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_1((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_3(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_2((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_4(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_3((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_5(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_4((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_6(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_5((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_7(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_6((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_8(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_7((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_9(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_8((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_10(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_9((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_11(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_10((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_12(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_11((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_13(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_12((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_14(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_13((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) #define MACRO_REPEAT_FOR_15(n_list, macro, ...) macro(GET_VA_ARG_1(BRACKET_EXTRACT(n_list)), __VA_ARGS__) MACRO_REPEAT_FOR_14((GET_ARGS_AFTER_1(BRACKET_EXTRACT(n_list))), macro, __VA_ARGS__) /**@brief Adding curly brace to the macro parameter. * * Useful in array of structures initialization. * * @param p Parameter to put into the curly brace. */ #define PARAM_CBRACE(p) { p }, /**@brief Function for changing the value unit. * * @param[in] value Value to be rescaled. * @param[in] old_unit_reversal Reversal of the incoming unit. * @param[in] new_unit_reversal Reversal of the desired unit. * * @return Number of bytes written. */ static __INLINE uint64_t value_rescale(uint32_t value, uint32_t old_unit_reversal, uint16_t new_unit_reversal) { return (uint64_t)ROUNDED_DIV((uint64_t)value * new_unit_reversal, old_unit_reversal); } /**@brief Function for encoding a uint16 value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint16_encode(uint16_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x00FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0xFF00) >> 8); return sizeof(uint16_t); } /**@brief Function for encoding a three-byte value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint24_encode(uint32_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8); p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16); return 3; } /**@brief Function for encoding a uint32 value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint32_encode(uint32_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x000000FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0x0000FF00) >> 8); p_encoded_data[2] = (uint8_t) ((value & 0x00FF0000) >> 16); p_encoded_data[3] = (uint8_t) ((value & 0xFF000000) >> 24); return sizeof(uint32_t); } /**@brief Function for encoding a uint40 value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint40_encode(uint64_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x00000000FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0x000000FF00) >> 8); p_encoded_data[2] = (uint8_t) ((value & 0x0000FF0000) >> 16); p_encoded_data[3] = (uint8_t) ((value & 0x00FF000000) >> 24); p_encoded_data[4] = (uint8_t) ((value & 0xFF00000000) >> 32); return 5; } /**@brief Function for encoding a uint48 value. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data is to be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint48_encode(uint64_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) ((value & 0x0000000000FF) >> 0); p_encoded_data[1] = (uint8_t) ((value & 0x00000000FF00) >> 8); p_encoded_data[2] = (uint8_t) ((value & 0x000000FF0000) >> 16); p_encoded_data[3] = (uint8_t) ((value & 0x0000FF000000) >> 24); p_encoded_data[4] = (uint8_t) ((value & 0x00FF00000000) >> 32); p_encoded_data[5] = (uint8_t) ((value & 0xFF0000000000) >> 40); return 6; } /**@brief Function for decoding a uint16 value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint16_t uint16_decode(const uint8_t * p_encoded_data) { return ( (((uint16_t)((uint8_t *)p_encoded_data)[0])) | (((uint16_t)((uint8_t *)p_encoded_data)[1]) << 8 )); } /**@brief Function for decoding a uint16 value in big-endian format. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint16_t uint16_big_decode(const uint8_t * p_encoded_data) { return ( (((uint16_t)((uint8_t *)p_encoded_data)[0]) << 8 ) | (((uint16_t)((uint8_t *)p_encoded_data)[1])) ); } /**@brief Function for decoding a three-byte value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value (uint32_t). */ static __INLINE uint32_t uint24_decode(const uint8_t * p_encoded_data) { return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) | (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) | (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16)); } /**@brief Function for decoding a uint32 value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint32_t uint32_decode(const uint8_t * p_encoded_data) { return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 0) | (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 8) | (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 16) | (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 24 )); } /**@brief Function for decoding a uint32 value in big-endian format. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. */ static __INLINE uint32_t uint32_big_decode(const uint8_t * p_encoded_data) { return ( (((uint32_t)((uint8_t *)p_encoded_data)[0]) << 24) | (((uint32_t)((uint8_t *)p_encoded_data)[1]) << 16) | (((uint32_t)((uint8_t *)p_encoded_data)[2]) << 8) | (((uint32_t)((uint8_t *)p_encoded_data)[3]) << 0) ); } /** * @brief Function for encoding an uint16 value in big-endian format. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data will be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint16_big_encode(uint16_t value, uint8_t * p_encoded_data) { p_encoded_data[0] = (uint8_t) (value >> 8); p_encoded_data[1] = (uint8_t) (value & 0xFF); return sizeof(uint16_t); } /*lint -esym(526, __rev) */ /*lint -esym(628, __rev) */ /**@brief Function for encoding a uint32 value in big-endian format. * * @param[in] value Value to be encoded. * @param[out] p_encoded_data Buffer where the encoded data will be written. * * @return Number of bytes written. */ static __INLINE uint8_t uint32_big_encode(uint32_t value, uint8_t * p_encoded_data) { *(uint32_t *)p_encoded_data = __REV(value); return sizeof(uint32_t); } /**@brief Function for decoding a uint40 value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. (uint64_t) */ static __INLINE uint64_t uint40_decode(const uint8_t * p_encoded_data) { return ( (((uint64_t)((uint8_t *)p_encoded_data)[0]) << 0) | (((uint64_t)((uint8_t *)p_encoded_data)[1]) << 8) | (((uint64_t)((uint8_t *)p_encoded_data)[2]) << 16) | (((uint64_t)((uint8_t *)p_encoded_data)[3]) << 24) | (((uint64_t)((uint8_t *)p_encoded_data)[4]) << 32 )); } /**@brief Function for decoding a uint48 value. * * @param[in] p_encoded_data Buffer where the encoded data is stored. * * @return Decoded value. (uint64_t) */ static __INLINE uint64_t uint48_decode(const uint8_t * p_encoded_data) { return ( (((uint64_t)((uint8_t *)p_encoded_data)[0]) << 0) | (((uint64_t)((uint8_t *)p_encoded_data)[1]) << 8) | (((uint64_t)((uint8_t *)p_encoded_data)[2]) << 16) | (((uint64_t)((uint8_t *)p_encoded_data)[3]) << 24) | (((uint64_t)((uint8_t *)p_encoded_data)[4]) << 32) | (((uint64_t)((uint8_t *)p_encoded_data)[5]) << 40 )); } /** @brief Function for converting the input voltage (in milli volts) into percentage of 3.0 Volts. * * @details The calculation is based on a linearized version of the battery's discharge * curve. 3.0V returns 100% battery level. The limit for power failure is 2.1V and * is considered to be the lower boundary. * * The discharge curve for CR2032 is non-linear. In this model it is split into * 4 linear sections: * - Section 1: 3.0V - 2.9V = 100% - 42% (58% drop on 100 mV) * - Section 2: 2.9V - 2.74V = 42% - 18% (24% drop on 160 mV) * - Section 3: 2.74V - 2.44V = 18% - 6% (12% drop on 300 mV) * - Section 4: 2.44V - 2.1V = 6% - 0% (6% drop on 340 mV) * * These numbers are by no means accurate. Temperature and * load in the actual application is not accounted for! * * @param[in] mvolts The voltage in mV * * @return Battery level in percent. */ static __INLINE uint8_t battery_level_in_percent(const uint16_t mvolts) { uint8_t battery_level; if (mvolts >= 3000) { battery_level = 100; } else if (mvolts > 2900) { battery_level = 100 - ((3000 - mvolts) * 58) / 100; } else if (mvolts > 2740) { battery_level = 42 - ((2900 - mvolts) * 24) / 160; } else if (mvolts > 2440) { battery_level = 18 - ((2740 - mvolts) * 12) / 300; } else if (mvolts > 2100) { battery_level = 6 - ((2440 - mvolts) * 6) / 340; } else { battery_level = 0; } return battery_level; } /**@brief Function for checking if a pointer value is aligned to a 4 byte boundary. * * @param[in] p Pointer value to be checked. * * @return TRUE if pointer is aligned to a 4 byte boundary, FALSE otherwise. */ static __INLINE bool is_word_aligned(void const* p) { return (((uintptr_t)p & 0x03) == 0); } /*lint -e{568, 685} */ /** * @brief Function for checking if provided address is located in stack space. * * @param[in] ptr Pointer to be checked. * * @return true if address is in stack space, false otherwise. */ static __INLINE bool is_address_from_stack(void * ptr) { if (((uint32_t)ptr >= (uint32_t)STACK_BASE) && ((uint32_t)ptr < (uint32_t)STACK_TOP) ) { return true; } else { return false; } } #ifdef __cplusplus } #endif #endif // APP_UTIL_H__ /** @} */