/** * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_app_template_main main.c * @{ * @ingroup ble_sdk_app_template * @brief Template project main file. * * This file contains a template for creating a new application. It has the code necessary to wakeup * from button, advertise, get a connection restart advertising on disconnect and if no new * connection created go back to system-off mode. * It can easily be used as a starting point for creating a new application, the comments identified * with 'YOUR_JOB' indicates where and how you can customize. */ #include #include #include "boards.h" #include "nordic_common.h" #include "sdk_config.h" #include "nrf_sdm.h" #include "mem_manager.h" #include "app_scheduler.h" #include "app_timer.h" #include "app_button.h" #include "nrf_delay.h" #include "iot_common.h" #include "ipv6_api.h" #include "icmp6_api.h" #include "udp_api.h" #include "iot_timer.h" #include "coap_api.h" #include "coap_option.h" #include "coap_block.h" #include "ipv6_medium.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #define LOCAL_PORT_NUM 5683 /**< CoAP default port number. */ #define SCHED_MAX_EVENT_DATA_SIZE 16 /**< Maximum size of scheduler events. */ #define SCHED_QUEUE_SIZE 192 /**< Maximum number of events in the scheduler queue. */ #define LED_ONE BSP_LED_0_MASK #define LED_TWO BSP_LED_1_MASK #define LED_THREE BSP_LED_2_MASK #define LED_FOUR BSP_LED_3_MASK #ifdef COMMISSIONING_ENABLED #define ERASE_BUTTON_PIN_NO BSP_BUTTON_3 /**< Button used to erase commissioning settings. */ #endif // COMMISSIONING_ENABLED #define COMMAND_OFF 0x30 #define COMMAND_ON 0x31 #define COMMAND_TOGGLE 0x32 #define LED_BLINK_INTERVAL_MS 300 /**< LED blinking interval. */ #define COAP_TICK_INTERVAL_MS 1000 /**< Interval between periodic callbacks to CoAP module. */ #define COAP_MINIMUM_BLOCK_SIZE 16 /**< Minimum block size allowed by CoAP. */ #define COAP_PREFERRED_BLOCK_SIZE 1024 /**< Preferred coap block size in bytes. */ #define APP_RTR_SOLICITATION_DELAY 500 /**< Time before host sends an initial solicitation in ms. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define MAX_LENGTH_FILENAME 128 /**< Max length of filename to copy for the debug error handler. */ #define APP_ENABLE_LOGS 1 /**< Enable logs in the application. */ #if (APP_ENABLE_LOGS == 1) #define APPL_LOG NRF_LOG_INFO #define APPL_DUMP NRF_LOG_RAW_HEXDUMP_INFO #define APPL_ADDR IPV6_ADDRESS_LOG #else // APP_ENABLE_LOGS #define APPL_LOG(...) #define APPL_DUMP(...) #define APPL_ADDR(...) #endif // APP_ENABLE_LOGS typedef enum { LEDS_INACTIVE = 0, LEDS_CONNECTABLE_MODE, LEDS_IPV6_IF_DOWN, LEDS_IPV6_IF_UP, } display_state_t; static ipv6_medium_instance_t m_ipv6_medium; eui64_t eui64_local_iid; /**< Local EUI64 value that is used as the IID for*/ static const ipv6_addr_t local_routers_multicast_addr = {{0xFF, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02}}; /**< Multi-cast address of all routers on the local network segment. */ APP_TIMER_DEF(m_iot_timer_tick_src_id); /**< App timer instance used to update the IoT timer wall clock. */ static uint8_t m_well_known_core[100]; static display_state_t m_display_state = LEDS_INACTIVE; /**< Board LED display state. */ static const char m_resource_block_name[] = "block"; #ifdef COMMISSIONING_ENABLED static bool m_power_off_on_failure = false; static bool m_identity_mode_active; #endif // COMMISSIONING_ENABLED /**@brief Callback function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for the Event Scheduler initialization. */ static void scheduler_init(void) { APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE); } /**@brief Function for the LEDs initialization. * * @details Initializes all LEDs used by this application. */ static void leds_init(void) { // Configure LEDs. LEDS_CONFIGURE((LED_ONE | LED_TWO | LED_THREE | LED_FOUR)); // Turn LEDs off. LEDS_OFF((LED_ONE | LED_TWO | LED_THREE | LED_FOUR)); } /**@brief Timer callback used for controlling board LEDs to represent application state. * */ static void blink_timeout_handler(iot_timer_time_in_ms_t wall_clock_value) { UNUSED_PARAMETER(wall_clock_value); #ifdef COMMISSIONING_ENABLED static bool id_mode_previously_enabled; #endif // COMMISSIONING_ENABLED switch (m_display_state) { case LEDS_INACTIVE: { LEDS_OFF((LED_ONE | LED_TWO)); break; } case LEDS_CONNECTABLE_MODE: { LEDS_INVERT(LED_ONE); LEDS_OFF(LED_TWO); break; } case LEDS_IPV6_IF_DOWN: { LEDS_ON(LED_ONE); LEDS_INVERT(LED_TWO); break; } case LEDS_IPV6_IF_UP: { LEDS_OFF(LED_ONE); LEDS_ON(LED_TWO); break; } default: { break; } } #ifdef COMMISSIONING_ENABLED if ((id_mode_previously_enabled == false) && (m_identity_mode_active == true)) { LEDS_OFF(LED_THREE | LED_FOUR); } if ((id_mode_previously_enabled == true) && (m_identity_mode_active == true)) { LEDS_INVERT(LED_THREE | LED_FOUR); } if ((id_mode_previously_enabled == true) && (m_identity_mode_active == false)) { LEDS_OFF(LED_THREE | LED_FOUR); } id_mode_previously_enabled = m_identity_mode_active; #endif // COMMISSIONING_ENABLED } /**@brief Function for handling CoAP periodically time ticks. */ static void app_coap_time_tick(iot_timer_time_in_ms_t wall_clock_value) { // Pass a tick to coap in order to re-transmit any pending messages. (void)coap_time_tick(); } /**@brief Function for updating the wall clock of the IoT Timer module. */ static void iot_timer_tick_callback(void * p_context) { UNUSED_VARIABLE(p_context); uint32_t err_code = iot_timer_update(); APP_ERROR_CHECK(err_code); } /**@brief Function for the Timer initialization. * * @details Initializes the timer module. */ static void timers_init(void) { uint32_t err_code; // Initialize timer module. APP_ERROR_CHECK(app_timer_init()); // Create a sys timer. err_code = app_timer_create(&m_iot_timer_tick_src_id, APP_TIMER_MODE_REPEATED, iot_timer_tick_callback); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the IoT Timer. */ static void iot_timer_init(void) { uint32_t err_code; static const iot_timer_client_t list_of_clients[] = { {blink_timeout_handler, LED_BLINK_INTERVAL_MS}, {app_coap_time_tick, COAP_TICK_INTERVAL_MS}, #ifdef COMMISSIONING_ENABLED {commissioning_time_tick, SEC_TO_MILLISEC(COMMISSIONING_TICK_INTERVAL_SEC)} #endif // COMMISSIONING_ENABLED }; // The list of IoT Timer clients is declared as a constant. static const iot_timer_clients_list_t iot_timer_clients = { (sizeof(list_of_clients) / sizeof(iot_timer_client_t)), &(list_of_clients[0]), }; // Passing the list of clients to the IoT Timer module. err_code = iot_timer_client_list_set(&iot_timer_clients); APP_ERROR_CHECK(err_code); // Starting the app timer instance that is the tick source for the IoT Timer. err_code = app_timer_start(m_iot_timer_tick_src_id, APP_TIMER_TICKS(IOT_TIMER_RESOLUTION_IN_MS), NULL); APP_ERROR_CHECK(err_code); } #ifdef COMMISSIONING_ENABLED /**@brief Function for handling button events. * * @param[in] pin_no The pin number of the button pressed. * @param[in] button_action The action performed on button. */ static void button_event_handler(uint8_t pin_no, uint8_t button_action) { #ifdef COMMISSIONING_ENABLED if ((button_action == APP_BUTTON_PUSH) && (pin_no == ERASE_BUTTON_PIN_NO)) { APPL_LOG("Erasing all commissioning settings from persistent storage..."); commissioning_settings_clear(); return; } #endif // COMMISSIONING_ENABLED return; } /**@brief Function for the Button initialization. * * @details Initializes all Buttons used by this application. */ static void buttons_init(void) { uint32_t err_code; static app_button_cfg_t buttons[] = { #ifdef COMMISSIONING_ENABLED {ERASE_BUTTON_PIN_NO, false, BUTTON_PULL, button_event_handler} #endif // COMMISSIONING_ENABLED }; #define BUTTON_DETECTION_DELAY APP_TIMER_TICKS(50) err_code = app_button_init(buttons, ARRAY_SIZE(buttons), BUTTON_DETECTION_DELAY); APP_ERROR_CHECK(err_code); err_code = app_button_enable(); APP_ERROR_CHECK(err_code); } #endif // COMMISSIONING_ENABLED static void ip_app_handler(iot_interface_t * p_interface, ipv6_event_t * p_event) { uint32_t err_code; ipv6_addr_t src_addr; APPL_LOG("Got IP Application Handler Event on interface 0x%p", p_interface); switch (p_event->event_id) { case IPV6_EVT_INTERFACE_ADD: #ifdef COMMISSIONING_ENABLED commissioning_joining_mode_timer_ctrl(JOINING_MODE_TIMER_STOP_RESET); #endif // COMMISSIONING_ENABLED APPL_LOG("New interface added!"); m_display_state = LEDS_IPV6_IF_UP; APPL_LOG("Sending Router Solicitation to all routers!"); // Create Link Local addresses IPV6_CREATE_LINK_LOCAL_FROM_EUI64(&src_addr, p_interface->local_addr.identifier); // Delay first solicitation due to possible restriction on other side. nrf_delay_ms(APP_RTR_SOLICITATION_DELAY); // Send Router Solicitation to all routers. err_code = icmp6_rs_send(p_interface, &src_addr, &local_routers_multicast_addr); APP_ERROR_CHECK(err_code); break; case IPV6_EVT_INTERFACE_DELETE: #ifdef COMMISSIONING_ENABLED commissioning_joining_mode_timer_ctrl(JOINING_MODE_TIMER_START); #endif // COMMISSIONING_ENABLED APPL_LOG("Interface removed!"); m_display_state = LEDS_IPV6_IF_DOWN; break; case IPV6_EVT_INTERFACE_RX_DATA: APPL_LOG("Got unsupported protocol data!"); break; default: //Unknown event. Should not happen. break; } } void well_known_core_callback(coap_resource_t * p_resource, coap_message_t * p_request) { coap_message_conf_t response_config; memset(&response_config, 0x00, sizeof(coap_message_conf_t)); if (p_request->header.type == COAP_TYPE_NON) { response_config.type = COAP_TYPE_NON; } else if (p_request->header.type == COAP_TYPE_CON) { response_config.type = COAP_TYPE_ACK; } // PIGGY BACKED RESPONSE response_config.code = COAP_CODE_205_CONTENT; // Copy message ID. response_config.id = p_request->header.id; // Set local port number to use. response_config.port.port_number = LOCAL_PORT_NUM; // Copy token. memcpy(&response_config.token[0], &p_request->token[0], p_request->header.token_len); // Copy token length. response_config.token_len = p_request->header.token_len; coap_message_t * p_response; uint32_t err_code = coap_message_new(&p_response, &response_config); APP_ERROR_CHECK(err_code); err_code = coap_message_remote_addr_set(p_response, &p_request->remote); APP_ERROR_CHECK(err_code); memcpy(&p_response->remote, &p_request->remote, sizeof(coap_remote_t)); err_code = coap_message_opt_uint_add(p_response, COAP_OPT_CONTENT_FORMAT, COAP_CT_APP_LINK_FORMAT); APP_ERROR_CHECK(err_code); err_code = coap_message_payload_set(p_response, m_well_known_core, strlen((char *)m_well_known_core)); APP_ERROR_CHECK(err_code); uint32_t msg_handle; err_code = coap_message_send(&msg_handle, p_response); APP_ERROR_CHECK(err_code); err_code = coap_message_delete(p_response); APP_ERROR_CHECK(err_code); } static void large_resource_callback(coap_resource_t * p_resource, coap_message_t * p_request) { coap_message_conf_t response_config; memset(&response_config, 0x00, sizeof(coap_message_conf_t)); if (p_request->header.type == COAP_TYPE_NON) { response_config.type = COAP_TYPE_NON; } else if (p_request->header.type == COAP_TYPE_CON) { response_config.type = COAP_TYPE_ACK; } response_config.code = COAP_CODE_405_METHOD_NOT_ALLOWED; // Copy message ID. response_config.id = p_request->header.id; // Set local port number to use. response_config.port.port_number = LOCAL_PORT_NUM; // Copy token. memcpy(&response_config.token[0], &p_request->token[0], p_request->header.token_len); // Copy token length. response_config.token_len = p_request->header.token_len; coap_message_t * p_response; uint32_t err_code = coap_message_new(&p_response, &response_config); APP_ERROR_CHECK(err_code); err_code = coap_message_remote_addr_set(p_response, &p_request->remote); APP_ERROR_CHECK(err_code); // Handle request. switch (p_request->header.code) { case COAP_CODE_PUT: { uint8_t option_index; if (coap_message_opt_index_get(&option_index, p_request, COAP_OPT_BLOCK1) == NRF_SUCCESS) { // Locate the option by index. coap_option_t * p_block1_opt = &p_request->options[option_index]; // Decode option value into a uint32_t. uint32_t block1_opt_value_raw; err_code = coap_opt_uint_decode(&block1_opt_value_raw, p_block1_opt->length, p_block1_opt->p_data); APP_ERROR_CHECK(err_code); // Decode uint32_t value into block1 option structure. coap_block_opt_block1_t block1_request; err_code = coap_block_opt_block1_decode(&block1_request, block1_opt_value_raw); if (err_code == (NRF_ERROR_INVALID_DATA | IOT_COAP_ERR_BASE)) { // value 7 is used for size indicator. // Reply with 4.00 Bad Request. p_response->header.code = COAP_CODE_400_BAD_REQUEST; } else if (err_code != NRF_SUCCESS) { // If error code is not expected, raise it. APP_ERROR_CHECK(err_code); } else { static char msg_buffer[COAP_PREFERRED_BLOCK_SIZE + 1]; strncpy((char *)msg_buffer, (char *)p_request->p_payload, p_request->payload_len); msg_buffer[p_request->payload_len] = '\0'; APPL_LOG("[CoAP-Block]: block %3lu : %s", block1_request.number, msg_buffer); // Set up block1 response option values. coap_block_opt_block1_t block1_response = { .number = block1_request.number, .more = block1_request.more, .size = block1_request.size }; // Encode the block1 option into a uint32_t. uint32_t block1_response_encoded; err_code = coap_block_opt_block1_encode(&block1_response_encoded, &block1_response); // Add block1 option to the coap response message. err_code = coap_message_opt_uint_add(p_response, COAP_OPT_BLOCK1, block1_response_encoded); // Set response code according to signal if we are done, or want to continue. if (block1_request.more == COAP_BLOCK_OPT_BLOCK_MORE_BIT_SET) { // More blocks to come. p_response->header.code = COAP_CODE_231_CONTINUE; } else { APPL_LOG("[CoAP-Block]: End of block transfer"); // Final block. p_response->header.code = COAP_CODE_204_CHANGED; } } } } break; default: { p_response->header.code = COAP_CODE_405_METHOD_NOT_ALLOWED; } break; } uint32_t msg_handle; err_code = coap_message_send(&msg_handle, p_response); APP_ERROR_CHECK(err_code); err_code = coap_message_delete(p_response); APP_ERROR_CHECK(err_code); } static void coap_endpoints_init(void) { uint32_t err_code; static coap_resource_t root; err_code = coap_resource_create(&root, "/"); APP_ERROR_CHECK(err_code); static coap_resource_t well_known; err_code = coap_resource_create(&well_known, ".well-known"); APP_ERROR_CHECK(err_code); err_code = coap_resource_child_add(&root, &well_known); APP_ERROR_CHECK(err_code); static coap_resource_t core; err_code = coap_resource_create(&core, "core"); APP_ERROR_CHECK(err_code); core.permission = COAP_PERM_GET; core.callback = well_known_core_callback; err_code = coap_resource_child_add(&well_known, &core); APP_ERROR_CHECK(err_code); static coap_resource_t block_resource; err_code = coap_resource_create(&block_resource, m_resource_block_name); APP_ERROR_CHECK(err_code); block_resource.permission = COAP_PERM_PUT; block_resource.callback = large_resource_callback; block_resource.ct_support_mask = COAP_CT_MASK_PLAIN_TEXT; err_code = coap_resource_child_add(&root, &block_resource); APP_ERROR_CHECK(err_code); uint16_t size = sizeof(m_well_known_core); err_code = coap_resource_well_known_generate(m_well_known_core, &size); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing IP stack. * * @details Initialize the IP Stack. */ static void ip_stack_init(void) { uint32_t err_code; ipv6_init_t init_param; err_code = ipv6_medium_eui64_get(m_ipv6_medium.ipv6_medium_instance_id, &eui64_local_iid); APP_ERROR_CHECK(err_code); init_param.p_eui64 = &eui64_local_iid; init_param.event_handler = ip_app_handler; err_code = ipv6_init(&init_param); APP_ERROR_CHECK(err_code); } static void coap_error_handler(uint32_t error_code, coap_message_t * p_message) { // If any response fill the p_response with a appropriate response message. } /**@brief Function for starting connectable mode. */ static void connectable_mode_enter(void) { uint32_t err_code = ipv6_medium_connectable_mode_enter(m_ipv6_medium.ipv6_medium_instance_id); APP_ERROR_CHECK(err_code); APPL_LOG("Physical layer in connectable mode."); m_display_state = LEDS_CONNECTABLE_MODE; } static void on_ipv6_medium_evt(ipv6_medium_evt_t * p_ipv6_medium_evt) { switch (p_ipv6_medium_evt->ipv6_medium_evt_id) { case IPV6_MEDIUM_EVT_CONN_UP: { APPL_LOG("Physical layer: connected."); m_display_state = LEDS_IPV6_IF_DOWN; break; } case IPV6_MEDIUM_EVT_CONN_DOWN: { APPL_LOG("Physical layer: disconnected."); connectable_mode_enter(); break; } default: { break; } } } static void on_ipv6_medium_error(ipv6_medium_error_t * p_ipv6_medium_error) { // Do something. } #ifdef COMMISSIONING_ENABLED void commissioning_id_mode_cb(mode_control_cmd_t control_command) { switch (control_command) { case CMD_IDENTITY_MODE_ENTER: { LEDS_OFF(LED_THREE | LED_FOUR); m_identity_mode_active = true; break; } case CMD_IDENTITY_MODE_EXIT: { m_identity_mode_active = false; LEDS_OFF((LED_THREE | LED_FOUR)); break; } default: { break; } } } void commissioning_power_off_cb(bool power_off_on_failure) { m_power_off_on_failure = power_off_on_failure; APPL_LOG("Commissioning: do power_off on failure: %s.", m_power_off_on_failure ? "true" : "false"); } #endif // COMMISSIONING_ENABLED /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for application main entry. */ int main(void) { uint32_t err_code; // Initialize log_init(); scheduler_init(); leds_init(); timers_init(); #ifdef COMMISSIONING_ENABLED buttons_init(); #endif // COMMISSIONING_ENABLED static ipv6_medium_init_params_t ipv6_medium_init_params; memset(&ipv6_medium_init_params, 0x00, sizeof(ipv6_medium_init_params)); ipv6_medium_init_params.ipv6_medium_evt_handler = on_ipv6_medium_evt; ipv6_medium_init_params.ipv6_medium_error_handler = on_ipv6_medium_error; #ifdef COMMISSIONING_ENABLED ipv6_medium_init_params.commissioning_id_mode_cb = commissioning_id_mode_cb; ipv6_medium_init_params.commissioning_power_off_cb = commissioning_power_off_cb; #endif // COMMISSIONING_ENABLED err_code = ipv6_medium_init(&ipv6_medium_init_params, IPV6_MEDIUM_ID_BLE, &m_ipv6_medium); APP_ERROR_CHECK(err_code); eui48_t ipv6_medium_eui48; err_code = ipv6_medium_eui48_get(m_ipv6_medium.ipv6_medium_instance_id, &ipv6_medium_eui48); ipv6_medium_eui48.identifier[EUI_48_SIZE - 1] = 0x00; err_code = ipv6_medium_eui48_set(m_ipv6_medium.ipv6_medium_instance_id, &ipv6_medium_eui48); APP_ERROR_CHECK(err_code); ip_stack_init(); coap_port_t local_port_list[COAP_PORT_COUNT] = { {.port_number = LOCAL_PORT_NUM} }; coap_transport_init_t port_list; port_list.p_port_table = &local_port_list[0]; err_code = coap_init(17, &port_list); APP_ERROR_CHECK(err_code); err_code = coap_error_handler_register(coap_error_handler); APP_ERROR_CHECK(err_code); coap_endpoints_init(); iot_timer_init(); APPL_LOG("Application started."); // Start execution connectable_mode_enter(); // Enter main loop for (;;) { app_sched_execute(); if (NRF_LOG_PROCESS() == false) { // Sleep waiting for an application event. err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); } } } /** * @} */