/** * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_app_template_main main.c * @{ * @ingroup ble_sdk_app_template * @brief Template project main file. * * This file contains a template for creating a new application. It has the code necessary to wakeup * from button, advertise, get a connection restart advertising on disconnect and if no new * connection created go back to system-off mode. * It can easily be used as a starting point for creating a new application, the comments identified * with 'YOUR_JOB' indicates where and how you can customize. */ #include #include #include "boards.h" #include "nordic_common.h" #include "sdk_config.h" #include "nrf_sdm.h" #include "mem_manager.h" #include "app_scheduler.h" #include "app_timer.h" #include "app_button.h" #include "nrf_delay.h" #include "iot_defines.h" #include "iot_common.h" #include "ipv6_api.h" #include "icmp6_api.h" #include "udp_api.h" #include "iot_timer.h" #include "coap_api.h" #include "coap_observe_api.h" #include "ipv6_medium.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" /** Modify SERVER_IPV6_ADDRESS according to your setup. * The address provided below is a place holder. */ #define SERVER_IPV6_ADDRESS 0x20, 0x01, 0x0D, 0xB8, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 /**< IPv6 address of the server node. */ // The CoAP default port number 5683 MUST be supported by a server. #define LOCAL_PORT_NUM 5683 /**< CoAP default port number. */ #define REMOTE_PORT_NUM 5683 /**< Remote port number. */ #define COAP_MESSAGE_TYPE COAP_TYPE_NON /**< Message type for all outgoing CoAP requests. */ #define SCHED_MAX_EVENT_DATA_SIZE 16 /**< Maximum size of scheduler events. */ #define SCHED_QUEUE_SIZE 192 /**< Maximum number of events in the scheduler queue. */ #define LED_ONE BSP_LED_0_MASK #define LED_TWO BSP_LED_1_MASK #define LED_THREE BSP_LED_2_MASK #define LED_FOUR BSP_LED_3_MASK #define BUTTON_ONE BSP_BUTTON_0 #define BUTTON_TWO BSP_BUTTON_1 #ifdef COMMISSIONING_ENABLED #define ERASE_BUTTON_PIN_NO BSP_BUTTON_3 /**< Button used to erase commissioning settings. */ #endif // COMMISSIONING_ENABLED #define STATUS_OFF 0x30 #define STATUS_ON 0x31 #define BUTTON_DETECTION_DELAY APP_TIMER_TICKS(50) #define LED_BLINK_INTERVAL_MS 300 /**< LED blinking interval. */ #define COAP_TICK_INTERVAL_MS 1000 /**< Interval between periodic callbacks to CoAP module. */ #define APP_RTR_SOLICITATION_DELAY 500 /**< Time before host sends an initial solicitation in ms. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define MAX_LENGTH_FILENAME 128 /**< Max length of filename to copy for the debug error handler. */ #define APP_ENABLE_LOGS 1 /**< Enable logs in the application. */ #if (APP_ENABLE_LOGS == 1) #define APPL_LOG NRF_LOG_INFO #define APPL_DUMP NRF_LOG_RAW_HEXDUMP_INFO #define APPL_ADDR IPV6_ADDRESS_LOG #else // APP_ENABLE_LOGS #define APPL_LOG(...) #define APPL_DUMP(...) #define APPL_ADDR(...) #endif // APP_ENABLE_LOGS typedef enum { LEDS_INACTIVE = 0, LEDS_CONNECTABLE_MODE, LEDS_IPV6_IF_DOWN, LEDS_IPV6_IF_UP, } display_connection_state_t; static ipv6_medium_instance_t m_ipv6_medium; eui64_t eui64_local_iid; /**< Local EUI64 value that is used as the IID for*/ static iot_interface_t * mp_interface; static const ipv6_addr_t local_routers_multicast_addr = {{0xFF, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02}}; /**< Multi-cast address of all routers on the local network segment. */ APP_TIMER_DEF(m_iot_timer_tick_src_id); /**< App timer instance used to update the IoT timer wall clock. */ static display_connection_state_t m_disp_state = LEDS_INACTIVE; /**< Board LED display state. */ static const char m_uri_part_lights[] = "lights"; static const char m_uri_part_led3[] = "led3"; static uint16_t m_led3_observe_token; static uint16_t m_global_token_count = 0x0102; #ifdef COMMISSIONING_ENABLED static bool m_power_off_on_failure = false; static bool m_identity_mode_active; #endif // COMMISSIONING_ENABLED /**@brief Callback function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for the Event Scheduler initialization. */ static void scheduler_init(void) { APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE); } /**@brief Function for the LEDs initialization. * * @details Initializes all LEDs used by this application. */ static void leds_init(void) { // Configure LEDs. LEDS_CONFIGURE((LED_ONE | LED_TWO | LED_THREE | LED_FOUR)); // Turn LEDs off. LEDS_OFF((LED_ONE | LED_TWO | LED_THREE | LED_FOUR)); } /**@brief Timer callback used for controlling board LEDs to represent application state. * */ static void blink_timeout_handler(iot_timer_time_in_ms_t wall_clock_value) { UNUSED_PARAMETER(wall_clock_value); #ifdef COMMISSIONING_ENABLED static bool id_mode_previously_enabled; if (m_identity_mode_active == false) { #endif // COMMISSIONING_ENABLED switch (m_disp_state) { case LEDS_INACTIVE: { LEDS_OFF((LED_ONE | LED_TWO)); LEDS_OFF((LED_THREE | LED_FOUR)); break; } case LEDS_CONNECTABLE_MODE: { LEDS_INVERT(LED_ONE); LEDS_OFF(LED_TWO); break; } case LEDS_IPV6_IF_DOWN: { LEDS_ON(LED_ONE); LEDS_INVERT(LED_TWO); break; } case LEDS_IPV6_IF_UP: { LEDS_OFF(LED_ONE); LEDS_ON(LED_TWO); break; } default: { break; } } #ifdef COMMISSIONING_ENABLED } #endif // COMMISSIONING_ENABLED #ifdef COMMISSIONING_ENABLED if ((id_mode_previously_enabled == false) && (m_identity_mode_active == true)) { LEDS_OFF(LED_THREE | LED_FOUR); } if ((id_mode_previously_enabled == true) && (m_identity_mode_active == true)) { LEDS_INVERT(LED_THREE | LED_FOUR); } if ((id_mode_previously_enabled == true) && (m_identity_mode_active == false)) { LEDS_OFF(LED_THREE | LED_FOUR); } id_mode_previously_enabled = m_identity_mode_active; #endif // COMMISSIONING_ENABLED } /**@brief Function for updating the wall clock of the IoT Timer module. */ static void iot_timer_tick_callback(void * p_context) { UNUSED_VARIABLE(p_context); uint32_t err_code = iot_timer_update(); APP_ERROR_CHECK(err_code); } /**@brief Function for the Timer initialization. * * @details Initializes the timer module. */ static void timers_init(void) { uint32_t err_code; // Initialize timer module. APP_ERROR_CHECK(app_timer_init()); // Create a sys timer. err_code = app_timer_create(&m_iot_timer_tick_src_id, APP_TIMER_MODE_REPEATED, iot_timer_tick_callback); APP_ERROR_CHECK(err_code); } /**@brief Function for catering CoAP module with periodic time ticks. */ static void app_coap_time_tick(iot_timer_time_in_ms_t wall_clock_value) { (void)coap_time_tick(); // Check if any of the observable has reached max-age timeout. coap_observable_t * p_observable = NULL; uint32_t handle; while (coap_observe_client_next_get(&p_observable, &handle, p_observable) == NRF_SUCCESS) { p_observable->max_age--; // Max age timeout if (p_observable->max_age == 0) { // unregister observable resource. uint32_t err_code = coap_observe_client_unregister(handle); APP_ERROR_CHECK(err_code); LEDS_OFF(LED_FOUR); } } } /**@brief Function for initializing the IoT Timer. */ static void iot_timer_init(void) { uint32_t err_code; static const iot_timer_client_t list_of_clients[] = { {blink_timeout_handler, LED_BLINK_INTERVAL_MS}, {app_coap_time_tick, COAP_TICK_INTERVAL_MS}, #ifdef COMMISSIONING_ENABLED {commissioning_time_tick, SEC_TO_MILLISEC(COMMISSIONING_TICK_INTERVAL_SEC)} #endif // COMMISSIONING_ENABLED }; // The list of IoT Timer clients is declared as a constant. static const iot_timer_clients_list_t iot_timer_clients = { (sizeof(list_of_clients) / sizeof(iot_timer_client_t)), &(list_of_clients[0]), }; // Passing the list of clients to the IoT Timer module. err_code = iot_timer_client_list_set(&iot_timer_clients); APP_ERROR_CHECK(err_code); // Starting the app timer instance that is the tick source for the IoT Timer. err_code = app_timer_start(m_iot_timer_tick_src_id, APP_TIMER_TICKS(IOT_TIMER_RESOLUTION_IN_MS), NULL); APP_ERROR_CHECK(err_code); } static void coap_response_handler(uint32_t status, void * arg, coap_message_t * p_response) { if (status == NRF_SUCCESS) { if (coap_message_opt_present(p_response, COAP_OPT_OBSERVE) == NRF_SUCCESS) { // It is an notification or result of a GET response LEDS_ON(LED_FOUR); } else { LEDS_OFF(LED_FOUR); } APPL_LOG("Response Code : %d", p_response->header.code); if (p_response->header.code == COAP_CODE_205_CONTENT) { switch (p_response->p_payload[0]) { case STATUS_ON: LEDS_ON(LED_THREE); break; case STATUS_OFF: LEDS_OFF(LED_THREE); break; default: break; } } } // Upon CON response. Reply with ACK. if (p_response->header.type == COAP_TYPE_CON) { coap_message_conf_t ack_config; memset(&ack_config, 0x00, sizeof(coap_message_conf_t)); ack_config.type = COAP_TYPE_ACK; ack_config.code = COAP_CODE_EMPTY_MESSAGE; // PIGGY BACKED RESPONSE ack_config.code = COAP_CODE_205_CONTENT; // Copy message ID. ack_config.id = p_response->header.id; // Set local port number to use. ack_config.port.port_number = LOCAL_PORT_NUM; // Copy token. memcpy(&ack_config.token[0], &p_response->token[0], p_response->header.token_len); // Copy token length. ack_config.token_len = p_response->header.token_len; coap_message_t * p_ack; uint32_t err_code = coap_message_new(&p_ack, &ack_config); APP_ERROR_CHECK(err_code); err_code = coap_message_remote_addr_set(p_ack, &p_response->remote); APP_ERROR_CHECK(err_code); uint32_t msg_handle; err_code = coap_message_send(&msg_handle, p_ack); APP_ERROR_CHECK(err_code); err_code = coap_message_delete(p_ack); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling button events. * * @param[in] pin_no The pin number of the button pressed. * @param[in] button_action The action performed on button. */ static void button_event_handler(uint8_t pin_no, uint8_t button_action) { #ifdef COMMISSIONING_ENABLED if ((button_action == APP_BUTTON_PUSH) && (pin_no == ERASE_BUTTON_PIN_NO)) { APPL_LOG("Erasing all commissioning settings from persistent storage..."); commissioning_settings_clear(); return; } #endif // COMMISSIONING_ENABLED if (mp_interface == NULL) { return; } uint32_t err_code; if (button_action == APP_BUTTON_PUSH) { coap_message_t * p_request = NULL; switch (pin_no) { case BUTTON_ONE: { coap_message_conf_t message_conf; memset(&message_conf, 0x00, sizeof(message_conf)); coap_remote_t remote_device; message_conf.type = COAP_MESSAGE_TYPE; message_conf.code = COAP_CODE_GET; message_conf.port.port_number = LOCAL_PORT_NUM; message_conf.id = 0; // Set token. m_led3_observe_token = m_global_token_count; (void)uint16_encode(HTONS(m_global_token_count), message_conf.token); m_global_token_count++; message_conf.token_len = 2; message_conf.response_callback = coap_response_handler; err_code = coap_message_new(&p_request, &message_conf); APP_ERROR_CHECK(err_code); memcpy(&remote_device.addr[0], (uint8_t []){SERVER_IPV6_ADDRESS}, IPV6_ADDR_SIZE); remote_device.port_number = REMOTE_PORT_NUM; err_code = coap_message_remote_addr_set(p_request, &remote_device); APP_ERROR_CHECK(err_code); // Subscribe to the resource. err_code = coap_message_opt_uint_add(p_request, COAP_OPT_OBSERVE, 0); APP_ERROR_CHECK(err_code); err_code = coap_message_opt_str_add(p_request, COAP_OPT_URI_PATH, (uint8_t *)m_uri_part_lights, strlen(m_uri_part_lights)); APP_ERROR_CHECK(err_code); err_code = coap_message_opt_str_add(p_request, COAP_OPT_URI_PATH, (uint8_t *)m_uri_part_led3, strlen(m_uri_part_led3)); APP_ERROR_CHECK(err_code); err_code = coap_message_opt_uint_add(p_request, COAP_OPT_ACCEPT, 0); APP_ERROR_CHECK(err_code); break; } case BUTTON_TWO: { coap_message_conf_t message_conf; memset(&message_conf, 0x00, sizeof(message_conf)); coap_remote_t remote_device; message_conf.type = COAP_MESSAGE_TYPE; message_conf.code = COAP_CODE_GET; message_conf.port.port_number = LOCAL_PORT_NUM; message_conf.id = 0; // Re-use the original token for the observe. (void)uint16_encode(HTONS(m_led3_observe_token), message_conf.token); message_conf.token_len = 2; message_conf.response_callback = coap_response_handler; err_code = coap_message_new(&p_request, &message_conf); APP_ERROR_CHECK(err_code); memcpy(&remote_device.addr[0], (uint8_t []){SERVER_IPV6_ADDRESS}, IPV6_ADDR_SIZE); remote_device.port_number = REMOTE_PORT_NUM; err_code = coap_message_remote_addr_set(p_request, &remote_device); APP_ERROR_CHECK(err_code); // Unsubscribe to the resource. err_code = coap_message_opt_uint_add(p_request, COAP_OPT_OBSERVE, 1); APP_ERROR_CHECK(err_code); // Copy the original options (draft-ietf-core-observe 3.6). err_code = coap_message_opt_str_add(p_request, COAP_OPT_URI_PATH, (uint8_t *)m_uri_part_lights, strlen(m_uri_part_lights)); APP_ERROR_CHECK(err_code); err_code = coap_message_opt_str_add(p_request, COAP_OPT_URI_PATH, (uint8_t *)m_uri_part_led3, strlen(m_uri_part_led3)); APP_ERROR_CHECK(err_code); err_code = coap_message_opt_uint_add(p_request, COAP_OPT_ACCEPT, 0); APP_ERROR_CHECK(err_code); break; } default: break; } // TODO: If there is no more room for subscribing to observable resources, we should // remove the observable option before sending the message. if (p_request != NULL) { uint32_t msg_handle; err_code = coap_message_send(&msg_handle, p_request); if (err_code != NRF_SUCCESS) { APPL_LOG("CoAP Message skipped, error code = 0x%08lX.", err_code); } err_code = coap_message_delete(p_request); APP_ERROR_CHECK(err_code); } } } /**@brief Function for the Button initialization. * * @details Initializes all Buttons used by this application. */ static void buttons_init(void) { uint32_t err_code; static app_button_cfg_t buttons[] = { {BUTTON_ONE, false, BUTTON_PULL, button_event_handler}, {BUTTON_TWO, false, BUTTON_PULL, button_event_handler}, #ifdef COMMISSIONING_ENABLED {ERASE_BUTTON_PIN_NO, false, BUTTON_PULL, button_event_handler} #endif // COMMISSIONING_ENABLED }; err_code = app_button_init(buttons, ARRAY_SIZE(buttons), BUTTON_DETECTION_DELAY); APP_ERROR_CHECK(err_code); err_code = app_button_enable(); APP_ERROR_CHECK(err_code); } static void ip_app_handler(iot_interface_t * p_interface, ipv6_event_t * p_event) { uint32_t err_code; ipv6_addr_t src_addr; APPL_LOG("Got IP Application Handler Event on interface 0x%p", p_interface); switch (p_event->event_id) { case IPV6_EVT_INTERFACE_ADD: #ifdef COMMISSIONING_ENABLED commissioning_joining_mode_timer_ctrl(JOINING_MODE_TIMER_STOP_RESET); #endif // COMMISSIONING_ENABLED APPL_LOG("New interface added!"); mp_interface = p_interface; m_disp_state = LEDS_IPV6_IF_UP; APPL_LOG("Sending Router Solicitation to all routers!"); // Create Link Local addresses IPV6_CREATE_LINK_LOCAL_FROM_EUI64(&src_addr, p_interface->local_addr.identifier); // Delay first solicitation due to possible restriction on other side. nrf_delay_ms(APP_RTR_SOLICITATION_DELAY); // Send Router Solicitation to all routers. err_code = icmp6_rs_send(p_interface, &src_addr, &local_routers_multicast_addr); APP_ERROR_CHECK(err_code); break; case IPV6_EVT_INTERFACE_DELETE: #ifdef COMMISSIONING_ENABLED commissioning_joining_mode_timer_ctrl(JOINING_MODE_TIMER_START); #endif // COMMISSIONING_ENABLED APPL_LOG("Interface removed!"); mp_interface = NULL; m_disp_state = LEDS_IPV6_IF_DOWN; break; case IPV6_EVT_INTERFACE_RX_DATA: APPL_LOG("Got unsupported protocol data!"); break; default: //Unknown event. Should not happen. break; } } /**@brief ICMP6 module event handler. * * @details Callback registered with the ICMP6 module to receive asynchronous events from * the module, if the ICMP6_ENABLE_ALL_MESSAGES_TO_APPLICATION constant is not zero * or the ICMP6_ENABLE_ND6_MESSAGES_TO_APPLICATION constant is not zero. */ uint32_t icmp6_handler(iot_interface_t * p_interface, ipv6_header_t * p_ip_header, icmp6_header_t * p_icmp_header, uint32_t process_result, iot_pbuffer_t * p_rx_packet) { APPL_LOG("Got ICMP6 Application Handler Event on interface 0x%p", p_interface); APPL_LOG("Source IPv6 Address: "); APPL_ADDR(p_ip_header->srcaddr); APPL_LOG("Destination IPv6 Address: "); APPL_ADDR(p_ip_header->destaddr); APPL_LOG("Process result = 0x%08lx", process_result); switch (p_icmp_header->type) { case ICMP6_TYPE_DESTINATION_UNREACHABLE: APPL_LOG("ICMP6 Message Type = Destination Unreachable Error"); break; case ICMP6_TYPE_PACKET_TOO_LONG: APPL_LOG("ICMP6 Message Type = Packet Too Long Error"); break; case ICMP6_TYPE_TIME_EXCEED: APPL_LOG("ICMP6 Message Type = Time Exceed Error"); break; case ICMP6_TYPE_PARAMETER_PROBLEM: APPL_LOG("ICMP6 Message Type = Parameter Problem Error"); break; case ICMP6_TYPE_ECHO_REQUEST: APPL_LOG("ICMP6 Message Type = Echo Request"); break; case ICMP6_TYPE_ECHO_REPLY: APPL_LOG("ICMP6 Message Type = Echo Reply"); break; case ICMP6_TYPE_ROUTER_SOLICITATION: APPL_LOG("ICMP6 Message Type = Router Solicitation"); break; case ICMP6_TYPE_ROUTER_ADVERTISEMENT: APPL_LOG("ICMP6 Message Type = Router Advertisement"); break; case ICMP6_TYPE_NEIGHBOR_SOLICITATION: APPL_LOG("ICMP6 Message Type = Neighbor Solicitation"); break; case ICMP6_TYPE_NEIGHBOR_ADVERTISEMENT: APPL_LOG("ICMP6 Message Type = Neighbor Advertisement"); break; default: break; } return NRF_SUCCESS; } /**@brief Function for initializing IP stack. * * @details Initialize the IP Stack. */ static void ip_stack_init(void) { uint32_t err_code; ipv6_init_t init_param; err_code = ipv6_medium_eui64_get(m_ipv6_medium.ipv6_medium_instance_id, &eui64_local_iid); APP_ERROR_CHECK(err_code); init_param.p_eui64 = &eui64_local_iid; init_param.event_handler = ip_app_handler; err_code = ipv6_init(&init_param); APP_ERROR_CHECK(err_code); err_code = icmp6_receive_register(icmp6_handler); APP_ERROR_CHECK(err_code); } static void coap_error_handler(uint32_t error_code, coap_message_t * p_message) { // If any response fill the p_response with a appropriate response message. } /**@brief Function for starting connectable mode. */ static void connectable_mode_enter(void) { uint32_t err_code = ipv6_medium_connectable_mode_enter(m_ipv6_medium.ipv6_medium_instance_id); APP_ERROR_CHECK(err_code); APPL_LOG("Physical layer in connectable mode."); m_disp_state = LEDS_CONNECTABLE_MODE; } static void on_ipv6_medium_evt(ipv6_medium_evt_t * p_ipv6_medium_evt) { switch (p_ipv6_medium_evt->ipv6_medium_evt_id) { case IPV6_MEDIUM_EVT_CONN_UP: { APPL_LOG("Physical layer: connected."); m_disp_state = LEDS_IPV6_IF_DOWN; break; } case IPV6_MEDIUM_EVT_CONN_DOWN: { APPL_LOG("Physical layer: disconnected."); connectable_mode_enter(); break; } default: { break; } } } static void on_ipv6_medium_error(ipv6_medium_error_t * p_ipv6_medium_error) { // Do something. } #ifdef COMMISSIONING_ENABLED void commissioning_id_mode_cb(mode_control_cmd_t control_command) { switch (control_command) { case CMD_IDENTITY_MODE_ENTER: { LEDS_OFF(LED_THREE | LED_FOUR); m_identity_mode_active = true; break; } case CMD_IDENTITY_MODE_EXIT: { m_identity_mode_active = false; LEDS_OFF((LED_THREE | LED_FOUR)); break; } default: { break; } } } void commissioning_power_off_cb(bool power_off_on_failure) { m_power_off_on_failure = power_off_on_failure; APPL_LOG("Commissioning: do power_off on failure: %s.", m_power_off_on_failure ? "true" : "false"); } #endif // COMMISSIONING_ENABLED /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for application main entry. */ int main(void) { uint32_t err_code; // Initialize log_init(); scheduler_init(); leds_init(); timers_init(); buttons_init(); static ipv6_medium_init_params_t ipv6_medium_init_params; memset(&ipv6_medium_init_params, 0x00, sizeof(ipv6_medium_init_params)); ipv6_medium_init_params.ipv6_medium_evt_handler = on_ipv6_medium_evt; ipv6_medium_init_params.ipv6_medium_error_handler = on_ipv6_medium_error; #ifdef COMMISSIONING_ENABLED ipv6_medium_init_params.commissioning_id_mode_cb = commissioning_id_mode_cb; ipv6_medium_init_params.commissioning_power_off_cb = commissioning_power_off_cb; #endif // COMMISSIONING_ENABLED err_code = ipv6_medium_init(&ipv6_medium_init_params, IPV6_MEDIUM_ID_BLE, &m_ipv6_medium); APP_ERROR_CHECK(err_code); eui48_t ipv6_medium_eui48; err_code = ipv6_medium_eui48_get(m_ipv6_medium.ipv6_medium_instance_id, &ipv6_medium_eui48); ipv6_medium_eui48.identifier[EUI_48_SIZE - 1] = 0x00; err_code = ipv6_medium_eui48_set(m_ipv6_medium.ipv6_medium_instance_id, &ipv6_medium_eui48); APP_ERROR_CHECK(err_code); ip_stack_init(); coap_port_t local_port_list[COAP_PORT_COUNT] = { {.port_number = LOCAL_PORT_NUM} }; coap_transport_init_t port_list; port_list.p_port_table = &local_port_list[0]; err_code = coap_init(71, &port_list); APP_ERROR_CHECK(err_code); err_code = coap_error_handler_register(coap_error_handler); APP_ERROR_CHECK(err_code); iot_timer_init(); APPL_LOG("Application started."); // Start execution connectable_mode_enter(); // Enter main loop for (;;) { app_sched_execute(); if (NRF_LOG_PROCESS() == false) { // Sleep waiting for an application event. err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); } } } /** * @} */