/** * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /**@file * * @defgroup ser_phy_spi_phy_driver_slave ser_phy_nrf51_spi_slave.c * @{ * @ingroup ser_phy_spi_phy_driver_slave * * @brief SPI_RAW PHY slave driver. */ #include #include #include "app_error.h" #include "app_util.h" #include "app_util_platform.h" #include "app_timer.h" #include "ser_phy.h" #include "ser_phy_hci.h" #include "crc16.h" #include "nrf_soc.h" #include "ser_phy_debug_comm.h" static bool m_flag_nohci_init = false; static bool m_flag_expect_ack; static bool m_flag_buffer_reqested = false; static uint16_t m_rx_packet_length; static uint8_t * m_p_rx_packet; static uint16_t m_rx_pending_packet_length; static uint8_t * m_p_rx_pending_packet; static uint16_t m_rx_allocated_packet_length; static uint8_t * m_p_rx_allocated_packet; static uint8_t * m_p_tx_packet = NULL; static uint16_t m_tx_packet_length; static ser_phy_events_handler_t m_ser_phy_callback = NULL; #define PKT_HDR_SIZE 4 /**< Packet header size in number of bytes. */ #define PKT_CRC_SIZE 2 /**< Packet CRC size in number of bytes. */ static void ser_phy_nohci_assert(bool cond) { APP_ERROR_CHECK_BOOL(cond); } static void ser_phy_event_callback(ser_phy_evt_t event) { if (m_ser_phy_callback) { m_ser_phy_callback(event); } } static void memory_request_callback(uint16_t size) { ser_phy_evt_t event; DEBUG_EVT_HCI_PHY_EVT_BUF_REQUEST(0); event.evt_type = SER_PHY_EVT_RX_BUF_REQUEST; event.evt_params.rx_buf_request.num_of_bytes = size; ser_phy_event_callback(event); } static void packet_received_callback(uint8_t * pBuffer, uint16_t size) { ser_phy_evt_t event; DEBUG_EVT_HCI_PHY_EVT_RX_PKT_RECEIVED(0); event.evt_type = SER_PHY_EVT_RX_PKT_RECEIVED; event.evt_params.rx_pkt_received.num_of_bytes = size; event.evt_params.rx_pkt_received.p_buffer = pBuffer; ser_phy_event_callback(event); } static void packet_dropped_callback(void) { ser_phy_evt_t event; DEBUG_EVT_HCI_PHY_EVT_RX_PKT_DROPPED(0); event.evt_type = SER_PHY_EVT_RX_PKT_DROPPED; ser_phy_event_callback(event); } static void packet_transmitted_callback(void) { ser_phy_evt_t event; DEBUG_EVT_HCI_PHY_EVT_TX_PKT_SENT(0); event.evt_type = SER_PHY_EVT_TX_PKT_SENT; ser_phy_event_callback(event); } static void hci_slip_event_handler(ser_phy_hci_slip_evt_t * p_event) { if ( p_event->evt_type == SER_PHY_HCI_SLIP_EVT_PKT_SENT ) { DEBUG_EVT_SLIP_PACKET_TXED(0); if (!m_flag_expect_ack) { m_p_tx_packet = NULL; packet_transmitted_callback(); } else { ser_phy_nohci_assert(false); // packet was send as a ACK packet, callback should be with ACK_SENT } } else if ( p_event->evt_type == SER_PHY_HCI_SLIP_EVT_ACK_SENT ) { DEBUG_EVT_SLIP_ACK_TXED(0); if (m_flag_expect_ack) { m_p_tx_packet = NULL; packet_transmitted_callback(); } else { ser_phy_nohci_assert(false); // packet was send as a normal packet, callback should be with PKT_SENT } } else if ( p_event->evt_type == SER_PHY_HCI_SLIP_EVT_PKT_RECEIVED ) { CRITICAL_REGION_ENTER(); if (m_p_rx_packet == NULL) { m_p_rx_packet = p_event->evt_params.received_pkt.p_buffer; m_rx_packet_length = p_event->evt_params.received_pkt.num_of_bytes; m_p_rx_allocated_packet = m_p_rx_packet; m_rx_allocated_packet_length = m_rx_packet_length; m_flag_buffer_reqested = true; memory_request_callback(m_rx_allocated_packet_length); } else if (m_p_rx_pending_packet == NULL) { m_p_rx_pending_packet = p_event->evt_params.received_pkt.p_buffer; m_rx_pending_packet_length = p_event->evt_params.received_pkt.num_of_bytes; } else { // both buffers are not released; this is fault ser_phy_nohci_assert(false); } CRITICAL_REGION_EXIT(); } else { // no other callbacks are expected ser_phy_nohci_assert(false); } } /* ser_phy API function */ void ser_phy_interrupts_enable(void) { NVIC_EnableIRQ(UART0_IRQn); return; } /* ser_phy API function */ void ser_phy_interrupts_disable(void) { NVIC_DisableIRQ(UART0_IRQn); return; } /* ser_phy API function */ uint32_t ser_phy_rx_buf_set(uint8_t * p_buffer) { uint32_t status = NRF_SUCCESS; if (m_flag_buffer_reqested) { m_flag_buffer_reqested = false; if (p_buffer) { memcpy(p_buffer, m_p_rx_allocated_packet, m_rx_allocated_packet_length); packet_received_callback(p_buffer, m_rx_allocated_packet_length); } else { packet_dropped_callback(); } CRITICAL_REGION_ENTER(); if (m_p_rx_allocated_packet == m_p_rx_packet && (m_p_rx_pending_packet == NULL)) { // packet is copied and there is no pending packet (void) ser_phy_hci_slip_rx_buf_free(m_p_rx_packet); m_p_rx_packet = NULL; m_p_rx_allocated_packet = NULL; } else if (m_p_rx_allocated_packet == m_p_rx_packet && (m_p_rx_pending_packet != NULL)) { // there is a pending packet - request memory for it m_p_rx_allocated_packet = m_p_rx_pending_packet; m_rx_allocated_packet_length = m_rx_pending_packet_length; m_flag_buffer_reqested = true; } else if (m_p_rx_allocated_packet == m_p_rx_pending_packet ) { // the pending packet was serviced - release both m_p_rx_allocated_packet = NULL; (void) ser_phy_hci_slip_rx_buf_free(m_p_rx_packet); m_p_rx_packet = NULL; (void) ser_phy_hci_slip_rx_buf_free(m_p_rx_pending_packet); m_p_rx_pending_packet = NULL; } else { // no other calls are expected ser_phy_nohci_assert(false); } CRITICAL_REGION_EXIT(); // request memory for a pending if (m_p_rx_allocated_packet) { memory_request_callback(m_rx_allocated_packet_length); } } else { status = NRF_ERROR_BUSY; } return status; } /* ser_phy API function */ uint32_t ser_phy_tx_pkt_send(const uint8_t * p_buffer, uint16_t num_of_bytes) { uint32_t status = NRF_SUCCESS; uint32_t err_code; if ( p_buffer == NULL || num_of_bytes == 0) { return NRF_ERROR_NULL; } if ( m_p_tx_packet == NULL) { m_tx_packet_length = num_of_bytes; m_p_tx_packet = (uint8_t *)p_buffer; if (m_tx_packet_length <= PKT_HDR_SIZE + PKT_CRC_SIZE) { ser_phy_hci_pkt_params_t pkt; // all packets smaller than 6 goes as ACK m_flag_expect_ack = true; pkt.p_buffer = (uint8_t *)m_p_tx_packet; pkt.num_of_bytes = m_tx_packet_length; DEBUG_EVT_SLIP_ACK_TX(0); err_code = ser_phy_hci_slip_tx_pkt_send(&pkt, NULL, NULL); // this will look like ACK for slip ser_phy_nohci_assert(err_code == NRF_SUCCESS); } else { ser_phy_hci_pkt_params_t header; // this is fake header - just first 4 bytes ser_phy_hci_pkt_params_t crc; // this is fake header - just last 2 bytes ser_phy_hci_pkt_params_t payload; // this is fake payload - all except for header and crc m_flag_expect_ack = false; header.p_buffer = (uint8_t *)m_p_tx_packet; header.num_of_bytes = PKT_HDR_SIZE; crc.p_buffer = (uint8_t *)m_p_tx_packet + m_tx_packet_length - PKT_CRC_SIZE; crc.num_of_bytes = PKT_CRC_SIZE; payload.p_buffer = (uint8_t *)m_p_tx_packet + PKT_HDR_SIZE; payload.num_of_bytes = m_tx_packet_length - PKT_HDR_SIZE - PKT_CRC_SIZE; DEBUG_EVT_SLIP_PACKET_TX(0); err_code = ser_phy_hci_slip_tx_pkt_send(&header, &payload, &crc); // this will look like normal packet for slip ser_phy_nohci_assert(err_code == NRF_SUCCESS); } } else { status = NRF_ERROR_BUSY; } return status; } /* ser_phy API function */ uint32_t ser_phy_open(ser_phy_events_handler_t events_handler) { uint32_t err_code; if (m_flag_nohci_init) { return NRF_ERROR_INVALID_STATE; } if (events_handler == NULL) { return NRF_ERROR_NULL; } err_code = ser_phy_hci_slip_open(hci_slip_event_handler); if (err_code != NRF_SUCCESS) { return err_code; } m_ser_phy_callback = events_handler; m_flag_nohci_init = true; return NRF_SUCCESS; } /* ser_phy API function */ void ser_phy_close(void) { m_ser_phy_callback = NULL; ser_phy_hci_slip_close(); m_flag_nohci_init = false; }