/*************************************************************************** * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ /* STM Serial Memory Interface (SMI) controller is a SPI bus controller * specifically designed for SPI memories. * Only SPI "mode 3" (CPOL=1 and CPHA=1) is supported. * Two working modes are available: * - SW mode: the SPI is controlled by SW. Any custom commands can be sent * on the bus. * - HW mode: the SPI but is under SMI control. Memory content is directly * accessible in CPU memory space. CPU can read, write and execute memory * content. */ /* ATTENTION: * To have flash memory mapped in CPU memory space, the SMI controller * have to be in "HW mode". This requires following constraints: * 1) The command "reset init" have to initialize SMI controller and put * it in HW mode; * 2) every command in this file have to return to prompt in HW mode. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include <jtag/jtag.h> #include <helper/time_support.h> #define SMI_READ_REG(a) (_SMI_READ_REG(a)) #define _SMI_READ_REG(a) \ { \ int __a; \ uint32_t __v; \ \ __a = target_read_u32(target, io_base + (a), &__v); \ if (__a != ERROR_OK) \ return __a; \ __v; \ } #define SMI_WRITE_REG(a,v) \ { \ int __r; \ \ __r = target_write_u32(target, io_base + (a), (v)); \ if (__r != ERROR_OK) \ return __r; \ } #define SMI_POLL_TFF(timeout) \ { \ int __r; \ \ __r = poll_tff(target, io_base, timeout); \ if (__r != ERROR_OK) \ return __r; \ } #define SMI_SET_SW_MODE() SMI_WRITE_REG(SMI_CR1, \ SMI_READ_REG(SMI_CR1) | SMI_SW_MODE) #define SMI_SET_HWWB_MODE() SMI_WRITE_REG(SMI_CR1, \ (SMI_READ_REG(SMI_CR1) | SMI_WB_MODE) & ~SMI_SW_MODE) #define SMI_SET_HW_MODE() SMI_WRITE_REG(SMI_CR1, \ SMI_READ_REG(SMI_CR1) & ~(SMI_SW_MODE | SMI_WB_MODE)) #define SMI_CLEAR_TFF() SMI_WRITE_REG(SMI_SR, ~SMI_TFF) #define SMI_BANK_SIZE (0x01000000) #define SMI_CR1 (0x00) /* Control register 1 */ #define SMI_CR2 (0x04) /* Control register 2 */ #define SMI_SR (0x08) /* Status register */ #define SMI_TR (0x0c) /* TX */ #define SMI_RR (0x10) /* RX */ /* fields in SMI_CR1 */ #define SMI_SW_MODE 0x10000000 /* set to enable SW Mode */ #define SMI_WB_MODE 0x20000000 /* Write Burst Mode */ /* fields in SMI_CR2 */ #define SMI_TX_LEN_1 0x00000001 /* data length = 1 byte */ #define SMI_TX_LEN_4 0x00000004 /* data length = 4 byte */ #define SMI_RX_LEN_3 0x00000030 /* data length = 3 byte */ #define SMI_SEND 0x00000080 /* Send data */ #define SMI_RSR 0x00000400 /* reads status reg */ #define SMI_WE 0x00000800 /* Write Enable */ #define SMI_SEL_BANK0 0x00000000 /* Select Bank0 */ #define SMI_SEL_BANK1 0x00001000 /* Select Bank1 */ #define SMI_SEL_BANK2 0x00002000 /* Select Bank2 */ #define SMI_SEL_BANK3 0x00003000 /* Select Bank3 */ /* fields in SMI_SR */ #define SMI_WIP_BIT 0x00000001 /* WIP Bit of SPI SR on SMI SR */ #define SMI_WEL_BIT 0x00000002 /* WEL Bit of SPI SR on SMI SR */ #define SMI_TFF 0x00000100 /* Transfer Finished Flag */ /* Commands */ #define SMI_READ_ID 0x0000009F /* Read Flash Identification */ /* Timeout in ms */ #define SMI_CMD_TIMEOUT (100) #define SMI_PROBE_TIMEOUT (100) #define SMI_MAX_TIMEOUT (3000) struct stmsmi_flash_bank { int probed; uint32_t io_base; uint32_t bank_num; struct flash_device *dev; }; /* data structure to maintain flash ids from different vendors */ struct flash_device { char *name; uint8_t erase_cmd; uint32_t device_id; uint32_t pagesize; unsigned long sectorsize; unsigned long size_in_bytes; }; #define FLASH_ID(n, es, id, psize, ssize, size) \ { \ .name = n, \ .erase_cmd = es, \ .device_id = id, \ .pagesize = psize, \ .sectorsize = ssize, \ .size_in_bytes = size \ } /* List below is taken from Linux driver. It is not exhaustive of all the * possible SPI memories, nor exclusive for SMI. Could be shared with * other SPI drivers. */ static struct flash_device flash_devices[] = { /* name, erase_cmd, device_id, pagesize, sectorsize, size_in_bytes */ FLASH_ID("st m25p05", 0xd8, 0x00102020, 0x80, 0x8000, 0x10000), FLASH_ID("st m25p10", 0xd8, 0x00112020, 0x80, 0x8000, 0x20000), FLASH_ID("st m25p20", 0xd8, 0x00122020, 0x100, 0x10000, 0x40000), FLASH_ID("st m25p40", 0xd8, 0x00132020, 0x100, 0x10000, 0x80000), FLASH_ID("st m25p80", 0xd8, 0x00142020, 0x100, 0x10000, 0x100000), FLASH_ID("st m25p16", 0xd8, 0x00152020, 0x100, 0x10000, 0x200000), FLASH_ID("st m25p32", 0xd8, 0x00162020, 0x100, 0x10000, 0x400000), FLASH_ID("st m25p64", 0xd8, 0x00172020, 0x100, 0x10000, 0x800000), FLASH_ID("st m25p128", 0xd8, 0x00182020, 0x100, 0x40000, 0x1000000), FLASH_ID("st m45pe10", 0xd8, 0x00114020, 0x100, 0x10000, 0x20000), FLASH_ID("st m45pe20", 0xd8, 0x00124020, 0x100, 0x10000, 0x40000), FLASH_ID("st m45pe40", 0xd8, 0x00134020, 0x100, 0x10000, 0x80000), FLASH_ID("st m45pe80", 0xd8, 0x00144020, 0x100, 0x10000, 0x100000), FLASH_ID("sp s25fl004", 0xd8, 0x00120201, 0x100, 0x10000, 0x80000), FLASH_ID("sp s25fl008", 0xd8, 0x00130201, 0x100, 0x10000, 0x100000), FLASH_ID("sp s25fl016", 0xd8, 0x00140201, 0x100, 0x10000, 0x200000), FLASH_ID("sp s25fl032", 0xd8, 0x00150201, 0x100, 0x10000, 0x400000), FLASH_ID("sp s25fl064", 0xd8, 0x00160201, 0x100, 0x10000, 0x800000), FLASH_ID("atmel 25f512", 0x52, 0x0065001f, 0x80, 0x8000, 0x10000), FLASH_ID("atmel 25f1024", 0x52, 0x0060001f, 0x100, 0x8000, 0x20000), FLASH_ID("atmel 25f2048", 0x52, 0x0063001f, 0x100, 0x10000, 0x40000), FLASH_ID("atmel 25f4096", 0x52, 0x0064001f, 0x100, 0x10000, 0x80000), FLASH_ID("atmel 25fs040", 0xd7, 0x0004661f, 0x100, 0x10000, 0x80000), FLASH_ID("mac 25l512", 0xd8, 0x001020c2, 0x010, 0x10000, 0x10000), FLASH_ID("mac 25l1005", 0xd8, 0x001120c2, 0x010, 0x10000, 0x20000), FLASH_ID("mac 25l2005", 0xd8, 0x001220c2, 0x010, 0x10000, 0x40000), FLASH_ID("mac 25l4005", 0xd8, 0x001320c2, 0x010, 0x10000, 0x80000), FLASH_ID("mac 25l8005", 0xd8, 0x001420c2, 0x010, 0x10000, 0x100000), FLASH_ID("mac 25l1605", 0xd8, 0x001520c2, 0x100, 0x10000, 0x200000), FLASH_ID("mac 25l3205", 0xd8, 0x001620c2, 0x100, 0x10000, 0x400000), FLASH_ID("mac 25l6405", 0xd8, 0x001720c2, 0x100, 0x10000, 0x800000), FLASH_ID(NULL, 0, 0, 0, 0, 0) }; struct stmsmi_target { char *name; uint32_t tap_idcode; uint32_t smi_base; uint32_t io_base; }; static struct stmsmi_target target_devices[] = { /* name, tap_idcode, smi_base, io_base */ { "SPEAr3xx/6xx", 0x07926041, 0xf8000000, 0xfc000000 }, { "STR75x", 0x4f1f0041, 0x80000000, 0x90000000 }, { NULL, 0, 0, 0 } }; FLASH_BANK_COMMAND_HANDLER(stmsmi_flash_bank_command) { struct stmsmi_flash_bank *stmsmi_info; LOG_DEBUG("%s", __FUNCTION__); if (CMD_ARGC < 6) { LOG_WARNING("incomplete flash_bank stmsmi configuration"); return ERROR_FLASH_BANK_INVALID; } stmsmi_info = malloc(sizeof(struct stmsmi_flash_bank)); if (stmsmi_info == NULL) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } bank->driver_priv = stmsmi_info; stmsmi_info->probed = 0; return ERROR_OK; } /* Poll transmit finished flag */ /* timeout in ms */ static int poll_tff(struct target *target, uint32_t io_base, int timeout) { long long endtime; if (SMI_READ_REG(SMI_SR) & SMI_TFF) return ERROR_OK; endtime = timeval_ms() + timeout; do { alive_sleep(1); if (SMI_READ_REG(SMI_SR) & SMI_TFF) return ERROR_OK; } while (timeval_ms() < endtime); LOG_ERROR("Timeout while polling TFF"); return ERROR_FLASH_OPERATION_FAILED; } /* Read the status register of the external SPI flash chip. * The operation is triggered by setting SMI_RSR bit. * SMI sends the proper SPI command (0x05) and returns value in SMI_SR */ static int read_status_reg(struct flash_bank *bank, uint32_t *status) { struct target *target = bank->target; struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; uint32_t io_base = stmsmi_info->io_base; /* clear transmit finished flag */ SMI_CLEAR_TFF(); /* Read status */ SMI_WRITE_REG(SMI_CR2, stmsmi_info->bank_num | SMI_RSR); /* Poll transmit finished flag */ SMI_POLL_TFF(SMI_CMD_TIMEOUT); /* clear transmit finished flag */ SMI_CLEAR_TFF(); *status = SMI_READ_REG(SMI_SR) & 0x0000ffff; /* clean-up SMI_CR2 */ SMI_WRITE_REG(SMI_CR2, 0); /* AB: Required ? */ return ERROR_OK; } /* check for WIP (write in progress) bit in status register */ /* timeout in ms */ static int wait_till_ready(struct flash_bank *bank, int timeout) { uint32_t status; int retval; long long endtime; endtime = timeval_ms() + timeout; do { /* read flash status register */ retval = read_status_reg(bank, &status); if (retval != ERROR_OK) return retval; if ((status & SMI_WIP_BIT) == 0) return ERROR_OK; alive_sleep(1); } while (timeval_ms() < endtime); LOG_ERROR("timeout"); return ERROR_FAIL; } /* Send "write enable" command to SPI flash chip. * The operation is triggered by setting SMI_WE bit, and SMI sends * the proper SPI command (0x06) */ static int smi_write_enable(struct flash_bank *bank) { struct target *target = bank->target; struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; uint32_t io_base = stmsmi_info->io_base; uint32_t status; int retval; /* Enter in HW mode */ SMI_SET_HW_MODE(); /* AB: is this correct ?*/ /* clear transmit finished flag */ SMI_CLEAR_TFF(); /* Send write enable command */ SMI_WRITE_REG(SMI_CR2, stmsmi_info->bank_num | SMI_WE); /* Poll transmit finished flag */ SMI_POLL_TFF(SMI_CMD_TIMEOUT); /* read flash status register */ retval = read_status_reg(bank, &status); if (retval != ERROR_OK) return retval; /* Check write enabled */ if ((status & SMI_WEL_BIT) == 0) { LOG_ERROR("Cannot enable write to flash. Status=0x%08" PRIx32, status); return ERROR_FAIL; } return ERROR_OK; } static uint32_t erase_command(struct stmsmi_flash_bank *stmsmi_info, uint32_t offset) { union { uint32_t command; uint8_t x[4]; } cmd; cmd.x[0] = stmsmi_info->dev->erase_cmd; cmd.x[1] = offset >> 16; cmd.x[2] = offset >> 8; cmd.x[3] = offset; return cmd.command; } static int smi_erase_sector(struct flash_bank *bank, int sector) { struct target *target = bank->target; struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; uint32_t io_base = stmsmi_info->io_base; uint32_t cmd; int retval; retval = smi_write_enable(bank); if (retval != ERROR_OK) return retval; /* Switch to SW mode to send sector erase command */ SMI_SET_SW_MODE(); /* clear transmit finished flag */ SMI_CLEAR_TFF(); /* send SPI command "block erase" */ cmd = erase_command(stmsmi_info, bank->sectors[sector].offset); SMI_WRITE_REG(SMI_TR, cmd); SMI_WRITE_REG(SMI_CR2, stmsmi_info->bank_num | SMI_SEND | SMI_TX_LEN_4); /* Poll transmit finished flag */ SMI_POLL_TFF(SMI_CMD_TIMEOUT); /* poll WIP for end of self timed Sector Erase cycle */ retval = wait_till_ready(bank, SMI_MAX_TIMEOUT); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stmsmi_erase(struct flash_bank *bank, int first, int last) { struct target *target = bank->target; struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; uint32_t io_base = stmsmi_info->io_base; int retval = ERROR_OK; int sector; LOG_DEBUG("%s: from sector %d to sector %d", __FUNCTION__, first, last); if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first < 0) || (last < first) || (last >= bank->num_sectors)) { LOG_ERROR("Flash sector invalid"); return ERROR_FLASH_SECTOR_INVALID; } if (!(stmsmi_info->probed)) { LOG_ERROR("Flash bank not probed"); return ERROR_FLASH_BANK_NOT_PROBED; } for (sector = first; sector <= last; sector++) { if (bank->sectors[sector].is_protected) { LOG_ERROR("Flash sector %d protected", sector); return ERROR_FAIL; } } for (sector = first; sector <= last; sector++) { retval = smi_erase_sector(bank, sector); if (retval != ERROR_OK) break; keep_alive(); } /* Switch to HW mode before return to prompt */ SMI_SET_HW_MODE(); return retval; } static int stmsmi_protect(struct flash_bank *bank, int set, int first, int last) { int sector; for (sector = first; sector <= last; sector++) bank->sectors[sector].is_protected = set; return ERROR_OK; } static int smi_write_buffer(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t len) { struct target *target = bank->target; struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; uint32_t io_base = stmsmi_info->io_base; int retval; LOG_DEBUG("%s: address=0x%08" PRIx32 " len=0x%08" PRIx32, __FUNCTION__, address, len); retval = smi_write_enable(bank); if (retval != ERROR_OK) return retval; /* HW mode, write burst mode */ SMI_SET_HWWB_MODE(); retval = target_write_buffer(target, address, len, buffer); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stmsmi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; uint32_t io_base = stmsmi_info->io_base; uint32_t cur_count, page_size, page_offset; int sector; int retval = ERROR_OK; LOG_DEBUG("%s: offset=0x%08" PRIx32 " count=0x%08" PRIx32, __FUNCTION__, offset, count); if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset + count > stmsmi_info->dev->size_in_bytes) { LOG_WARNING("Write pasts end of flash. Extra data discarded."); count = stmsmi_info->dev->size_in_bytes - offset; } /* Check sector protection */ for (sector = 0; sector < bank->num_sectors; sector++) { /* Start offset in or before this sector? */ /* End offset in or behind this sector? */ if ( (offset < (bank->sectors[sector].offset + bank->sectors[sector].size)) && ((offset + count - 1) >= bank->sectors[sector].offset) && bank->sectors[sector].is_protected ) { LOG_ERROR("Flash sector %d protected", sector); return ERROR_FAIL; } } page_size = stmsmi_info->dev->pagesize; /* unaligned buffer head */ if (count > 0 && (offset & 3) != 0) { cur_count = 4 - (offset & 3); if (cur_count > count) cur_count = count; retval = smi_write_buffer(bank, buffer, bank->base + offset, cur_count); if (retval != ERROR_OK) goto err; offset += cur_count; buffer += cur_count; count -= cur_count; } page_offset = offset % page_size; /* central part, aligned words */ while (count >= 4) { /* clip block at page boundary */ if (page_offset + count > page_size) cur_count = page_size - page_offset; else cur_count = count & ~3; retval = smi_write_buffer(bank, buffer, bank->base + offset, cur_count); if (retval != ERROR_OK) goto err; page_offset = 0; buffer += cur_count; offset += cur_count; count -= cur_count; keep_alive(); } /* buffer tail */ if (count > 0) retval = smi_write_buffer(bank, buffer, bank->base + offset, count); err: /* Switch to HW mode before return to prompt */ SMI_SET_HW_MODE(); return retval; } /* Return ID of flash device */ /* On exit, SW mode is kept */ static int read_flash_id(struct flash_bank *bank, uint32_t *id) { struct target *target = bank->target; struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; uint32_t io_base = stmsmi_info->io_base; int retval; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* poll WIP */ retval = wait_till_ready(bank, SMI_PROBE_TIMEOUT); if (retval != ERROR_OK) return retval; /* enter in SW mode */ SMI_SET_SW_MODE(); /* clear transmit finished flag */ SMI_CLEAR_TFF(); /* Send SPI command "read ID" */ SMI_WRITE_REG(SMI_TR, SMI_READ_ID); SMI_WRITE_REG(SMI_CR2, stmsmi_info->bank_num | SMI_SEND | SMI_RX_LEN_3 | SMI_TX_LEN_1); /* Poll transmit finished flag */ SMI_POLL_TFF(SMI_CMD_TIMEOUT); /* clear transmit finished flag */ SMI_CLEAR_TFF(); /* read ID from Receive Register */ *id = SMI_READ_REG(SMI_RR) & 0x00ffffff; return ERROR_OK; } static int stmsmi_probe(struct flash_bank *bank) { struct target *target = bank->target; struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; uint32_t io_base; struct flash_sector *sectors; uint32_t id = 0; /* silence uninitialized warning */ struct stmsmi_target *target_device; int retval; if (stmsmi_info->probed) free(bank->sectors); stmsmi_info->probed = 0; for (target_device=target_devices ; target_device->name ; ++target_device) if (target_device->tap_idcode == target->tap->idcode) break; if (!target_device->name) { LOG_ERROR("Device ID 0x%" PRIx32 " is not known as SMI capable", target->tap->idcode); return ERROR_FAIL; } switch (bank->base - target_device->smi_base) { case 0: stmsmi_info->bank_num = SMI_SEL_BANK0; break; case SMI_BANK_SIZE: stmsmi_info->bank_num = SMI_SEL_BANK1; break; case 2*SMI_BANK_SIZE: stmsmi_info->bank_num = SMI_SEL_BANK2; break; case 3*SMI_BANK_SIZE: stmsmi_info->bank_num = SMI_SEL_BANK3; break; default: LOG_ERROR("Invalid SMI base address 0x%" PRIx32, bank->base); return ERROR_FAIL; } io_base = target_device->io_base; stmsmi_info->io_base = io_base; LOG_DEBUG("Valid SMI on device %s at address 0x%" PRIx32, target_device->name, bank->base); /* read and decode flash ID; returns in SW mode */ retval = read_flash_id(bank, &id); SMI_SET_HW_MODE(); if (retval != ERROR_OK) return retval; stmsmi_info->dev = NULL; for (struct flash_device *p = flash_devices; p->name ; p++) if (p->device_id == id) { stmsmi_info->dev = p; break; } if (!stmsmi_info->dev) { LOG_ERROR("Unknown flash device (ID 0x%08" PRIx32 ")", id); return ERROR_FAIL; } LOG_INFO("Found flash device \'%s\' (ID 0x%08" PRIx32 ")", stmsmi_info->dev->name, stmsmi_info->dev->device_id); /* Set correct size value */ bank->size = stmsmi_info->dev->size_in_bytes; /* create and fill sectors array */ bank->num_sectors = stmsmi_info->dev->size_in_bytes / stmsmi_info->dev->sectorsize; sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors); if (sectors == NULL) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } for (int sector = 0; sector < bank->num_sectors; sector++) { sectors[sector].offset = sector * stmsmi_info->dev->sectorsize; sectors[sector].size = stmsmi_info->dev->sectorsize; sectors[sector].is_erased = -1; sectors[sector].is_protected = 1; } bank->sectors = sectors; stmsmi_info->probed = 1; return ERROR_OK; } static int stmsmi_auto_probe(struct flash_bank *bank) { struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; if (stmsmi_info->probed) return ERROR_OK; return stmsmi_probe(bank); } static int stmsmi_protect_check(struct flash_bank *bank) { /* Nothing to do. Protection is only handled in SW. */ return ERROR_OK; } static int get_stmsmi_info(struct flash_bank *bank, char *buf, int buf_size) { struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv; int printed; if (!(stmsmi_info->probed)) { printed = snprintf(buf, buf_size, "\nSMI flash bank not probed yet\n"); return ERROR_OK; } printed = snprintf(buf, buf_size, "\nSMI flash information:\n" " Device \'%s\' (ID 0x%08x)\n", stmsmi_info->dev->name, stmsmi_info->dev->device_id); buf += printed; buf_size -= printed; return ERROR_OK; } struct flash_driver stmsmi_flash = { .name = "stmsmi", .flash_bank_command = stmsmi_flash_bank_command, .erase = stmsmi_erase, .protect = stmsmi_protect, .write = stmsmi_write, .read = default_flash_read, .probe = stmsmi_probe, .auto_probe = stmsmi_auto_probe, .erase_check = default_flash_blank_check, .protect_check = stmsmi_protect_check, .info = get_stmsmi_info, };