/** * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "ble_conn.h" #include "conn_mw_ble.h" #include "ble_serialization.h" #include "conn_ble_user_mem.h" #if defined(NRF_SD_BLE_API_VERSION) && NRF_SD_BLE_API_VERSION >= 5 #include "nrf_sdh_ble.h" #endif #include extern sercon_ble_user_mem_t m_conn_user_mem_table[]; #if defined(NRF_SD_BLE_API_VERSION) && NRF_SD_BLE_API_VERSION < 4 uint32_t conn_mw_ble_tx_packet_count_get(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); uint8_t count; uint16_t conn_handle; uint8_t * p_count = &count; uint32_t err_code = NRF_SUCCESS; uint32_t sd_err_code; err_code = ble_tx_packet_count_get_req_dec(p_rx_buf, rx_buf_len, &conn_handle, &p_count); SER_ASSERT(err_code == NRF_SUCCESS, err_code); sd_err_code = sd_ble_tx_packet_count_get(conn_handle, p_count); err_code = ble_tx_packet_count_get_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, p_count); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } #endif uint32_t conn_mw_ble_uuid_vs_add(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); ble_uuid128_t uuid; ble_uuid128_t * p_uuid = &uuid; uint8_t uuid_type; uint8_t * p_uuid_type = &uuid_type; uint32_t err_code = NRF_SUCCESS; uint32_t sd_err_code; err_code = ble_uuid_vs_add_req_dec(p_rx_buf, rx_buf_len, &p_uuid, &p_uuid_type); SER_ASSERT(err_code == NRF_SUCCESS, err_code); sd_err_code = sd_ble_uuid_vs_add(p_uuid, p_uuid_type); err_code = ble_uuid_vs_add_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, p_uuid_type); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t conn_mw_ble_uuid_decode(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); uint8_t raw_uuid[16]; uint8_t uuid_len = sizeof (raw_uuid); uint8_t * p_raw_uuid = raw_uuid; ble_uuid_t uuid; ble_uuid_t * p_uuid = &uuid; uint32_t err_code = NRF_SUCCESS; uint32_t sd_err_code; err_code = ble_uuid_decode_req_dec(p_rx_buf, rx_buf_len, &uuid_len, &p_raw_uuid, &p_uuid); SER_ASSERT(err_code == NRF_SUCCESS, err_code); sd_err_code = sd_ble_uuid_decode(uuid_len, p_raw_uuid, p_uuid); err_code = ble_uuid_decode_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, p_uuid); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t conn_mw_ble_uuid_encode(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); uint8_t raw_uuid[16]; uint8_t uuid_len = sizeof (raw_uuid); uint8_t * p_uuid_len = &uuid_len; uint8_t * p_raw_uuid = raw_uuid; ble_uuid_t uuid; ble_uuid_t * p_uuid = &uuid; uint32_t err_code = NRF_SUCCESS; uint32_t sd_err_code; memset(&uuid, 0, sizeof(uuid)); err_code = ble_uuid_encode_req_dec(p_rx_buf, rx_buf_len, &p_uuid, &p_uuid_len, &p_raw_uuid); SER_ASSERT(err_code == NRF_SUCCESS, err_code); sd_err_code = sd_ble_uuid_encode(p_uuid, p_uuid_len, p_raw_uuid); err_code = ble_uuid_encode_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, uuid_len, p_raw_uuid); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t conn_mw_ble_version_get(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); ble_version_t version; ble_version_t * p_version = &version; uint32_t err_code = NRF_SUCCESS; uint32_t sd_err_code; err_code = ble_version_get_req_dec(p_rx_buf, rx_buf_len, &p_version); SER_ASSERT(err_code == NRF_SUCCESS, err_code); sd_err_code = sd_ble_version_get(p_version); err_code = ble_version_get_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, p_version); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t conn_mw_ble_opt_get(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); uint32_t opt_id; ble_opt_t opt; ble_opt_t *p_opt = &opt; uint32_t err_code = NRF_SUCCESS; uint32_t sd_err_code; err_code = ble_opt_get_req_dec(p_rx_buf, rx_buf_len, &opt_id, &p_opt); SER_ASSERT(err_code == NRF_SUCCESS, err_code); uint16_t act_latency; uint8_t passkey[BLE_GAP_PASSKEY_LEN]; /* Initialaize appropriate pointers inside opt union based on opt_id */ switch (opt_id) { case BLE_GAP_OPT_LOCAL_CONN_LATENCY: opt.gap_opt.local_conn_latency.p_actual_latency = &act_latency; break; case BLE_GAP_OPT_PASSKEY: opt.gap_opt.passkey.p_passkey = passkey; break; } sd_err_code = sd_ble_opt_get(opt_id, p_opt); err_code = ble_opt_get_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, opt_id, p_opt); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t conn_mw_ble_opt_set(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); uint32_t opt_id = 0xFFFFFFFF; uint16_t act_latency; uint8_t passkey[BLE_GAP_PASSKEY_LEN]; uint32_t err_code = NRF_SUCCESS; /* Pre-decode type of ble_opt_t union */ err_code = ble_opt_id_pre_dec(p_rx_buf, rx_buf_len, &opt_id); SER_ASSERT(err_code == NRF_SUCCESS, err_code); ble_opt_t opt; ble_opt_t *p_opt = &opt; /* Initialaize appropriate pointers inside opt union based on opt_id */ switch (opt_id) { case BLE_GAP_OPT_LOCAL_CONN_LATENCY: opt.gap_opt.local_conn_latency.p_actual_latency = &act_latency; break; case BLE_GAP_OPT_PASSKEY: opt.gap_opt.passkey.p_passkey = passkey; break; } uint32_t sd_err_code; err_code = ble_opt_set_req_dec(p_rx_buf, rx_buf_len, &opt_id, &p_opt); SER_ASSERT(err_code == NRF_SUCCESS, err_code); sd_err_code = sd_ble_opt_set(opt_id, p_opt); err_code = ble_opt_set_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t conn_mw_ble_enable(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); uint32_t app_ram_base; /*lint --e{10} --e{19} --e{27} --e{40} --e{529} -save suppress Error 27: Illegal character */ #if defined(_WIN32) || defined(__unix) || defined(__APPLE__) uint32_t ram_start = 0; #elif defined ( __CC_ARM ) extern uint32_t Image$$RW_IRAM1$$Base; volatile uint32_t ram_start = (uint32_t) &Image$$RW_IRAM1$$Base; #elif defined ( __ICCARM__ ) extern uint32_t __ICFEDIT_region_RAM_start__; volatile uint32_t ram_start = (uint32_t) &__ICFEDIT_region_RAM_start__; #elif defined ( __GNUC__ ) extern uint32_t __data_start__; volatile uint32_t ram_start = (uint32_t) &__data_start__; #endif app_ram_base = ram_start; uint32_t err_code = NRF_SUCCESS; uint32_t sd_err_code; #if defined(NRF_SD_BLE_API_VERSION) && NRF_SD_BLE_API_VERSION < 4 ble_enable_params_t params; ble_enable_params_t * p_params = ¶ms; ble_conn_bw_counts_t conn_bw_counts; params.common_enable_params.p_conn_bw_counts = &conn_bw_counts; uint8_t gap_device_name_value[BLE_GAP_DEVNAME_MAX_LEN]; ble_gap_device_name_t device_name; device_name.max_len = BLE_GAP_DEVNAME_MAX_LEN; device_name.p_value = gap_device_name_value; params.gap_enable_params.p_device_name = &device_name; err_code = ble_enable_req_dec(p_rx_buf, rx_buf_len, &p_params); SER_ASSERT(err_code == NRF_SUCCESS, err_code); sd_err_code = sd_ble_enable(p_params, &app_ram_base); #else err_code = ble_enable_req_dec(p_rx_buf, rx_buf_len); SER_ASSERT(err_code == NRF_SUCCESS, err_code); #if defined(NRF_SD_BLE_API_VERSION) && NRF_SD_BLE_API_VERSION <= 4 //Enable BLE SDH to enable events from BLE. sd_err_code = sd_ble_enable(&app_ram_base); #else //Enable BLE SDH to enable events from BLE. sd_err_code = nrf_sdh_ble_enable(&app_ram_base); #endif #endif err_code = ble_enable_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } uint32_t conn_mw_ble_user_mem_reply(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); ble_user_mem_block_t mem_block; ble_user_mem_block_t * p_mem_block = &mem_block; uint32_t err_code = NRF_SUCCESS; uint32_t user_mem_tab_index; uint16_t conn_handle; /* Allocate user memory context for SoftDevice */ uint32_t sd_err_code; err_code = ble_user_mem_reply_req_dec(p_rx_buf, rx_buf_len, &conn_handle, &p_mem_block); SER_ASSERT(err_code == NRF_SUCCESS, err_code); if (p_mem_block != NULL) { //Use the context if p_mem_block was not null err_code = conn_ble_user_mem_context_create(&user_mem_tab_index); SER_ASSERT(err_code == NRF_SUCCESS, err_code); m_conn_user_mem_table[user_mem_tab_index].conn_handle = conn_handle; m_conn_user_mem_table[user_mem_tab_index].mem_block.len = p_mem_block->len; p_mem_block = &(m_conn_user_mem_table[user_mem_tab_index].mem_block); } sd_err_code = sd_ble_user_mem_reply(conn_handle, p_mem_block); err_code = ble_user_mem_reply_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } #if NRF_SD_BLE_API_VERSION >= 4 uint32_t conn_mw_ble_cfg_set(uint8_t const * const p_rx_buf, uint32_t rx_buf_len, uint8_t * const p_tx_buf, uint32_t * const p_tx_buf_len) { SER_ASSERT_NOT_NULL(p_rx_buf); SER_ASSERT_NOT_NULL(p_tx_buf); SER_ASSERT_NOT_NULL(p_tx_buf_len); uint32_t app_ram_base; /*lint --e{10} --e{19} --e{27} --e{40} --e{529} -save suppress Error 27: Illegal character */ #if defined(_WIN32) || defined(__unix) || defined(__APPLE__) uint32_t ram_start = 0; #elif defined ( __CC_ARM ) extern uint32_t Image$$RW_IRAM1$$Base; volatile uint32_t ram_start = (uint32_t) &Image$$RW_IRAM1$$Base; #elif defined ( __ICCARM__ ) extern uint32_t __ICFEDIT_region_RAM_start__; volatile uint32_t ram_start = (uint32_t) &__ICFEDIT_region_RAM_start__; #elif defined ( __GNUC__ ) extern uint32_t __data_start__; volatile uint32_t ram_start = (uint32_t) &__data_start__; #endif app_ram_base = ram_start; uint32_t err_code = NRF_SUCCESS; uint32_t sd_err_code; uint32_t cfg_id; ble_cfg_t cfg; uint8_t gap_device_name_value[BLE_GAP_DEVNAME_MAX_LEN]; cfg.gap_cfg.device_name_cfg.p_value = gap_device_name_value; cfg.gap_cfg.device_name_cfg.max_len = BLE_GAP_DEVNAME_MAX_LEN; ble_cfg_t * p_cfg = &cfg; err_code = ble_cfg_set_req_dec(p_rx_buf, rx_buf_len, &cfg_id, &p_cfg); SER_ASSERT(err_code == NRF_SUCCESS, err_code); sd_err_code = sd_ble_cfg_set(cfg_id,p_cfg, app_ram_base); err_code = ble_cfg_set_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len); SER_ASSERT(err_code == NRF_SUCCESS, err_code); return err_code; } #endif