
s112_nrf5x migration document

Introduction to the s112_nrf5x migration document

About the document

This document describes how to migrate to new versions of the s112_nrf52 SoftDevices. The s112_nrf52 release notes should be read in
conjunction with this document.

For each version, we have the following sections:

"Required changes" describes how an application would have used the previous version of the SoftDevice and how it must now use
this version for the given change.
"New functionality" describes how to use new features and functionality offered by this version of the SoftDevice. Not all new Note:
functionality may be covered; the release notes will contain a full list of new features and functionality.

Each section describes how to migrate to a given version from the previous version. If you are migrating to the current version from the
previous version, follow the instructions in that section. To migrate between versions that are more than one version apart, follow the
migration steps for all intermediate versions in order.

Example: To migrate from version 5.0.0 to version 5.2.0, first follow the instructions to migrate to version 5.1.0 from version 5.0.0, then
follow the instructions to migrate to version 5.2.0 from version 5.1.0.

Copyright (c) Nordic Semiconductor ASA. All rights reserved.

s112_nrf52_6.0.0
This section describes how to migrate to s112_nrf52_6.0.0 from s132_nrf52_5.1.0 (which is API compatible with s112_nrf52810_5.1.0).

Notes:

s112_nrf52_6.0.0 has changed the API compared to s132_nrf52_5.1.0 which requires applications to be recompiled.
s112_nrf52_6.0.0 includes some features that are not Bluetooth qualified. For more information, see the release notes.

New functionality

Write to SoftDevice protected registers

 A new API, sd_protected_register_write(), has been added to give the application the possibility to write to a register that is write-
protected by the SoftDevice. A write-protected peripheral shall only be accessed through the SoftDevice API when the SoftDevice is enabled.

The new API supports writing to the Block Protection () peripheral.BPROT The application can use sd_protected_register_write() ins
tead of sd_flash_protect() to set the flash protection configuration registers.

Usage

/* Old API: */
errcode = sd_flash_protect(value0, value1, value2, value3)

/* New API: */
errcode = sd_protected_register_write(&(NRF_BPROT->CONFIG0), value0)
errcode = sd_protected_register_write(&(NRF_BPROT->CONFIG1), value1)
errcode = sd_protected_register_write(&(NRF_BPROT->CONFIG2), value2)
errcode = sd_protected_register_write(&(NRF_BPROT->CONFIG3), value3)

Required changes

Updated advertiser API

 sd_ble_gap_adv_data_set() has been removed.

A new API, , has been added with the following functionalities:sd_ble_gap_adv_set_configure()

Configuring and updating the advertising parameters of an advertising set.
Setting, clearing, or updating advertising and scan response data.

Note: The advertising data must be kept alive in memory until advertising is terminated. Not doing so will lead to undefined behavior.
Note: Updating advertising data while advertising can only be done by providing new advertising data buffers.

Configuring and updating an advertising set

 is a term introduced in Bluetooth Core Specification v5.0.Advertising Set

Each advertising set is identified by an advertising handle. To configure a new advertising set and obtain a new advertising handle, sd_ble_
 should be called with a pointer pointing to an advertising handle setgap_adv_set_configure() p_adv_handle to BLE_GAP_ADV_SET_

HANDLE_NOT_SET.

To update an existing advertising set, with a previously configured advertising sd_ble_gap_adv_set_configure() should be called
handle.

Note: Currently only one advertising set can be configured in the SoftDevice.

Configuring advertising parameters for an advertising set

Setting advertising parameters has been moved from to .sd_ble_gap_adv_start() sd_ble_gap_adv_set_configure()

 has changed:The content of ble_gap_adv_params_t

ble_gap_adv_params_t::type has been removed.
A new parameter, of the new type properties, ble_gap_adv_properties_t has been added.

The advertising type must now be set through _ble_gap_adv_properties t::type.
.The advertising type definitions () have changed, and new types have been addedBLE_GAP_ADV_TYPES

The mapping from old to new advertising types is shown below. These advertising types are referred to as legacy
advertising types:

 type = BLE_GAP_ADV_TYPE_ADV_IND -> properties.type =
BLE_GAP_ADV_TYPE_CONNECTABLE_SCANNABLE_UNDIRECTED

 BLE_GAP_ADV_TYPE_ADV_DIRECT_INDtype = -> properties.type =
BLE_GAP_ADV_TYPE_CONNECTABLE_NONSCANNABLE_DIRECTED_HIGH_DUTY_CYCLE or BLE_GAP_ADV_TYP
E_CONNECTABLE_NONSCANNABLE_DIRECTED

 BLE_GAP_ADV_TYPE_ADV_SCAN_INDtype = -> properties.type = BLE_GAP_ADV_TYPE_NONCONN
ECTABLE_SCANNABLE_UNDIRECTED

 BLE_GAP_ADV_TYPE_ADV_NONCONN_INDtype = -> properties.type =
BLE_GAP_ADV_TYPE_NONCONNECTABLE_NONSCANNABLE_UNDIRECTED

 fpble_gap_adv_params_t:: has been renamed .filter_policyble_gap_adv_params_t::
has been renamed timeoutble_gap_adv_params_t:: ble_gap_adv_params_t::duration and is now measured in 10 ms

.units
ble_gap_adv_params_t::channel_mask type has been changed from to the new type ble_gap_adv_ch_mask_t ble_gap_

.ch_mask_t
Note: At least one of the primary channels that is channel index 37-39 must be set to 0.
Note: Masking away secondary channels is currently not supported.
The mapping from old type ble_gap_adv_ch_mask_t to the new type ble_gap_ch_mask_t is shown below:

 channel_mask.ch_37_off = 1 -> = 0x2000000000channel_mask
 channel_mask.ch_38_off = 1 -> = 0x4000000000channel_mask
 channel_mask.ch_39_off = 1 -> = 0x8000000000channel_mask

 has several new parameters:ble_gap_adv_params_t
 has been added to allow the application to advertise for a given number of advertising events.max_adv_evts

 scan_req_notification flag has been added to give the application the possibility to receive events of type ble_gap_e
. This replaces vt_scan_req_report_t BLE_GAP_OPT_SCAN_REQ_REPORT.

 and allow the application to select PHYs primary_phy secondary_phy for primary and secondary advertising channels.
 should be set to or for legacy advertising types. primary_phy BLE_GAP_PHY_AUTO BLE_GAP_PHY_1MBPS For

 it should be set to or extended advertising types, BLE_GAP_PHY_1MBPS BLE_GAP_PHY_CODED if supported by the
.SoftDevice

 can be ignored for legacy advertising. For extended advertising types, it should be set to secondary_phy BLE_GA
 or .P_PHY_1MBPS, BLE_GAP_PHY_2MBPS, BLE_GAP_PHY_CODED if supported by the SoftDevice

 has been added to allow the application to choose the set ID of an extended advertiserset_id .

Other Advertising API changes

BLE_GAP_TIMEOUT_SRC_ADVERTISING has been removed.
A new event, structure BLE_GAP_EVT_ADVERTISING_SET_TERMINATED with ble_gap_evt_adv_set_terminated_t,
has been introduced to let the application know when and why an advertising set has terminated.

A new configuration parameter, ,ble_gap_cfg_role_count_t::adv_set_count has been introduced to set the maximum
number of advertising sets.
Note: The maximum number of advertising sets is supported .BLE_GAP_ADV_SET_COUNT_MAX

 BLE_GAP_ADV_MAX_SIZE has been replaced with BLE_GAP_ADV_SET_DATA_SIZE_MAX.
 now includesble_gap_evt_connected_t and adv_handle adv_data of the new type ble_gap_adv_data_t These are .

set when the device connects as a peripheral.
 now includes .ble_gap_evt_scan_req_report_t adv_handle

 has been removed.BLE_GAP_OPT_SCAN_REQ_REPORT
 has been changed from 180 to 18000 as is BLE_GAP_ADV_TIMEOUT_LIMITED_MAX sd_ble_gap_adv_params_t::duration

now measured in 10 ms units.

Usage

static uint8_t raw_adv_data_buffer1[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static uint8_t raw_scan_rsp_data_buffer1[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static ble_gap_adv_data_t adv_data1 = {.adv_data.p_data =

raw_adv_data_buffer1, .adv_data.len = sizeof
(raw_adv_data_buffer1),
 .scan_rsp_data.p_data =
raw_scan_rsp_data_buffer1, .scan_rsp_data.len = sizeof
(raw_scan_rsp_data_buffer1)};

/* A second advertising data buffer for later updating advertising data
while advertising */
static uint8_t raw_adv_data_buffer2[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static uint8_t raw_scan_rsp_data_buffer2[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static ble_gap_adv_data_t adv_data2 = {.adv_data.p_data =
raw_adv_data_buffer2, .adv_data.len = sizeof
(raw_adv_data_buffer2),
 .scan_rsp_data.p_data =
raw_scan_rsp_data_buffer2, .scan_rsp_data.len = sizeof
(raw_scan_rsp_data_buffer2)};

int main(void)
{
 uint8_t adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET;
 ble_gap_adv_params_t adv_params = {.properties={.
type=BLE_GAP_ADV_TYPE_CONNECTABLE_SCANNABLE_UNDIRECTED},
 .interval =
BLE_GAP_ADV_INTERVAL_MAX,
 .duration =
BLE_GAP_ADV_TIMEOUT_LIMITED_MAX,
 .channel_mask = {0}, /*
Advertising on all the primary channels */
 .max_adv_evts = 0,
 .filter_policy =
BLE_GAP_ADV_FP_ANY,
 .primary_phy =
BLE_GAP_PHY_AUTO,
 .scan_req_notification = 1
 };
 /* Enable the BLE Stack */
 sd_ble_enable(...);

 [...]
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data1, &adv_params);
 /* Start advertising */
 sd_ble_gap_adv_start(adv_handle, BLE_CONN_CFG_TAG_DEFAULT);

 [...]
 /* Update advertising data while advertising */
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data2, NULL);

 [...]
 /* Stop advertising */
 sd_ble_gap_adv_stop(adv_handle);

 [...]
}

Updated RSSI API

The RSSI API has been changed so that the SoftDevice can provide the application with the channel index on which the reported RSSI
measurements are made.

sd_ble_gap_rssi_get() takes an additional parameter . For this parameter, provide a pointer to a location where p_ch_index
the channel index for the RSSI measurement should be stored.
The event structure for the event has a new parameter BLE_GAP_EVT_RSSI_CHANGED ble_gap_evt_rssi_changed_t::

. This is the Data Channel Index (0-36) on which the RSSI is measured.ch_index
The event structure for the event has a new parameter .BLE_GAP_EVT_ADV_REPORT ble_gap_evt_adv_report_t::ch_index
This is the Channel Index (0-39) on which the last advertising packet is received. The corresponding measured RSSI for this packet
can be read from .ble_gap_evt_adv_report_t::rssi

TX power API

The TX power API now supports setting individual transmit power for each link or role.

sd_ble_gap_tx_power_set() takes two new parameters, and in addition to . For available roles and role ,handle tx_power
TX power values, see ble_gap.h.

Updated Flash API

sd_flash_write() now triggers a HardFault if the application tries to write to a protected page. is returned if NRF_ERROR_FORBIDDEN
the application tries to write to a page outside application flash area.

sd_flash_page_erase() now triggers a HardFault if the application tries to erase a protected page. is returned NRF_ERROR_FORBIDDEN
if the application tries to erase a page outside application flash area.

	s112_nrf5x migration document

