/* * cifra - embedded cryptography library * Written in 2014 by Joseph Birr-Pixton * * To the extent possible under law, the author(s) have dedicated all * copyright and related and neighboring rights to this software to the * public domain worldwide. This software is distributed without any * warranty. * * You should have received a copy of the CC0 Public Domain Dedication * along with this software. If not, see * . */ #ifndef BITOPS_H #define BITOPS_H #include #include /* Assorted bitwise and common operations used in ciphers. */ /** Circularly rotate right x by n bits. * 0 > n > 32. */ static inline uint32_t rotr32(uint32_t x, unsigned n) { return (x >> n) | (x << (32 - n)); } /** Circularly rotate left x by n bits. * 0 > n > 32. */ static inline uint32_t rotl32(uint32_t x, unsigned n) { return (x << n) | (x >> (32 - n)); } /** Circularly rotate right x by n bits. * 0 > n > 64. */ static inline uint64_t rotr64(uint64_t x, unsigned n) { return (x >> n) | (x << (64 - n)); } /** Circularly rotate left x by n bits. * 0 > n > 64. */ static inline uint64_t rotl64(uint64_t x, unsigned n) { return (x << n) | (x >> (64 - n)); } /** Read 4 bytes from buf, as a 32-bit big endian quantity. */ static inline uint32_t read32_be(const uint8_t buf[4]) { return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | (buf[3]); } /** Read 4 bytes from buf, as a 32-bit little endian quantity. */ static inline uint32_t read32_le(const uint8_t buf[4]) { return (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | (buf[0]); } /** Read 8 bytes from buf, as a 64-bit big endian quantity. */ static inline uint64_t read64_be(const uint8_t buf[8]) { uint32_t hi = read32_be(buf), lo = read32_be(buf + 4); return ((uint64_t)hi) << 32 | lo; } /** Read 8 bytes from buf, as a 64-bit little endian quantity. */ static inline uint64_t read64_le(const uint8_t buf[8]) { uint32_t hi = read32_le(buf + 4), lo = read32_le(buf); return ((uint64_t)hi) << 32 | lo; } /** Encode v as a 32-bit big endian quantity into buf. */ static inline void write32_be(uint32_t v, uint8_t buf[4]) { *buf++ = (v >> 24) & 0xff; *buf++ = (v >> 16) & 0xff; *buf++ = (v >> 8) & 0xff; *buf = v & 0xff; } /** Encode v as a 32-bit little endian quantity into buf. */ static inline void write32_le(uint32_t v, uint8_t buf[4]) { *buf++ = v & 0xff; *buf++ = (v >> 8) & 0xff; *buf++ = (v >> 16) & 0xff; *buf = (v >> 24) & 0xff; } /** Encode v as a 64-bit big endian quantity into buf. */ static inline void write64_be(uint64_t v, uint8_t buf[8]) { *buf++ = (v >> 56) & 0xff; *buf++ = (v >> 48) & 0xff; *buf++ = (v >> 40) & 0xff; *buf++ = (v >> 32) & 0xff; *buf++ = (v >> 24) & 0xff; *buf++ = (v >> 16) & 0xff; *buf++ = (v >> 8) & 0xff; *buf = v & 0xff; } /** Encode v as a 64-bit little endian quantity into buf. */ static inline void write64_le(uint64_t v, uint8_t buf[8]) { *buf++ = v & 0xff; *buf++ = (v >> 8) & 0xff; *buf++ = (v >> 16) & 0xff; *buf++ = (v >> 24) & 0xff; *buf++ = (v >> 32) & 0xff; *buf++ = (v >> 40) & 0xff; *buf++ = (v >> 48) & 0xff; *buf = (v >> 56) & 0xff; } /** out = in ^ b8. * out and in may alias. */ static inline void xor_b8(uint8_t *out, const uint8_t *in, uint8_t b8, size_t len) { for (size_t i = 0; i < len; i++) out[i] = in[i] ^ b8; } /** out = x ^ y. * out, x and y may alias. */ static inline void xor_bb(uint8_t *out, const uint8_t *x, const uint8_t *y, size_t len) { for (size_t i = 0; i < len; i++) out[i] = x[i] ^ y[i]; } /* out ^= x * out and x may alias. */ static inline void xor_words(uint32_t *out, const uint32_t *x, size_t nwords) { for (size_t i = 0; i < nwords; i++) out[i] ^= x[i]; } /** Produce 0xffffffff if x == y, zero otherwise, without branching. */ static inline uint32_t mask_u32(uint32_t x, uint32_t y) { uint32_t diff = x ^ y; uint32_t diff_is_zero = ~diff & (diff - 1); return - (diff_is_zero >> 31); } /** Product 0xff if x == y, zero otherwise, without branching. */ static inline uint8_t mask_u8(uint32_t x, uint32_t y) { uint32_t diff = x ^ y; uint8_t diff_is_zero = ~diff & (diff - 1); return - (diff_is_zero >> 7); } /** Select the ith entry from the given table of n values, in a side channel-silent * way. */ static inline uint32_t select_u32(uint32_t i, volatile const uint32_t *tab, uint32_t n) { uint32_t r = 0; for (uint32_t ii = 0; ii < n; ii++) { uint32_t mask = mask_u32(i, ii); r = (r & ~mask) | (tab[ii] & mask); } return r; } /** Select the ith entry from the given table of n values, in a side channel-silent * way. */ static inline uint8_t select_u8(uint32_t i, volatile const uint8_t *tab, uint32_t n) { uint8_t r = 0; for (uint32_t ii = 0; ii < n; ii++) { uint8_t mask = mask_u8(i, ii); r = (r & ~mask) | (tab[ii] & mask); } return r; } /** Select the ath, bth, cth and dth entries from the given table of n values, * placing the results into a, b, c and d. */ static inline void select_u8x4(uint8_t *a, uint8_t *b, uint8_t *c, uint8_t *d, volatile const uint8_t *tab, uint32_t n) { uint8_t ra = 0, rb = 0, rc = 0, rd = 0; uint8_t mask; for (uint32_t i = 0; i < n; i++) { uint8_t item = tab[i]; mask = mask_u8(*a, i); ra = (ra & ~mask) | (item & mask); mask = mask_u8(*b, i); rb = (rb & ~mask) | (item & mask); mask = mask_u8(*c, i); rc = (rc & ~mask) | (item & mask); mask = mask_u8(*d, i); rd = (rd & ~mask) | (item & mask); } *a = ra; *b = rb; *c = rc; *d = rd; } /** out ^= if0 or if1, depending on the value of bit. */ static inline void select_xor128(uint32_t out[4], const uint32_t if0[4], const uint32_t if1[4], uint8_t bit) { uint32_t mask1 = mask_u32(bit, 1); uint32_t mask0 = ~mask1; out[0] ^= (if0[0] & mask0) | (if1[0] & mask1); out[1] ^= (if0[1] & mask0) | (if1[1] & mask1); out[2] ^= (if0[2] & mask0) | (if1[2] & mask1); out[3] ^= (if0[3] & mask0) | (if1[3] & mask1); } /** Increments the integer stored at v (of non-zero length len) * with the least significant byte first. */ static inline void incr_le(uint8_t *v, size_t len) { size_t i = 0; while (1) { if (++v[i] != 0) return; i++; if (i == len) return; } } /** Increments the integer stored at v (of non-zero length len) * with the most significant byte last. */ static inline void incr_be(uint8_t *v, size_t len) { len--; while (1) { if (++v[len] != 0) return; if (len == 0) return; len--; } } /** Copies len bytes from in to out, with in shifted left by offset bits * to the right. */ static inline void copy_bytes_unaligned(uint8_t *out, const uint8_t *in, size_t len, uint8_t offset) { uint8_t byte_off = offset / 8; uint8_t bit_off = offset & 7; uint8_t rmask = (1 << bit_off) - 1; uint8_t lmask = ~rmask; for (size_t i = 0; i < len; i++) { out[i] = (in[i + byte_off] << bit_off) & lmask; out[i] |= (in[i + byte_off + 1] >> (8 - bit_off)) & rmask; } } #endif