/***************************************************************************
 *   Copyright (C) 2009 by Simon Qian                                      *
 *   SimonQian@SimonQian.com                                               *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "imp.h"
#include <target/avrt.h>


/* AVR_JTAG_Instructions */
#define AVR_JTAG_INS_LEN							4
// Public Instructions:
#define AVR_JTAG_INS_EXTEST							0x00
#define AVR_JTAG_INS_IDCODE							0x01
#define AVR_JTAG_INS_SAMPLE_PRELOAD					0x02
#define AVR_JTAG_INS_BYPASS							0x0F
// AVR Specified Public Instructions:
#define AVR_JTAG_INS_AVR_RESET						0x0C
#define AVR_JTAG_INS_PROG_ENABLE					0x04
#define AVR_JTAG_INS_PROG_COMMANDS					0x05
#define AVR_JTAG_INS_PROG_PAGELOAD					0x06
#define AVR_JTAG_INS_PROG_PAGEREAD					0x07

// Data Registers:
#define AVR_JTAG_REG_Bypass_Len						1
#define AVR_JTAG_REG_DeviceID_Len					32

#define AVR_JTAG_REG_Reset_Len						1
#define AVR_JTAG_REG_JTAGID_Len						32
#define AVR_JTAG_REG_ProgrammingEnable_Len			16
#define AVR_JTAG_REG_ProgrammingCommand_Len			15
#define AVR_JTAG_REG_FlashDataByte_Len				16

struct avrf_type
{
	char name[15];
	uint16_t chip_id;
	int flash_page_size;
	int flash_page_num;
	int eeprom_page_size;
	int eeprom_page_num;
};

struct avrf_flash_bank
{
	int ppage_size;
	int probed;
};

static struct avrf_type avft_chips_info[] =
{
/*	name, chip_id,	flash_page_size, flash_page_num,
 *			eeprom_page_size, eeprom_page_num
 */
	{"atmega128",	0x9702, 256, 512, 8, 512},
	{"at90can128",	0x9781, 256, 512, 8, 512},
};

/* avr program functions */
static int avr_jtag_reset(struct avr_common *avr, uint32_t reset)
{
	avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_AVR_RESET);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, reset ,AVR_JTAG_REG_Reset_Len);

	return ERROR_OK;
}

static int avr_jtag_read_jtagid(struct avr_common *avr, uint32_t *id)
{
	avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_IDCODE);
	avr_jtag_senddat(avr->jtag_info.tap, id, 0, AVR_JTAG_REG_JTAGID_Len);

	return ERROR_OK;
}

static int avr_jtagprg_enterprogmode(struct avr_common *avr)
{
	avr_jtag_reset(avr, 1);

	avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xA370, AVR_JTAG_REG_ProgrammingEnable_Len);

	return ERROR_OK;
}

static int avr_jtagprg_leaveprogmode(struct avr_common *avr)
{
	avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2300, AVR_JTAG_REG_ProgrammingCommand_Len);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3300, AVR_JTAG_REG_ProgrammingCommand_Len);

	avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0, AVR_JTAG_REG_ProgrammingEnable_Len);

	avr_jtag_reset(avr, 0);

	return ERROR_OK;
}

static int avr_jtagprg_chiperase(struct avr_common *avr)
{
	uint32_t poll_value;

	avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2380, AVR_JTAG_REG_ProgrammingCommand_Len);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3180, AVR_JTAG_REG_ProgrammingCommand_Len);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);

	do {
		poll_value = 0;
		avr_jtag_senddat(avr->jtag_info.tap, &poll_value, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);
		if (ERROR_OK != mcu_execute_queue())
		{
			return ERROR_FAIL;
		}
		LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
	} while (!(poll_value & 0x0200));

	return ERROR_OK;
}

static int avr_jtagprg_writeflashpage(struct avr_common *avr, uint8_t *page_buf, uint32_t buf_size, uint32_t addr, uint32_t page_size)
{
	uint32_t i, poll_value;

	avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2310, AVR_JTAG_REG_ProgrammingCommand_Len);

	// load addr high byte
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x0700 | ((addr >> 9) & 0xFF), AVR_JTAG_REG_ProgrammingCommand_Len);

	// load addr low byte
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x0300 | ((addr >> 1) & 0xFF), AVR_JTAG_REG_ProgrammingCommand_Len);

	avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_PAGELOAD);

	for (i = 0; i < page_size; i++)
	{
		if (i < buf_size)
		{
			avr_jtag_senddat(avr->jtag_info.tap, NULL, page_buf[i], 8);
		}
		else
		{
			avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xFF, 8);
		}
	}

	avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);

	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3500, AVR_JTAG_REG_ProgrammingCommand_Len);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
	avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);

	do {
		poll_value = 0;
		avr_jtag_senddat(avr->jtag_info.tap, &poll_value, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
		if (ERROR_OK != mcu_execute_queue())
		{
			return ERROR_FAIL;
		}
		LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
	} while (!(poll_value & 0x0200));

	return ERROR_OK;
}

FLASH_BANK_COMMAND_HANDLER(avrf_flash_bank_command)
{
	struct avrf_flash_bank *avrf_info;

	if (CMD_ARGC < 6)
	{
		LOG_WARNING("incomplete flash_bank avr configuration");
		return ERROR_FLASH_BANK_INVALID;
	}

	avrf_info = malloc(sizeof(struct avrf_flash_bank));
	bank->driver_priv = avrf_info;

	avrf_info->probed = 0;

	return ERROR_OK;
}

static int avrf_erase(struct flash_bank *bank, int first, int last)
{
	struct target *target = bank->target;
	struct avr_common *avr = target->arch_info;
	int status;

	LOG_DEBUG("%s", __FUNCTION__);

	if (target->state != TARGET_HALTED)
	{
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	status = avr_jtagprg_enterprogmode(avr);
	if (status != ERROR_OK)
		return status;

	status = avr_jtagprg_chiperase(avr);
	if (status != ERROR_OK)
		return status;

	return avr_jtagprg_leaveprogmode(avr);
}

static int avrf_protect(struct flash_bank *bank, int set, int first, int last)
{
	LOG_INFO("%s", __FUNCTION__);
	return ERROR_OK;
}

static int avrf_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
	struct target *target = bank->target;
	struct avr_common *avr = target->arch_info;
	uint32_t cur_size, cur_buffer_size, page_size;

	if (bank->target->state != TARGET_HALTED)
	{
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	page_size = bank->sectors[0].size;
	if ((offset % page_size) != 0)
	{
		LOG_WARNING("offset 0x%" PRIx32 " breaks required %" PRIu32 "-byte alignment", offset, page_size);
		return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
	}

	LOG_DEBUG("offset is 0x%08" PRIx32 "", offset);
	LOG_DEBUG("count is %" PRId32 "", count);

	if (ERROR_OK != avr_jtagprg_enterprogmode(avr))
	{
		return ERROR_FAIL;
	}

	cur_size = 0;
	while (count > 0)
	{
		if (count > page_size)
		{
			cur_buffer_size = page_size;
		}
		else
		{
			cur_buffer_size = count;
		}
		avr_jtagprg_writeflashpage(avr, buffer + cur_size, cur_buffer_size, offset + cur_size, page_size);
		count -= cur_buffer_size;
		cur_size += cur_buffer_size;

		keep_alive();
	}

	return avr_jtagprg_leaveprogmode(avr);
}

#define EXTRACT_MFG(X)  (((X) & 0xffe) >> 1)
#define EXTRACT_PART(X) (((X) & 0xffff000) >> 12)
#define EXTRACT_VER(X)  (((X) & 0xf0000000) >> 28)
static int avrf_probe(struct flash_bank *bank)
{
	struct target *target = bank->target;
	struct avrf_flash_bank *avrf_info = bank->driver_priv;
	struct avr_common *avr = target->arch_info;
	struct avrf_type *avr_info = NULL;
	int i;
	uint32_t device_id;

	if (bank->target->state != TARGET_HALTED)
	{
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	avrf_info->probed = 0;

	avr_jtag_read_jtagid(avr, &device_id);
	if (ERROR_OK != mcu_execute_queue())
	{
		return ERROR_FAIL;
	}

	LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
	if (EXTRACT_MFG(device_id) != 0x1F)
	{
		LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected", EXTRACT_MFG(device_id), 0x1F);
	}

	for (i = 0; i < (int)ARRAY_SIZE(avft_chips_info); i++)
	{
		if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id))
		{
			avr_info = &avft_chips_info[i];
			LOG_INFO("target device is %s", avr_info->name);
			break;
		}
	}

	if (avr_info != NULL)
	{
		if (bank->sectors)
		{
			free(bank->sectors);
			bank->sectors = NULL;
		}

		// chip found
		bank->base = 0x00000000;
		bank->size = (avr_info->flash_page_size * avr_info->flash_page_num);
		bank->num_sectors = avr_info->flash_page_num;
		bank->sectors = malloc(sizeof(struct flash_sector) * avr_info->flash_page_num);

		for (i = 0; i < avr_info->flash_page_num; i++)
		{
			bank->sectors[i].offset = i * avr_info->flash_page_size;
			bank->sectors[i].size = avr_info->flash_page_size;
			bank->sectors[i].is_erased = -1;
			bank->sectors[i].is_protected = 1;
		}

		avrf_info->probed = 1;
		return ERROR_OK;
	}
	else
	{
		// chip not supported
		LOG_ERROR("0x%" PRIx32 " is not support for avr", EXTRACT_PART(device_id));

		avrf_info->probed = 1;
		return ERROR_FAIL;
	}
}

static int avrf_auto_probe(struct flash_bank *bank)
{
	struct avrf_flash_bank *avrf_info = bank->driver_priv;
	if (avrf_info->probed)
		return ERROR_OK;
	return avrf_probe(bank);
}

static int avrf_protect_check(struct flash_bank *bank)
{
	LOG_INFO("%s", __FUNCTION__);
	return ERROR_OK;
}

static int avrf_info(struct flash_bank *bank, char *buf, int buf_size)
{
	struct target *target = bank->target;
	struct avr_common *avr = target->arch_info;
	struct avrf_type *avr_info = NULL;
	int i;
	uint32_t device_id;

	if (bank->target->state != TARGET_HALTED)
	{
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	avr_jtag_read_jtagid(avr, &device_id);
	if (ERROR_OK != mcu_execute_queue())
	{
		return ERROR_FAIL;
	}

	LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
	if (EXTRACT_MFG(device_id) != 0x1F)
	{
		LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected", EXTRACT_MFG(device_id), 0x1F);
	}

	for (i = 0; i < (int)ARRAY_SIZE(avft_chips_info); i++)
	{
		if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id))
		{
			avr_info = &avft_chips_info[i];
			LOG_INFO("target device is %s", avr_info->name);

			break;
		}
	}

	if (avr_info != NULL)
	{
		// chip found
		snprintf(buf, buf_size, "%s - Rev: 0x%" PRIx32 "", avr_info->name, EXTRACT_VER(device_id));
		return ERROR_OK;
	}
	else
	{
		// chip not supported
		snprintf(buf, buf_size, "Cannot identify target as a avr\n");
		return ERROR_FLASH_OPERATION_FAILED;
	}
}

static int avrf_mass_erase(struct flash_bank *bank)
{
	struct target *target = bank->target;
	struct avr_common *avr = target->arch_info;

	if (target->state != TARGET_HALTED)
	{
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if ((ERROR_OK != avr_jtagprg_enterprogmode(avr))
		|| (ERROR_OK != avr_jtagprg_chiperase(avr))
		|| (ERROR_OK != avr_jtagprg_leaveprogmode(avr)))
	{
		return ERROR_FAIL;
	}

	return ERROR_OK;
}

COMMAND_HANDLER(avrf_handle_mass_erase_command)
{
	int i;

	if (CMD_ARGC < 1)
	{
		command_print(CMD_CTX, "avr mass_erase <bank>");
		return ERROR_OK;
	}

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	if (avrf_mass_erase(bank) == ERROR_OK)
	{
		/* set all sectors as erased */
		for (i = 0; i < bank->num_sectors; i++)
		{
			bank->sectors[i].is_erased = 1;
		}

		command_print(CMD_CTX, "avr mass erase complete");
	}
	else
	{
		command_print(CMD_CTX, "avr mass erase failed");
	}

	LOG_DEBUG("%s", __FUNCTION__);
	return ERROR_OK;
}

static const struct command_registration avrf_exec_command_handlers[] = {
	{
		.name = "mass_erase",
		.handler = avrf_handle_mass_erase_command,
		.mode = COMMAND_EXEC,
		.help = "erase entire device",
	},
	COMMAND_REGISTRATION_DONE
};
static const struct command_registration avrf_command_handlers[] = {
	{
		.name = "avrf",
		.mode = COMMAND_ANY,
		.help = "AVR flash command group",
		.chain = avrf_exec_command_handlers,
	},
	COMMAND_REGISTRATION_DONE
};

struct flash_driver avr_flash = {
	.name = "avr",
	.commands = avrf_command_handlers,
	.flash_bank_command = avrf_flash_bank_command,
	.erase = avrf_erase,
	.protect = avrf_protect,
	.write = avrf_write,
	.read = default_flash_read,
	.probe = avrf_probe,
	.auto_probe = avrf_auto_probe,
	.erase_check = default_flash_mem_blank_check,
	.protect_check = avrf_protect_check,
	.info = avrf_info,
};