/** * Copyright (c) 2016 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include "nrf_drv_clock.h" #if NRF_MODULE_ENABLED(CLOCK) #ifdef SOFTDEVICE_PRESENT #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #endif #define NRF_LOG_MODULE_NAME clock #if CLOCK_CONFIG_LOG_ENABLED #define NRF_LOG_LEVEL CLOCK_CONFIG_LOG_LEVEL #define NRF_LOG_INFO_COLOR CLOCK_CONFIG_INFO_COLOR #define NRF_LOG_DEBUG_COLOR CLOCK_CONFIG_DEBUG_COLOR #else //CLOCK_CONFIG_LOG_ENABLED #define NRF_LOG_LEVEL 0 #endif //CLOCK_CONFIG_LOG_ENABLED #include "nrf_log.h" NRF_LOG_MODULE_REGISTER(); #define EVT_TO_STR(event) \ (event == NRF_CLOCK_EVENT_HFCLKSTARTED ? "NRF_CLOCK_EVENT_HFCLKSTARTED" : \ (event == NRF_CLOCK_EVENT_LFCLKSTARTED ? "NRF_CLOCK_EVENT_LFCLKSTARTED" : \ (event == NRF_CLOCK_EVENT_DONE ? "NRF_CLOCK_EVENT_DONE" : \ (event == NRF_CLOCK_EVENT_CTTO ? "NRF_CLOCK_EVENT_CTTO" : \ "UNKNOWN EVENT")))) /*lint -save -e652 */ #define NRF_CLOCK_LFCLK_RC CLOCK_LFCLKSRC_SRC_RC #define NRF_CLOCK_LFCLK_Xtal CLOCK_LFCLKSRC_SRC_Xtal #define NRF_CLOCK_LFCLK_Synth CLOCK_LFCLKSRC_SRC_Synth /*lint -restore */ #if (CLOCK_CONFIG_LF_SRC == NRF_CLOCK_LFCLK_RC) && !defined(SOFTDEVICE_PRESENT) #define CALIBRATION_SUPPORT 1 #else #define CALIBRATION_SUPPORT 0 #endif typedef enum { CAL_STATE_IDLE, CAL_STATE_CT, CAL_STATE_HFCLK_REQ, CAL_STATE_CAL, CAL_STATE_ABORT, } nrf_drv_clock_cal_state_t; /**@brief CLOCK control block. */ typedef struct { bool module_initialized; /*< Indicate the state of module */ volatile bool hfclk_on; /*< High-frequency clock state. */ volatile bool lfclk_on; /*< Low-frequency clock state. */ volatile uint32_t hfclk_requests; /*< High-frequency clock request counter. */ volatile nrf_drv_clock_handler_item_t * p_hf_head; volatile uint32_t lfclk_requests; /*< Low-frequency clock request counter. */ volatile nrf_drv_clock_handler_item_t * p_lf_head; #if CALIBRATION_SUPPORT nrf_drv_clock_handler_item_t cal_hfclk_started_handler_item; nrf_drv_clock_event_handler_t cal_done_handler; volatile nrf_drv_clock_cal_state_t cal_state; #endif // CALIBRATION_SUPPORT } nrf_drv_clock_cb_t; static nrf_drv_clock_cb_t m_clock_cb; static void clock_irq_handler(nrfx_clock_evt_type_t evt); static void lfclk_stop(void) { #if CALIBRATION_SUPPORT nrfx_clock_calibration_timer_stop(); #endif #ifdef SOFTDEVICE_PRESENT // If LFCLK is requested to stop while SD is still enabled, // it indicates an error in the application. // Enabling SD should increment the LFCLK request. ASSERT(!nrf_sdh_is_enabled()); #endif // SOFTDEVICE_PRESENT nrfx_clock_lfclk_stop(); m_clock_cb.lfclk_on = false; } static void hfclk_start(void) { #ifdef SOFTDEVICE_PRESENT if (nrf_sdh_is_enabled()) { (void)sd_clock_hfclk_request(); return; } #endif // SOFTDEVICE_PRESENT nrfx_clock_hfclk_start(); } static void hfclk_stop(void) { #ifdef SOFTDEVICE_PRESENT if (nrf_sdh_is_enabled()) { (void)sd_clock_hfclk_release(); m_clock_cb.hfclk_on = false; return; } #endif // SOFTDEVICE_PRESENT nrfx_clock_hfclk_stop(); m_clock_cb.hfclk_on = false; } bool nrf_drv_clock_init_check(void) { return m_clock_cb.module_initialized; } ret_code_t nrf_drv_clock_init(void) { ret_code_t err_code = NRF_SUCCESS; if (m_clock_cb.module_initialized) { err_code = NRF_ERROR_MODULE_ALREADY_INITIALIZED; } else { m_clock_cb.p_hf_head = NULL; m_clock_cb.hfclk_requests = 0; m_clock_cb.p_lf_head = NULL; m_clock_cb.lfclk_requests = 0; err_code = nrfx_clock_init(clock_irq_handler); #ifdef SOFTDEVICE_PRESENT if (!nrf_sdh_is_enabled()) #endif { nrfx_clock_enable(); } #if CALIBRATION_SUPPORT m_clock_cb.cal_state = CAL_STATE_IDLE; #endif m_clock_cb.module_initialized = true; } NRF_LOG_INFO("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } void nrf_drv_clock_uninit(void) { ASSERT(m_clock_cb.module_initialized); nrfx_clock_disable(); nrfx_clock_uninit(); } static void item_enqueue(nrf_drv_clock_handler_item_t ** p_head, nrf_drv_clock_handler_item_t * p_item) { nrf_drv_clock_handler_item_t * p_next = *p_head; while (p_next) { if (p_next == p_item) { return; } p_next = p_next->p_next; } p_item->p_next = (*p_head ? *p_head : NULL); *p_head = p_item; } static nrf_drv_clock_handler_item_t * item_dequeue(nrf_drv_clock_handler_item_t ** p_head) { nrf_drv_clock_handler_item_t * p_item = *p_head; if (p_item) { *p_head = p_item->p_next; } return p_item; } void nrf_drv_clock_lfclk_request(nrf_drv_clock_handler_item_t * p_handler_item) { ASSERT(m_clock_cb.module_initialized); if (m_clock_cb.lfclk_on) { if (p_handler_item) { p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_LFCLK_STARTED); } CRITICAL_REGION_ENTER(); ++(m_clock_cb.lfclk_requests); CRITICAL_REGION_EXIT(); } else { CRITICAL_REGION_ENTER(); if (p_handler_item) { item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head, p_handler_item); } if (m_clock_cb.lfclk_requests == 0) { nrfx_clock_lfclk_start(); } ++(m_clock_cb.lfclk_requests); CRITICAL_REGION_EXIT(); } ASSERT(m_clock_cb.lfclk_requests > 0); } void nrf_drv_clock_lfclk_release(void) { ASSERT(m_clock_cb.module_initialized); ASSERT(m_clock_cb.lfclk_requests > 0); CRITICAL_REGION_ENTER(); --(m_clock_cb.lfclk_requests); if (m_clock_cb.lfclk_requests == 0) { lfclk_stop(); } CRITICAL_REGION_EXIT(); } bool nrf_drv_clock_lfclk_is_running(void) { ASSERT(m_clock_cb.module_initialized); #ifdef SOFTDEVICE_PRESENT if (nrf_sdh_is_enabled()) { return true; } #endif // SOFTDEVICE_PRESENT return nrfx_clock_lfclk_is_running(); } void nrf_drv_clock_hfclk_request(nrf_drv_clock_handler_item_t * p_handler_item) { ASSERT(m_clock_cb.module_initialized); if (m_clock_cb.hfclk_on) { if (p_handler_item) { p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_HFCLK_STARTED); } CRITICAL_REGION_ENTER(); ++(m_clock_cb.hfclk_requests); CRITICAL_REGION_EXIT(); } else { CRITICAL_REGION_ENTER(); if (p_handler_item) { item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head, p_handler_item); } if (m_clock_cb.hfclk_requests == 0) { hfclk_start(); } ++(m_clock_cb.hfclk_requests); CRITICAL_REGION_EXIT(); } ASSERT(m_clock_cb.hfclk_requests > 0); } void nrf_drv_clock_hfclk_release(void) { ASSERT(m_clock_cb.module_initialized); ASSERT(m_clock_cb.hfclk_requests > 0); CRITICAL_REGION_ENTER(); --(m_clock_cb.hfclk_requests); if (m_clock_cb.hfclk_requests == 0) { hfclk_stop(); } CRITICAL_REGION_EXIT(); } bool nrf_drv_clock_hfclk_is_running(void) { ASSERT(m_clock_cb.module_initialized); #ifdef SOFTDEVICE_PRESENT if (nrf_sdh_is_enabled()) { uint32_t is_running; UNUSED_VARIABLE(sd_clock_hfclk_is_running(&is_running)); return (is_running ? true : false); } #endif // SOFTDEVICE_PRESENT return nrfx_clock_hfclk_is_running(); } #if CALIBRATION_SUPPORT static void clock_calibration_hf_started(nrf_drv_clock_evt_type_t event) { if (m_clock_cb.cal_state == CAL_STATE_ABORT) { nrf_drv_clock_hfclk_release(); m_clock_cb.cal_state = CAL_STATE_IDLE; if (m_clock_cb.cal_done_handler) { m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED); } } else { ASSERT(event == NRF_DRV_CLOCK_EVT_HFCLK_STARTED); if (nrfx_clock_calibration_start() != NRFX_SUCCESS) { ASSERT(false); } } } #endif // CALIBRATION_SUPPORT ret_code_t nrf_drv_clock_calibration_start(uint8_t interval, nrf_drv_clock_event_handler_t handler) { ret_code_t err_code = NRF_SUCCESS; #if CALIBRATION_SUPPORT ASSERT(m_clock_cb.cal_state == CAL_STATE_IDLE); if (m_clock_cb.lfclk_on == false) { err_code = NRF_ERROR_INVALID_STATE; } else if (m_clock_cb.cal_state == CAL_STATE_IDLE) { m_clock_cb.cal_done_handler = handler; m_clock_cb.cal_hfclk_started_handler_item.event_handler = clock_calibration_hf_started; if (interval == 0) { m_clock_cb.cal_state = CAL_STATE_HFCLK_REQ; nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item); } else { m_clock_cb.cal_state = CAL_STATE_CT; nrfx_clock_calibration_timer_start(interval); } } else { err_code = NRF_ERROR_BUSY; } NRF_LOG_WARNING("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #else UNUSED_PARAMETER(interval); UNUSED_PARAMETER(handler); err_code = NRF_ERROR_FORBIDDEN; NRF_LOG_WARNING("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #endif // CALIBRATION_SUPPORT } ret_code_t nrf_drv_clock_calibration_abort(void) { ret_code_t err_code = NRF_SUCCESS; #if CALIBRATION_SUPPORT CRITICAL_REGION_ENTER(); switch (m_clock_cb.cal_state) { case CAL_STATE_CT: nrfx_clock_calibration_timer_stop(); m_clock_cb.cal_state = CAL_STATE_IDLE; if (m_clock_cb.cal_done_handler) { m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED); } break; case CAL_STATE_HFCLK_REQ: /* fall through. */ case CAL_STATE_CAL: m_clock_cb.cal_state = CAL_STATE_ABORT; break; default: break; } CRITICAL_REGION_EXIT(); NRF_LOG_INFO("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #else err_code = NRF_ERROR_FORBIDDEN; NRF_LOG_WARNING("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #endif // CALIBRATION_SUPPORT } ret_code_t nrf_drv_clock_is_calibrating(bool * p_is_calibrating) { ret_code_t err_code = NRF_SUCCESS; #if CALIBRATION_SUPPORT ASSERT(m_clock_cb.module_initialized); *p_is_calibrating = (m_clock_cb.cal_state != CAL_STATE_IDLE); NRF_LOG_INFO("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #else UNUSED_PARAMETER(p_is_calibrating); err_code = NRF_ERROR_FORBIDDEN; NRF_LOG_WARNING("Function: %s, error code: %s.", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #endif // CALIBRATION_SUPPORT } __STATIC_INLINE void clock_clk_started_notify(nrf_drv_clock_evt_type_t evt_type) { nrf_drv_clock_handler_item_t **p_head; if (evt_type == NRF_DRV_CLOCK_EVT_HFCLK_STARTED) { p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head; } else { p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head; } while (1) { nrf_drv_clock_handler_item_t * p_item = item_dequeue(p_head); if (!p_item) { break; } p_item->event_handler(evt_type); } } static void clock_irq_handler(nrfx_clock_evt_type_t evt) { if (evt == NRFX_CLOCK_EVT_HFCLK_STARTED) { m_clock_cb.hfclk_on = true; clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED); } if (evt == NRFX_CLOCK_EVT_LFCLK_STARTED) { m_clock_cb.lfclk_on = true; clock_clk_started_notify(NRF_DRV_CLOCK_EVT_LFCLK_STARTED); } #if CALIBRATION_SUPPORT if (evt == NRFX_CLOCK_EVT_CTTO) { nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item); } if (evt == NRFX_CLOCK_EVT_CAL_DONE) { nrf_drv_clock_hfclk_release(); bool aborted = (m_clock_cb.cal_state == CAL_STATE_ABORT); m_clock_cb.cal_state = CAL_STATE_IDLE; if (m_clock_cb.cal_done_handler) { m_clock_cb.cal_done_handler(aborted ? NRF_DRV_CLOCK_EVT_CAL_ABORTED : NRF_DRV_CLOCK_EVT_CAL_DONE); } } #endif // CALIBRATION_SUPPORT } #ifdef SOFTDEVICE_PRESENT /** * @brief SoftDevice SoC event handler. * * @param[in] evt_id SoC event. * @param[in] p_context Context. */ static void soc_evt_handler(uint32_t evt_id, void * p_context) { if (evt_id == NRF_EVT_HFCLKSTARTED) { m_clock_cb.hfclk_on = true; clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED); } } NRF_SDH_SOC_OBSERVER(m_soc_evt_observer, CLOCK_CONFIG_SOC_OBSERVER_PRIO, soc_evt_handler, NULL); /** * @brief SoftDevice enable/disable state handler. * * @param[in] state State. * @param[in] p_context Context. */ static void sd_state_evt_handler(nrf_sdh_state_evt_t state, void * p_context) { switch (state) { case NRF_SDH_EVT_STATE_ENABLE_PREPARE: NVIC_DisableIRQ(POWER_CLOCK_IRQn); break; case NRF_SDH_EVT_STATE_ENABLED: CRITICAL_REGION_ENTER(); /* Make sure that nrf_drv_clock module is initialized */ if (!m_clock_cb.module_initialized) { (void)nrf_drv_clock_init(); } /* SD is one of the LFCLK requesters, but it will enable it by itself. */ ++(m_clock_cb.lfclk_requests); m_clock_cb.lfclk_on = true; CRITICAL_REGION_EXIT(); break; case NRF_SDH_EVT_STATE_DISABLED: /* Reinit interrupts */ ASSERT(m_clock_cb.module_initialized); nrfx_clock_enable(); /* SD leaves LFCLK enabled - disable it if it is no longer required. */ nrf_drv_clock_lfclk_release(); break; default: break; } } NRF_SDH_STATE_OBSERVER(m_sd_state_observer, CLOCK_CONFIG_STATE_OBSERVER_PRIO) = { .handler = sd_state_evt_handler, .p_context = NULL, }; #endif // SOFTDEVICE_PRESENT #undef NRF_CLOCK_LFCLK_RC #undef NRF_CLOCK_LFCLK_Xtal #undef NRF_CLOCK_LFCLK_Synth #endif // NRF_MODULE_ENABLED(CLOCK)