/***************************************************************************
* Copyright (C) 2005, 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* Copyright (C) 2009 Michael Schwingen *
* michael@schwingen.org *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cfi.h"
#include "non_cfi.h"
#include "armv4_5.h"
#include "binarybuffer.h"
static int cfi_register_commands(struct command_context_s *cmd_ctx);
static int cfi_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank);
static int cfi_erase(struct flash_bank_s *bank, int first, int last);
static int cfi_protect(struct flash_bank_s *bank, int set, int first, int last);
static int cfi_write(struct flash_bank_s *bank, uint8_t *buffer, uint32_t offset, uint32_t count);
static int cfi_probe(struct flash_bank_s *bank);
static int cfi_auto_probe(struct flash_bank_s *bank);
static int cfi_protect_check(struct flash_bank_s *bank);
static int cfi_info(struct flash_bank_s *bank, char *buf, int buf_size);
//static int cfi_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
#define CFI_MAX_BUS_WIDTH 4
#define CFI_MAX_CHIP_WIDTH 4
/* defines internal maximum size for code fragment in cfi_intel_write_block() */
#define CFI_MAX_INTEL_CODESIZE 256
flash_driver_t cfi_flash =
{
.name = "cfi",
.register_commands = cfi_register_commands,
.flash_bank_command = cfi_flash_bank_command,
.erase = cfi_erase,
.protect = cfi_protect,
.write = cfi_write,
.probe = cfi_probe,
.auto_probe = cfi_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = cfi_protect_check,
.info = cfi_info
};
static cfi_unlock_addresses_t cfi_unlock_addresses[] =
{
[CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
[CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
};
/* CFI fixups foward declarations */
static void cfi_fixup_0002_erase_regions(flash_bank_t *flash, void *param);
static void cfi_fixup_0002_unlock_addresses(flash_bank_t *flash, void *param);
static void cfi_fixup_atmel_reversed_erase_regions(flash_bank_t *flash, void *param);
/* fixup after reading cmdset 0002 primary query table */
static cfi_fixup_t cfi_0002_fixups[] = {
{CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL},
{CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
{0, 0, NULL, NULL}
};
/* fixup after reading cmdset 0001 primary query table */
static cfi_fixup_t cfi_0001_fixups[] = {
{0, 0, NULL, NULL}
};
static void cfi_fixup(flash_bank_t *bank, cfi_fixup_t *fixups)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_fixup_t *f;
for (f = fixups; f->fixup; f++)
{
if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
{
f->fixup(bank, f->param);
}
}
}
/* inline uint32_t flash_address(flash_bank_t *bank, int sector, uint32_t offset) */
static __inline__ uint32_t flash_address(flash_bank_t *bank, int sector, uint32_t offset)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
if (cfi_info->x16_as_x8) offset *= 2;
/* while the sector list isn't built, only accesses to sector 0 work */
if (sector == 0)
return bank->base + offset * bank->bus_width;
else
{
if (!bank->sectors)
{
LOG_ERROR("BUG: sector list not yet built");
exit(-1);
}
return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
}
}
static void cfi_command(flash_bank_t *bank, uint8_t cmd, uint8_t *cmd_buf)
{
int i;
/* clear whole buffer, to ensure bits that exceed the bus_width
* are set to zero
*/
for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
cmd_buf[i] = 0;
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
{
for (i = bank->bus_width; i > 0; i--)
{
*cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
}
}
else
{
for (i = 1; i <= bank->bus_width; i++)
{
*cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
}
}
}
/* read unsigned 8-bit value from the bank
* flash banks are expected to be made of similar chips
* the query result should be the same for all
*/
static uint8_t cfi_query_u8(flash_bank_t *bank, int sector, uint32_t offset)
{
target_t *target = bank->target;
uint8_t data[CFI_MAX_BUS_WIDTH];
target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
return data[0];
else
return data[bank->bus_width - 1];
}
/* read unsigned 8-bit value from the bank
* in case of a bank made of multiple chips,
* the individual values are ORed
*/
static uint8_t cfi_get_u8(flash_bank_t *bank, int sector, uint32_t offset)
{
target_t *target = bank->target;
uint8_t data[CFI_MAX_BUS_WIDTH];
int i;
target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
{
for (i = 0; i < bank->bus_width / bank->chip_width; i++)
data[0] |= data[i];
return data[0];
}
else
{
uint8_t value = 0;
for (i = 0; i < bank->bus_width / bank->chip_width; i++)
value |= data[bank->bus_width - 1 - i];
return value;
}
}
static uint16_t cfi_query_u16(flash_bank_t *bank, int sector, uint32_t offset)
{
target_t *target = bank->target;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
uint8_t data[CFI_MAX_BUS_WIDTH * 2];
if (cfi_info->x16_as_x8)
{
uint8_t i;
for (i = 0;i < 2;i++)
target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
&data[i*bank->bus_width]);
}
else
target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data);
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
return data[0] | data[bank->bus_width] << 8;
else
return data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
}
static uint32_t cfi_query_u32(flash_bank_t *bank, int sector, uint32_t offset)
{
target_t *target = bank->target;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
uint8_t data[CFI_MAX_BUS_WIDTH * 4];
if (cfi_info->x16_as_x8)
{
uint8_t i;
for (i = 0;i < 4;i++)
target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
&data[i*bank->bus_width]);
}
else
target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data);
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
return data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
else
return data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
}
static void cfi_intel_clear_status_register(flash_bank_t *bank)
{
target_t *target = bank->target;
uint8_t command[8];
if (target->state != TARGET_HALTED)
{
LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
exit(-1);
}
cfi_command(bank, 0x50, command);
target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
}
uint8_t cfi_intel_wait_status_busy(flash_bank_t *bank, int timeout)
{
uint8_t status;
while ((!((status = cfi_get_u8(bank, 0, 0x0)) & 0x80)) && (timeout-- > 0))
{
LOG_DEBUG("status: 0x%x", status);
alive_sleep(1);
}
/* mask out bit 0 (reserved) */
status = status & 0xfe;
LOG_DEBUG("status: 0x%x", status);
if ((status & 0x80) != 0x80)
{
LOG_ERROR("timeout while waiting for WSM to become ready");
}
else if (status != 0x80)
{
LOG_ERROR("status register: 0x%x", status);
if (status & 0x2)
LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
if (status & 0x4)
LOG_ERROR("Program suspended");
if (status & 0x8)
LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
if (status & 0x10)
LOG_ERROR("Program Error / Error in Setting Lock-Bit");
if (status & 0x20)
LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
if (status & 0x40)
LOG_ERROR("Block Erase Suspended");
cfi_intel_clear_status_register(bank);
}
return status;
}
int cfi_spansion_wait_status_busy(flash_bank_t *bank, int timeout)
{
uint8_t status, oldstatus;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
oldstatus = cfi_get_u8(bank, 0, 0x0);
do {
status = cfi_get_u8(bank, 0, 0x0);
if ((status ^ oldstatus) & 0x40) {
if (status & cfi_info->status_poll_mask & 0x20) {
oldstatus = cfi_get_u8(bank, 0, 0x0);
status = cfi_get_u8(bank, 0, 0x0);
if ((status ^ oldstatus) & 0x40) {
LOG_ERROR("dq5 timeout, status: 0x%x", status);
return(ERROR_FLASH_OPERATION_FAILED);
} else {
LOG_DEBUG("status: 0x%x", status);
return(ERROR_OK);
}
}
} else { /* no toggle: finished, OK */
LOG_DEBUG("status: 0x%x", status);
return(ERROR_OK);
}
oldstatus = status;
alive_sleep(1);
} while (timeout-- > 0);
LOG_ERROR("timeout, status: 0x%x", status);
return(ERROR_FLASH_BUSY);
}
static int cfi_read_intel_pri_ext(flash_bank_t *bank)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_intel_pri_ext_t *pri_ext = malloc(sizeof(cfi_intel_pri_ext_t));
target_t *target = bank->target;
uint8_t command[8];
cfi_info->pri_ext = pri_ext;
pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
{
cfi_command(bank, 0xf0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0xff, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Could not read bank flash bank information");
return ERROR_FLASH_BANK_INVALID;
}
pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
pri_ext->feature_support = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5);
pri_ext->suspend_cmd_support = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
pri_ext->blk_status_reg_mask = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa);
LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x",
pri_ext->feature_support,
pri_ext->suspend_cmd_support,
pri_ext->blk_status_reg_mask);
pri_ext->vcc_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc);
pri_ext->vpp_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd);
LOG_DEBUG("Vcc opt: %1.1x.%1.1x, Vpp opt: %1.1x.%1.1x",
(pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
(pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
pri_ext->num_protection_fields = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe);
if (pri_ext->num_protection_fields != 1)
{
LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields);
}
pri_ext->prot_reg_addr = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf);
pri_ext->fact_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11);
pri_ext->user_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12);
LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
return ERROR_OK;
}
static int cfi_read_spansion_pri_ext(flash_bank_t *bank)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = malloc(sizeof(cfi_spansion_pri_ext_t));
target_t *target = bank->target;
uint8_t command[8];
cfi_info->pri_ext = pri_ext;
pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
{
cfi_command(bank, 0xf0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Could not read spansion bank information");
return ERROR_FLASH_BANK_INVALID;
}
pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
pri_ext->SiliconRevision = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
pri_ext->EraseSuspend = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
pri_ext->BlkProt = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
pri_ext->TmpBlkUnprotect = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
pri_ext->BlkProtUnprot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
pri_ext->SimultaneousOps = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10);
pri_ext->BurstMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11);
pri_ext->PageMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12);
pri_ext->VppMin = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13);
pri_ext->VppMax = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14);
pri_ext->TopBottom = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15);
LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision,
pri_ext->EraseSuspend, pri_ext->BlkProt);
LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
LOG_DEBUG("Vpp min: %2.2d.%1.1d, Vpp max: %2.2d.%1.1x",
(pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
(pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
/* default values for implementation specific workarounds */
pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
pri_ext->_reversed_geometry = 0;
return ERROR_OK;
}
static int cfi_read_atmel_pri_ext(flash_bank_t *bank)
{
int retval;
cfi_atmel_pri_ext_t atmel_pri_ext;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = malloc(sizeof(cfi_spansion_pri_ext_t));
target_t *target = bank->target;
uint8_t command[8];
/* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
* but a different primary extended query table.
* We read the atmel table, and prepare a valid AMD/Spansion query table.
*/
memset(pri_ext, 0, sizeof(cfi_spansion_pri_ext_t));
cfi_info->pri_ext = pri_ext;
atmel_pri_ext.pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
atmel_pri_ext.pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
atmel_pri_ext.pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I'))
{
cfi_command(bank, 0xf0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Could not read atmel bank information");
return ERROR_FLASH_BANK_INVALID;
}
pri_ext->pri[0] = atmel_pri_ext.pri[0];
pri_ext->pri[1] = atmel_pri_ext.pri[1];
pri_ext->pri[2] = atmel_pri_ext.pri[2];
atmel_pri_ext.major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
atmel_pri_ext.minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
pri_ext->major_version = atmel_pri_ext.major_version;
pri_ext->minor_version = atmel_pri_ext.minor_version;
atmel_pri_ext.features = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
atmel_pri_ext.bottom_boot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
atmel_pri_ext.burst_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
atmel_pri_ext.page_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
if (atmel_pri_ext.features & 0x02)
pri_ext->EraseSuspend = 2;
if (atmel_pri_ext.bottom_boot)
pri_ext->TopBottom = 2;
else
pri_ext->TopBottom = 3;
pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
return ERROR_OK;
}
static int cfi_read_0002_pri_ext(flash_bank_t *bank)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
if (cfi_info->manufacturer == CFI_MFR_ATMEL)
{
return cfi_read_atmel_pri_ext(bank);
}
else
{
return cfi_read_spansion_pri_ext(bank);
}
}
static int cfi_spansion_info(struct flash_bank_s *bank, char *buf, int buf_size)
{
int printed;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
pri_ext->pri[1], pri_ext->pri[2],
pri_ext->major_version, pri_ext->minor_version);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
(pri_ext->SiliconRevision) >> 2,
(pri_ext->SiliconRevision) & 0x03);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
pri_ext->EraseSuspend,
pri_ext->BlkProt);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "VppMin: %2.2d.%1.1x, VppMax: %2.2d.%1.1x\n",
(pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
(pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
return ERROR_OK;
}
static int cfi_intel_info(struct flash_bank_s *bank, char *buf, int buf_size)
{
int printed;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext;
printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Vcc opt: %1.1x.%1.1x, Vpp opt: %1.1x.%1.1x\n",
(pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
(pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
return ERROR_OK;
}
static int cfi_register_commands(struct command_context_s *cmd_ctx)
{
/*command_t *cfi_cmd = */
register_command(cmd_ctx, NULL, "cfi", NULL, COMMAND_ANY, "flash bank cfi [jedec_probe/x16_as_x8]");
/*
register_command(cmd_ctx, cfi_cmd, "part_id", cfi_handle_part_id_command, COMMAND_EXEC,
"print part id of cfi flash bank ");
*/
return ERROR_OK;
}
/* flash_bank cfi [options]
*/
static int cfi_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank)
{
cfi_flash_bank_t *cfi_info;
int i;
(void) cmd_ctx;
(void) cmd;
if (argc < 6)
{
LOG_WARNING("incomplete flash_bank cfi configuration");
return ERROR_FLASH_BANK_INVALID;
}
if ((strtoul(args[4], NULL, 0) > CFI_MAX_CHIP_WIDTH)
|| (strtoul(args[3], NULL, 0) > CFI_MAX_BUS_WIDTH))
{
LOG_ERROR("chip and bus width have to specified in bytes");
return ERROR_FLASH_BANK_INVALID;
}
cfi_info = malloc(sizeof(cfi_flash_bank_t));
cfi_info->probed = 0;
bank->driver_priv = cfi_info;
cfi_info->write_algorithm = NULL;
cfi_info->x16_as_x8 = 0;
cfi_info->jedec_probe = 0;
cfi_info->not_cfi = 0;
for (i = 6; i < argc; i++)
{
if (strcmp(args[i], "x16_as_x8") == 0)
{
cfi_info->x16_as_x8 = 1;
}
else if (strcmp(args[i], "jedec_probe") == 0)
{
cfi_info->jedec_probe = 1;
}
}
cfi_info->write_algorithm = NULL;
/* bank wasn't probed yet */
cfi_info->qry[0] = -1;
return ERROR_OK;
}
static int cfi_intel_erase(struct flash_bank_s *bank, int first, int last)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
target_t *target = bank->target;
uint8_t command[8];
int i;
cfi_intel_clear_status_register(bank);
for (i = first; i <= last; i++)
{
cfi_command(bank, 0x20, command);
if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0xd0, command);
if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == 0x80)
bank->sectors[i].is_erased = 1;
else
{
cfi_command(bank, 0xff, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
}
cfi_command(bank, 0xff, command);
return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
}
static int cfi_spansion_erase(struct flash_bank_s *bank, int first, int last)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
target_t *target = bank->target;
uint8_t command[8];
int i;
for (i = first; i <= last; i++)
{
cfi_command(bank, 0xaa, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x55, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x80, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0xaa, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x55, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x30, command);
if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK)
bank->sectors[i].is_erased = 1;
else
{
cfi_command(bank, 0xf0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32, i, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
}
cfi_command(bank, 0xf0, command);
return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
}
static int cfi_erase(struct flash_bank_s *bank, int first, int last)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first < 0) || (last < first) || (last >= bank->num_sectors))
{
return ERROR_FLASH_SECTOR_INVALID;
}
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
switch (cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_erase(bank, first, last);
break;
case 2:
return cfi_spansion_erase(bank, first, last);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_OK;
}
static int cfi_intel_protect(struct flash_bank_s *bank, int set, int first, int last)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext;
target_t *target = bank->target;
uint8_t command[8];
int retry = 0;
int i;
/* if the device supports neither legacy lock/unlock (bit 3) nor
* instant individual block locking (bit 5).
*/
if (!(pri_ext->feature_support & 0x28))
return ERROR_FLASH_OPERATION_FAILED;
cfi_intel_clear_status_register(bank);
for (i = first; i <= last; i++)
{
cfi_command(bank, 0x60, command);
LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if (set)
{
cfi_command(bank, 0x01, command);
LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32 , flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
bank->sectors[i].is_protected = 1;
}
else
{
cfi_command(bank, 0xd0, command);
LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
bank->sectors[i].is_protected = 0;
}
/* instant individual block locking doesn't require reading of the status register */
if (!(pri_ext->feature_support & 0x20))
{
/* Clear lock bits operation may take up to 1.4s */
cfi_intel_wait_status_busy(bank, 1400);
}
else
{
uint8_t block_status;
/* read block lock bit, to verify status */
cfi_command(bank, 0x90, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
block_status = cfi_get_u8(bank, i, 0x2);
if ((block_status & 0x1) != set)
{
LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status);
cfi_command(bank, 0x70, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_intel_wait_status_busy(bank, 10);
if (retry > 10)
return ERROR_FLASH_OPERATION_FAILED;
else
{
i--;
retry++;
}
}
}
}
/* if the device doesn't support individual block lock bits set/clear,
* all blocks have been unlocked in parallel, so we set those that should be protected
*/
if ((!set) && (!(pri_ext->feature_support & 0x20)))
{
for (i = 0; i < bank->num_sectors; i++)
{
if (bank->sectors[i].is_protected == 1)
{
cfi_intel_clear_status_register(bank);
cfi_command(bank, 0x60, command);
if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x01, command);
if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_intel_wait_status_busy(bank, 100);
}
}
}
cfi_command(bank, 0xff, command);
return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
}
static int cfi_protect(struct flash_bank_s *bank, int set, int first, int last)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first < 0) || (last < first) || (last >= bank->num_sectors))
{
return ERROR_FLASH_SECTOR_INVALID;
}
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
switch (cfi_info->pri_id)
{
case 1:
case 3:
cfi_intel_protect(bank, set, first, last);
break;
default:
LOG_ERROR("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_OK;
}
/* FIXME Replace this by a simple memcpy() - still unsure about sideeffects */
static void cfi_add_byte(struct flash_bank_s *bank, uint8_t *word, uint8_t byte)
{
/* target_t *target = bank->target; */
int i;
/* NOTE:
* The data to flash must not be changed in endian! We write a bytestrem in
* target byte order already. Only the control and status byte lane of the flash
* WSM is interpreted by the CPU in different ways, when read a uint16_t or uint32_t
* word (data seems to be in the upper or lower byte lane for uint16_t accesses).
*/
#if 0
if (target->endianness == TARGET_LITTLE_ENDIAN)
{
#endif
/* shift bytes */
for (i = 0; i < bank->bus_width - 1; i++)
word[i] = word[i + 1];
word[bank->bus_width - 1] = byte;
#if 0
}
else
{
/* shift bytes */
for (i = bank->bus_width - 1; i > 0; i--)
word[i] = word[i - 1];
word[0] = byte;
}
#endif
}
/* Convert code image to target endian */
/* FIXME create general block conversion fcts in target.c?) */
static void cfi_fix_code_endian(target_t *target, uint8_t *dest, const uint32_t *src, uint32_t count)
{
uint32_t i;
for (i = 0; i< count; i++)
{
target_buffer_set_u32(target, dest, *src);
dest += 4;
src++;
}
}
static uint32_t cfi_command_val(flash_bank_t *bank, uint8_t cmd)
{
target_t *target = bank->target;
uint8_t buf[CFI_MAX_BUS_WIDTH];
cfi_command(bank, cmd, buf);
switch (bank->bus_width)
{
case 1 :
return buf[0];
break;
case 2 :
return target_buffer_get_u16(target, buf);
break;
case 4 :
return target_buffer_get_u32(target, buf);
break;
default :
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
return 0;
}
}
static int cfi_intel_write_block(struct flash_bank_s *bank, uint8_t *buffer, uint32_t address, uint32_t count)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
target_t *target = bank->target;
reg_param_t reg_params[7];
armv4_5_algorithm_t armv4_5_info;
working_area_t *source;
uint32_t buffer_size = 32768;
uint32_t write_command_val, busy_pattern_val, error_pattern_val;
/* algorithm register usage:
* r0: source address (in RAM)
* r1: target address (in Flash)
* r2: count
* r3: flash write command
* r4: status byte (returned to host)
* r5: busy test pattern
* r6: error test pattern
*/
static const uint32_t word_32_code[] = {
0xe4904004, /* loop: ldr r4, [r0], #4 */
0xe5813000, /* str r3, [r1] */
0xe5814000, /* str r4, [r1] */
0xe5914000, /* busy: ldr r4, [r1] */
0xe0047005, /* and r7, r4, r5 */
0xe1570005, /* cmp r7, r5 */
0x1afffffb, /* bne busy */
0xe1140006, /* tst r4, r6 */
0x1a000003, /* bne done */
0xe2522001, /* subs r2, r2, #1 */
0x0a000001, /* beq done */
0xe2811004, /* add r1, r1 #4 */
0xeafffff2, /* b loop */
0xeafffffe /* done: b -2 */
};
static const uint32_t word_16_code[] = {
0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
0xe1c130b0, /* strh r3, [r1] */
0xe1c140b0, /* strh r4, [r1] */
0xe1d140b0, /* busy ldrh r4, [r1] */
0xe0047005, /* and r7, r4, r5 */
0xe1570005, /* cmp r7, r5 */
0x1afffffb, /* bne busy */
0xe1140006, /* tst r4, r6 */
0x1a000003, /* bne done */
0xe2522001, /* subs r2, r2, #1 */
0x0a000001, /* beq done */
0xe2811002, /* add r1, r1 #2 */
0xeafffff2, /* b loop */
0xeafffffe /* done: b -2 */
};
static const uint32_t word_8_code[] = {
0xe4d04001, /* loop: ldrb r4, [r0], #1 */
0xe5c13000, /* strb r3, [r1] */
0xe5c14000, /* strb r4, [r1] */
0xe5d14000, /* busy ldrb r4, [r1] */
0xe0047005, /* and r7, r4, r5 */
0xe1570005, /* cmp r7, r5 */
0x1afffffb, /* bne busy */
0xe1140006, /* tst r4, r6 */
0x1a000003, /* bne done */
0xe2522001, /* subs r2, r2, #1 */
0x0a000001, /* beq done */
0xe2811001, /* add r1, r1 #1 */
0xeafffff2, /* b loop */
0xeafffffe /* done: b -2 */
};
uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
const uint32_t *target_code_src;
uint32_t target_code_size;
int retval = ERROR_OK;
cfi_intel_clear_status_register(bank);
armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
armv4_5_info.core_state = ARMV4_5_STATE_ARM;
/* If we are setting up the write_algorith, we need target_code_src */
/* if not we only need target_code_size. */
/* */
/* However, we don't want to create multiple code paths, so we */
/* do the unecessary evaluation of target_code_src, which the */
/* compiler will probably nicely optimize away if not needed */
/* prepare algorithm code for target endian */
switch (bank->bus_width)
{
case 1 :
target_code_src = word_8_code;
target_code_size = sizeof(word_8_code);
break;
case 2 :
target_code_src = word_16_code;
target_code_size = sizeof(word_16_code);
break;
case 4 :
target_code_src = word_32_code;
target_code_size = sizeof(word_32_code);
break;
default:
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* flash write code */
if (!cfi_info->write_algorithm)
{
if (target_code_size > sizeof(target_code))
{
LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
/* Get memory for block write handler */
retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
if (retval != ERROR_OK)
{
LOG_WARNING("No working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
/* write algorithm code to working area */
retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code);
if (retval != ERROR_OK)
{
LOG_ERROR("Unable to write block write code to target");
goto cleanup;
}
}
/* Get a workspace buffer for the data to flash starting with 32k size.
Half size until buffer would be smaller 256 Bytem then fail back */
/* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
LOG_WARNING("no large enough working area available, can't do block memory writes");
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup;
}
};
/* setup algo registers */
init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
init_reg_param(®_params[3], "r3", 32, PARAM_OUT);
init_reg_param(®_params[4], "r4", 32, PARAM_IN);
init_reg_param(®_params[5], "r5", 32, PARAM_OUT);
init_reg_param(®_params[6], "r6", 32, PARAM_OUT);
/* prepare command and status register patterns */
write_command_val = cfi_command_val(bank, 0x40);
busy_pattern_val = cfi_command_val(bank, 0x80);
error_pattern_val = cfi_command_val(bank, 0x7e);
LOG_INFO("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32, source->address, buffer_size);
/* Programming main loop */
while (count > 0)
{
uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
uint32_t wsm_error;
if ((retval = target_write_buffer(target, source->address, thisrun_count, buffer)) != ERROR_OK)
{
goto cleanup;
}
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
LOG_INFO("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address);
/* Execute algorithm, assume breakpoint for last instruction */
retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
cfi_info->write_algorithm->address,
cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t),
10000, /* 10s should be enough for max. 32k of data */
&armv4_5_info);
/* On failure try a fall back to direct word writes */
if (retval != ERROR_OK)
{
cfi_intel_clear_status_register(bank);
LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
retval = ERROR_FLASH_OPERATION_FAILED;
/* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
/* FIXME To allow fall back or recovery, we must save the actual status
somewhere, so that a higher level code can start recovery. */
goto cleanup;
}
/* Check return value from algo code */
wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
if (wsm_error)
{
/* read status register (outputs debug inforation) */
cfi_intel_wait_status_busy(bank, 100);
cfi_intel_clear_status_register(bank);
retval = ERROR_FLASH_OPERATION_FAILED;
goto cleanup;
}
buffer += thisrun_count;
address += thisrun_count;
count -= thisrun_count;
}
/* free up resources */
cleanup:
if (source)
target_free_working_area(target, source);
if (cfi_info->write_algorithm)
{
target_free_working_area(target, cfi_info->write_algorithm);
cfi_info->write_algorithm = NULL;
}
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
destroy_reg_param(®_params[4]);
destroy_reg_param(®_params[5]);
destroy_reg_param(®_params[6]);
return retval;
}
static int cfi_spansion_write_block(struct flash_bank_s *bank, uint8_t *buffer, uint32_t address, uint32_t count)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
target_t *target = bank->target;
reg_param_t reg_params[10];
armv4_5_algorithm_t armv4_5_info;
working_area_t *source;
uint32_t buffer_size = 32768;
uint32_t status;
int retval, retvaltemp;
int exit_code = ERROR_OK;
/* input parameters - */
/* R0 = source address */
/* R1 = destination address */
/* R2 = number of writes */
/* R3 = flash write command */
/* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
/* output parameters - */
/* R5 = 0x80 ok 0x00 bad */
/* temp registers - */
/* R6 = value read from flash to test status */
/* R7 = holding register */
/* unlock registers - */
/* R8 = unlock1_addr */
/* R9 = unlock1_cmd */
/* R10 = unlock2_addr */
/* R11 = unlock2_cmd */
static const uint32_t word_32_code[] = {
/* 00008100 : */
0xe4905004, /* ldr r5, [r0], #4 */
0xe5889000, /* str r9, [r8] */
0xe58ab000, /* str r11, [r10] */
0xe5883000, /* str r3, [r8] */
0xe5815000, /* str r5, [r1] */
0xe1a00000, /* nop */
/* */
/* 00008110 : */
0xe5916000, /* ldr r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000007, /* beq 8140 ; b if DQ7 == Data7 */
0xe0166124, /* ands r6, r6, r4, lsr #2 */
0x0afffff9, /* beq 8110 ; b if DQ5 low */
0xe5916000, /* ldr r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000001, /* beq 8140 ; b if DQ7 == Data7 */
0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
0x1a000004, /* bne 8154 */
/* */
/* 00008140 : */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 8154 */
0xe2811004, /* add r1, r1, #4 ; 0x4 */
0xeaffffe8, /* b 8100 */
/* */
/* 00008154 : */
0xeafffffe /* b 8154 */
};
static const uint32_t word_16_code[] = {
/* 00008158 : */
0xe0d050b2, /* ldrh r5, [r0], #2 */
0xe1c890b0, /* strh r9, [r8] */
0xe1cab0b0, /* strh r11, [r10] */
0xe1c830b0, /* strh r3, [r8] */
0xe1c150b0, /* strh r5, [r1] */
0xe1a00000, /* nop (mov r0,r0) */
/* */
/* 00008168 : */
0xe1d160b0, /* ldrh r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000007, /* beq 8198 */
0xe0166124, /* ands r6, r6, r4, lsr #2 */
0x0afffff9, /* beq 8168 */
0xe1d160b0, /* ldrh r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000001, /* beq 8198 */
0xe3a05000, /* mov r5, #0 ; 0x0 */
0x1a000004, /* bne 81ac */
/* */
/* 00008198 : */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 81ac */
0xe2811002, /* add r1, r1, #2 ; 0x2 */
0xeaffffe8, /* b 8158 */
/* */
/* 000081ac : */
0xeafffffe /* b 81ac */
};
static const uint32_t word_8_code[] = {
/* 000081b0 : */
0xe4d05001, /* ldrb r5, [r0], #1 */
0xe5c89000, /* strb r9, [r8] */
0xe5cab000, /* strb r11, [r10] */
0xe5c83000, /* strb r3, [r8] */
0xe5c15000, /* strb r5, [r1] */
0xe1a00000, /* nop (mov r0,r0) */
/* */
/* 000081c0 : */
0xe5d16000, /* ldrb r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000007, /* beq 81f0 */
0xe0166124, /* ands r6, r6, r4, lsr #2 */
0x0afffff9, /* beq 81c0 */
0xe5d16000, /* ldrb r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000001, /* beq 81f0 */
0xe3a05000, /* mov r5, #0 ; 0x0 */
0x1a000004, /* bne 8204 */
/* */
/* 000081f0 : */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 8204 */
0xe2811001, /* add r1, r1, #1 ; 0x1 */
0xeaffffe8, /* b 81b0 */
/* */
/* 00008204 : */
0xeafffffe /* b 8204 */
};
armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
armv4_5_info.core_state = ARMV4_5_STATE_ARM;
/* flash write code */
if (!cfi_info->write_algorithm)
{
uint8_t *target_code;
int target_code_size;
const uint32_t *src;
/* convert bus-width dependent algorithm code to correct endiannes */
switch (bank->bus_width)
{
case 1:
src = word_8_code;
target_code_size = sizeof(word_8_code);
break;
case 2:
src = word_16_code;
target_code_size = sizeof(word_16_code);
break;
case 4:
src = word_32_code;
target_code_size = sizeof(word_32_code);
break;
default:
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
return ERROR_FLASH_OPERATION_FAILED;
}
target_code = malloc(target_code_size);
cfi_fix_code_endian(target, target_code, src, target_code_size / 4);
/* allocate working area */
retval = target_alloc_working_area(target, target_code_size,
&cfi_info->write_algorithm);
if (retval != ERROR_OK)
{
free(target_code);
return retval;
}
/* write algorithm code to working area */
if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
target_code_size, target_code)) != ERROR_OK)
{
free(target_code);
return retval;
}
free(target_code);
}
/* the following code still assumes target code is fixed 24*4 bytes */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
if (cfi_info->write_algorithm)
target_free_working_area(target, cfi_info->write_algorithm);
LOG_WARNING("not enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
init_reg_param(®_params[3], "r3", 32, PARAM_OUT);
init_reg_param(®_params[4], "r4", 32, PARAM_OUT);
init_reg_param(®_params[5], "r5", 32, PARAM_IN);
init_reg_param(®_params[6], "r8", 32, PARAM_OUT);
init_reg_param(®_params[7], "r9", 32, PARAM_OUT);
init_reg_param(®_params[8], "r10", 32, PARAM_OUT);
init_reg_param(®_params[9], "r11", 32, PARAM_OUT);
while (count > 0)
{
uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
retvaltemp = target_write_buffer(target, source->address, thisrun_count, buffer);
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
cfi_info->write_algorithm->address,
cfi_info->write_algorithm->address + ((24 * 4) - 4),
10000, &armv4_5_info);
status = buf_get_u32(reg_params[5].value, 0, 32);
if ((retval != ERROR_OK) || (retvaltemp != ERROR_OK) || status != 0x80)
{
LOG_DEBUG("status: 0x%" PRIx32 , status);
exit_code = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count;
address += thisrun_count;
count -= thisrun_count;
}
target_free_working_area(target, source);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
destroy_reg_param(®_params[4]);
destroy_reg_param(®_params[5]);
destroy_reg_param(®_params[6]);
destroy_reg_param(®_params[7]);
destroy_reg_param(®_params[8]);
destroy_reg_param(®_params[9]);
return exit_code;
}
static int cfi_intel_write_word(struct flash_bank_s *bank, uint8_t *word, uint32_t address)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
target_t *target = bank->target;
uint8_t command[8];
cfi_intel_clear_status_register(bank);
cfi_command(bank, 0x40, command);
if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
{
return retval;
}
if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != 0x80)
{
cfi_command(bank, 0xff, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_intel_write_words(struct flash_bank_s *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
target_t *target = bank->target;
uint8_t command[8];
/* Calculate buffer size and boundary mask */
uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize;
/* Check for valid range */
if (address & buffermask)
{
LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary",
bank->base, address, cfi_info->max_buf_write_size);
return ERROR_FLASH_OPERATION_FAILED;
}
switch (bank->chip_width)
{
case 4 : bufferwsize = buffersize / 4; break;
case 2 : bufferwsize = buffersize / 2; break;
case 1 : bufferwsize = buffersize; break;
default:
LOG_ERROR("Unsupported chip width %d", bank->chip_width);
return ERROR_FLASH_OPERATION_FAILED;
}
bufferwsize/=(bank->bus_width / bank->chip_width);
/* Check for valid size */
if (wordcount > bufferwsize)
{
LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32 , wordcount, buffersize);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Write to flash buffer */
cfi_intel_clear_status_register(bank);
/* Initiate buffer operation _*/
cfi_command(bank, 0xE8, command);
if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
{
cfi_command(bank, 0xff, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Write buffer wordcount-1 and data words */
cfi_command(bank, bufferwsize-1, command);
if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
{
return retval;
}
/* Commit write operation */
cfi_command(bank, 0xd0, command);
if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
{
cfi_command(bank, 0xff, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Buffer write at base 0x%" PRIx32 ", address %" PRIx32 " failed.", bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_spansion_write_word(struct flash_bank_s *bank, uint8_t *word, uint32_t address)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
target_t *target = bank->target;
uint8_t command[8];
cfi_command(bank, 0xaa, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x55, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0xa0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
{
return retval;
}
if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
{
cfi_command(bank, 0xf0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_spansion_write_words(struct flash_bank_s *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
target_t *target = bank->target;
uint8_t command[8];
cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
/* Calculate buffer size and boundary mask */
uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize;
/* Check for valid range */
if (address & buffermask)
{
LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
return ERROR_FLASH_OPERATION_FAILED;
}
switch (bank->chip_width)
{
case 4 : bufferwsize = buffersize / 4; break;
case 2 : bufferwsize = buffersize / 2; break;
case 1 : bufferwsize = buffersize; break;
default:
LOG_ERROR("Unsupported chip width %d", bank->chip_width);
return ERROR_FLASH_OPERATION_FAILED;
}
bufferwsize/=(bank->bus_width / bank->chip_width);
/* Check for valid size */
if (wordcount > bufferwsize)
{
LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize);
return ERROR_FLASH_OPERATION_FAILED;
}
// Unlock
cfi_command(bank, 0xaa, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x55, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
// Buffer load command
cfi_command(bank, 0x25, command);
if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
/* Write buffer wordcount-1 and data words */
cfi_command(bank, bufferwsize-1, command);
if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
{
return retval;
}
/* Commit write operation */
cfi_command(bank, 0x29, command);
if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
{
cfi_command(bank, 0xf0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("couldn't write block at base 0x%" PRIx32 ", address %" PRIx32 ", size %" PRIx32 , bank->base, address, bufferwsize);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_write_word(struct flash_bank_s *bank, uint8_t *word, uint32_t address)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
switch (cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_write_word(bank, word, address);
break;
case 2:
return cfi_spansion_write_word(bank, word, address);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_FLASH_OPERATION_FAILED;
}
static int cfi_write_words(struct flash_bank_s *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
switch (cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_write_words(bank, word, wordcount, address);
break;
case 2:
return cfi_spansion_write_words(bank, word, wordcount, address);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_FLASH_OPERATION_FAILED;
}
int cfi_write(struct flash_bank_s *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
target_t *target = bank->target;
uint32_t address = bank->base + offset; /* address of first byte to be programmed */
uint32_t write_p, copy_p;
int align; /* number of unaligned bytes */
int blk_count; /* number of bus_width bytes for block copy */
uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
int i;
int retval;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > bank->size)
return ERROR_FLASH_DST_OUT_OF_BANK;
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
/* start at the first byte of the first word (bus_width size) */
write_p = address & ~(bank->bus_width - 1);
if ((align = address - write_p) != 0)
{
LOG_INFO("Fixup %d unaligned head bytes", align);
for (i = 0; i < bank->bus_width; i++)
current_word[i] = 0;
copy_p = write_p;
/* copy bytes before the first write address */
for (i = 0; i < align; ++i, ++copy_p)
{
uint8_t byte;
if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
{
return retval;
}
cfi_add_byte(bank, current_word, byte);
}
/* add bytes from the buffer */
for (; (i < bank->bus_width) && (count > 0); i++)
{
cfi_add_byte(bank, current_word, *buffer++);
count--;
copy_p++;
}
/* if the buffer is already finished, copy bytes after the last write address */
for (; (count == 0) && (i < bank->bus_width); ++i, ++copy_p)
{
uint8_t byte;
if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
{
return retval;
}
cfi_add_byte(bank, current_word, byte);
}
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
write_p = copy_p;
}
/* handle blocks of bus_size aligned bytes */
blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
switch (cfi_info->pri_id)
{
/* try block writes (fails without working area) */
case 1:
case 3:
retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
break;
case 2:
retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (retval == ERROR_OK)
{
/* Increment pointers and decrease count on succesful block write */
buffer += blk_count;
write_p += blk_count;
count -= blk_count;
}
else
{
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
//adjust buffersize for chip width
uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize;
switch (bank->chip_width)
{
case 4 : bufferwsize = buffersize / 4; break;
case 2 : bufferwsize = buffersize / 2; break;
case 1 : bufferwsize = buffersize; break;
default:
LOG_ERROR("Unsupported chip width %d", bank->chip_width);
return ERROR_FLASH_OPERATION_FAILED;
}
bufferwsize/=(bank->bus_width / bank->chip_width);
/* fall back to memory writes */
while (count >= (uint32_t)bank->bus_width)
{
int fallback;
if ((write_p & 0xff) == 0)
{
LOG_INFO("Programming at %08" PRIx32 ", count %08" PRIx32 " bytes remaining", write_p, count);
}
fallback = 1;
if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
{
retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
if (retval == ERROR_OK)
{
buffer += buffersize;
write_p += buffersize;
count -= buffersize;
fallback = 0;
}
}
/* try the slow way? */
if (fallback)
{
for (i = 0; i < bank->bus_width; i++)
current_word[i] = 0;
for (i = 0; i < bank->bus_width; i++)
{
cfi_add_byte(bank, current_word, *buffer++);
}
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
write_p += bank->bus_width;
count -= bank->bus_width;
}
}
}
else
return retval;
}
/* return to read array mode, so we can read from flash again for padding */
cfi_command(bank, 0xf0, current_word);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0xff, current_word);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word)) != ERROR_OK)
{
return retval;
}
/* handle unaligned tail bytes */
if (count > 0)
{
LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
copy_p = write_p;
for (i = 0; i < bank->bus_width; i++)
current_word[i] = 0;
for (i = 0; (i < bank->bus_width) && (count > 0); ++i, ++copy_p)
{
cfi_add_byte(bank, current_word, *buffer++);
count--;
}
for (; i < bank->bus_width; ++i, ++copy_p)
{
uint8_t byte;
if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
{
return retval;
}
cfi_add_byte(bank, current_word, byte);
}
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
}
/* return to read array mode */
cfi_command(bank, 0xf0, current_word);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0xff, current_word);
return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word);
}
static void cfi_fixup_atmel_reversed_erase_regions(flash_bank_t *bank, void *param)
{
(void) param;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
pri_ext->_reversed_geometry = 1;
}
static void cfi_fixup_0002_erase_regions(flash_bank_t *bank, void *param)
{
int i;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
(void) param;
if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
{
LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
{
int j = (cfi_info->num_erase_regions - 1) - i;
uint32_t swap;
swap = cfi_info->erase_region_info[i];
cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
cfi_info->erase_region_info[j] = swap;
}
}
}
static void cfi_fixup_0002_unlock_addresses(flash_bank_t *bank, void *param)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
cfi_unlock_addresses_t *unlock_addresses = param;
pri_ext->_unlock1 = unlock_addresses->unlock1;
pri_ext->_unlock2 = unlock_addresses->unlock2;
}
static int cfi_probe(struct flash_bank_s *bank)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
target_t *target = bank->target;
uint8_t command[8];
int num_sectors = 0;
int i;
int sector = 0;
uint32_t unlock1 = 0x555;
uint32_t unlock2 = 0x2aa;
int retval;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
cfi_info->probed = 0;
/* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
* while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
*/
if (cfi_info->jedec_probe)
{
unlock1 = 0x5555;
unlock2 = 0x2aaa;
}
/* switch to read identifier codes mode ("AUTOSELECT") */
cfi_command(bank, 0xaa, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x55, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, unlock2), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x90, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
if (bank->chip_width == 1)
{
uint8_t manufacturer, device_id;
if ((retval = target_read_u8(target, flash_address(bank, 0, 0x00), &manufacturer)) != ERROR_OK)
{
return retval;
}
if ((retval = target_read_u8(target, flash_address(bank, 0, 0x01), &device_id)) != ERROR_OK)
{
return retval;
}
cfi_info->manufacturer = manufacturer;
cfi_info->device_id = device_id;
}
else if (bank->chip_width == 2)
{
if ((retval = target_read_u16(target, flash_address(bank, 0, 0x00), &cfi_info->manufacturer)) != ERROR_OK)
{
return retval;
}
if ((retval = target_read_u16(target, flash_address(bank, 0, 0x02), &cfi_info->device_id)) != ERROR_OK)
{
return retval;
}
}
LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x", cfi_info->manufacturer, cfi_info->device_id);
/* switch back to read array mode */
cfi_command(bank, 0xf0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0xff, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
/* check device/manufacturer ID for known non-CFI flashes. */
cfi_fixup_non_cfi(bank);
/* query only if this is a CFI compatible flash,
* otherwise the relevant info has already been filled in
*/
if (cfi_info->not_cfi == 0)
{
/* enter CFI query mode
* according to JEDEC Standard No. 68.01,
* a single bus sequence with address = 0x55, data = 0x98 should put
* the device into CFI query mode.
*
* SST flashes clearly violate this, and we will consider them incompatbile for now
*/
cfi_command(bank, 0x98, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_info->qry[0] = cfi_query_u8(bank, 0, 0x10);
cfi_info->qry[1] = cfi_query_u8(bank, 0, 0x11);
cfi_info->qry[2] = cfi_query_u8(bank, 0, 0x12);
LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
{
cfi_command(bank, 0xf0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0xff, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
LOG_ERROR("Could not probe bank: no QRY");
return ERROR_FLASH_BANK_INVALID;
}
cfi_info->pri_id = cfi_query_u16(bank, 0, 0x13);
cfi_info->pri_addr = cfi_query_u16(bank, 0, 0x15);
cfi_info->alt_id = cfi_query_u16(bank, 0, 0x17);
cfi_info->alt_addr = cfi_query_u16(bank, 0, 0x19);
LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
cfi_info->vcc_min = cfi_query_u8(bank, 0, 0x1b);
cfi_info->vcc_max = cfi_query_u8(bank, 0, 0x1c);
cfi_info->vpp_min = cfi_query_u8(bank, 0, 0x1d);
cfi_info->vpp_max = cfi_query_u8(bank, 0, 0x1e);
cfi_info->word_write_timeout_typ = cfi_query_u8(bank, 0, 0x1f);
cfi_info->buf_write_timeout_typ = cfi_query_u8(bank, 0, 0x20);
cfi_info->block_erase_timeout_typ = cfi_query_u8(bank, 0, 0x21);
cfi_info->chip_erase_timeout_typ = cfi_query_u8(bank, 0, 0x22);
cfi_info->word_write_timeout_max = cfi_query_u8(bank, 0, 0x23);
cfi_info->buf_write_timeout_max = cfi_query_u8(bank, 0, 0x24);
cfi_info->block_erase_timeout_max = cfi_query_u8(bank, 0, 0x25);
cfi_info->chip_erase_timeout_max = cfi_query_u8(bank, 0, 0x26);
LOG_DEBUG("Vcc min: %1.1x.%1.1x, Vcc max: %1.1x.%1.1x, Vpp min: %1.1x.%1.1x, Vpp max: %1.1x.%1.1x",
(cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
(cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
(cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
(cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
(1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
(1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
(1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
cfi_info->dev_size = 1 << cfi_query_u8(bank, 0, 0x27);
cfi_info->interface_desc = cfi_query_u16(bank, 0, 0x28);
cfi_info->max_buf_write_size = cfi_query_u16(bank, 0, 0x2a);
cfi_info->num_erase_regions = cfi_query_u8(bank, 0, 0x2c);
LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x", cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
if (cfi_info->num_erase_regions)
{
cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions);
for (i = 0; i < cfi_info->num_erase_regions; i++)
{
cfi_info->erase_region_info[i] = cfi_query_u32(bank, 0, 0x2d + (4 * i));
LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
i,
(cfi_info->erase_region_info[i] & 0xffff) + 1,
(cfi_info->erase_region_info[i] >> 16) * 256);
}
}
else
{
cfi_info->erase_region_info = NULL;
}
/* We need to read the primary algorithm extended query table before calculating
* the sector layout to be able to apply fixups
*/
switch (cfi_info->pri_id)
{
/* Intel command set (standard and extended) */
case 0x0001:
case 0x0003:
cfi_read_intel_pri_ext(bank);
break;
/* AMD/Spansion, Atmel, ... command set */
case 0x0002:
cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */
cfi_read_0002_pri_ext(bank);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
/* return to read array mode
* we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
*/
cfi_command(bank, 0xf0, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0xff, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
} /* end CFI case */
/* apply fixups depending on the primary command set */
switch (cfi_info->pri_id)
{
/* Intel command set (standard and extended) */
case 0x0001:
case 0x0003:
cfi_fixup(bank, cfi_0001_fixups);
break;
/* AMD/Spansion, Atmel, ... command set */
case 0x0002:
cfi_fixup(bank, cfi_0002_fixups);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size)
{
LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32 " size flash was found", bank->size, cfi_info->dev_size);
}
if (cfi_info->num_erase_regions == 0)
{
/* a device might have only one erase block, spanning the whole device */
bank->num_sectors = 1;
bank->sectors = malloc(sizeof(flash_sector_t));
bank->sectors[sector].offset = 0x0;
bank->sectors[sector].size = bank->size;
bank->sectors[sector].is_erased = -1;
bank->sectors[sector].is_protected = -1;
}
else
{
uint32_t offset = 0;
for (i = 0; i < cfi_info->num_erase_regions; i++)
{
num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
}
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(flash_sector_t) * num_sectors);
for (i = 0; i < cfi_info->num_erase_regions; i++)
{
uint32_t j;
for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
{
bank->sectors[sector].offset = offset;
bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width;
offset += bank->sectors[sector].size;
bank->sectors[sector].is_erased = -1;
bank->sectors[sector].is_protected = -1;
sector++;
}
}
if (offset != cfi_info->dev_size)
{
LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", cfi_info->dev_size, offset);
}
}
cfi_info->probed = 1;
return ERROR_OK;
}
static int cfi_auto_probe(struct flash_bank_s *bank)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
if (cfi_info->probed)
return ERROR_OK;
return cfi_probe(bank);
}
static int cfi_intel_protect_check(struct flash_bank_s *bank)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext;
target_t *target = bank->target;
uint8_t command[CFI_MAX_BUS_WIDTH];
int i;
/* check if block lock bits are supported on this device */
if (!(pri_ext->blk_status_reg_mask & 0x1))
return ERROR_FLASH_OPERATION_FAILED;
cfi_command(bank, 0x90, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
for (i = 0; i < bank->num_sectors; i++)
{
uint8_t block_status = cfi_get_u8(bank, i, 0x2);
if (block_status & 1)
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
cfi_command(bank, 0xff, command);
return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
}
static int cfi_spansion_protect_check(struct flash_bank_s *bank)
{
int retval;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext;
target_t *target = bank->target;
uint8_t command[8];
int i;
cfi_command(bank, 0xaa, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x55, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
cfi_command(bank, 0x90, command);
if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK)
{
return retval;
}
for (i = 0; i < bank->num_sectors; i++)
{
uint8_t block_status = cfi_get_u8(bank, i, 0x2);
if (block_status & 1)
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
cfi_command(bank, 0xf0, command);
return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command);
}
static int cfi_protect_check(struct flash_bank_s *bank)
{
cfi_flash_bank_t *cfi_info = bank->driver_priv;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
switch (cfi_info->pri_id)
{
case 1:
case 3:
return cfi_intel_protect_check(bank);
break;
case 2:
return cfi_spansion_protect_check(bank);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_OK;
}
static int cfi_info(struct flash_bank_s *bank, char *buf, int buf_size)
{
int printed;
cfi_flash_bank_t *cfi_info = bank->driver_priv;
if (cfi_info->qry[0] == (char)-1)
{
printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
return ERROR_OK;
}
if (cfi_info->not_cfi == 0)
printed = snprintf(buf, buf_size, "\ncfi information:\n");
else
printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n");
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n",
cfi_info->manufacturer, cfi_info->device_id);
buf += printed;
buf_size -= printed;
if (cfi_info->not_cfi == 0)
{
printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Vcc min: %1.1x.%1.1x, Vcc max: %1.1x.%1.1x, Vpp min: %1.1x.%1.1x, Vpp max: %1.1x.%1.1x\n",
(cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
(cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
(cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
(cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n",
1 << cfi_info->word_write_timeout_typ,
1 << cfi_info->buf_write_timeout_typ,
1 << cfi_info->block_erase_timeout_typ,
1 << cfi_info->chip_erase_timeout_typ);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n",
(1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
(1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
(1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
(1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x\n",
cfi_info->dev_size,
cfi_info->interface_desc,
1 << cfi_info->max_buf_write_size);
buf += printed;
buf_size -= printed;
switch (cfi_info->pri_id)
{
case 1:
case 3:
cfi_intel_info(bank, buf, buf_size);
break;
case 2:
cfi_spansion_info(bank, buf, buf_size);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
}
return ERROR_OK;
}