/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * Copyright (C) 2008 by Oyvind Harboe * * oyvind.harboe@zylin.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include "str9x.h" #include <target/arm966e.h> #include <target/algorithm.h> static uint32_t bank1start = 0x00080000; static int str9x_build_block_list(struct flash_bank *bank) { struct str9x_flash_bank *str9x_info = bank->driver_priv; int i; int num_sectors; int b0_sectors = 0, b1_sectors = 0; uint32_t offset = 0; /* set if we have large flash str9 */ str9x_info->variant = 0; str9x_info->bank1 = 0; switch (bank->size) { case (256 * 1024): b0_sectors = 4; break; case (512 * 1024): b0_sectors = 8; break; case (1024 * 1024): bank1start = 0x00100000; str9x_info->variant = 1; b0_sectors = 16; break; case (2048 * 1024): bank1start = 0x00200000; str9x_info->variant = 1; b0_sectors = 32; break; case (128 * 1024): str9x_info->variant = 1; str9x_info->bank1 = 1; b1_sectors = 8; bank1start = bank->base; break; case (32 * 1024): str9x_info->bank1 = 1; b1_sectors = 4; bank1start = bank->base; break; default: LOG_ERROR("BUG: unknown bank->size encountered"); exit(-1); } num_sectors = b0_sectors + b1_sectors; bank->num_sectors = num_sectors; bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors); str9x_info->sector_bits = malloc(sizeof(uint32_t) * num_sectors); num_sectors = 0; for (i = 0; i < b0_sectors; i++) { bank->sectors[num_sectors].offset = offset; bank->sectors[num_sectors].size = 0x10000; offset += bank->sectors[i].size; bank->sectors[num_sectors].is_erased = -1; bank->sectors[num_sectors].is_protected = 1; str9x_info->sector_bits[num_sectors++] = (1 << i); } for (i = 0; i < b1_sectors; i++) { bank->sectors[num_sectors].offset = offset; bank->sectors[num_sectors].size = str9x_info->variant == 0 ? 0x2000 : 0x4000; offset += bank->sectors[i].size; bank->sectors[num_sectors].is_erased = -1; bank->sectors[num_sectors].is_protected = 1; if (str9x_info->variant) str9x_info->sector_bits[num_sectors++] = (1 << i); else str9x_info->sector_bits[num_sectors++] = (1 << (i + 8)); } return ERROR_OK; } /* flash bank str9x <base> <size> 0 0 <target#> */ FLASH_BANK_COMMAND_HANDLER(str9x_flash_bank_command) { struct str9x_flash_bank *str9x_info; if (CMD_ARGC < 6) { LOG_WARNING("incomplete flash_bank str9x configuration"); return ERROR_FLASH_BANK_INVALID; } str9x_info = malloc(sizeof(struct str9x_flash_bank)); bank->driver_priv = str9x_info; str9x_build_block_list(bank); str9x_info->write_algorithm = NULL; return ERROR_OK; } static int str9x_protect_check(struct flash_bank *bank) { int retval; struct str9x_flash_bank *str9x_info = bank->driver_priv; struct target *target = bank->target; int i; uint32_t adr; uint32_t status = 0; uint16_t hstatus = 0; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* read level one protection */ if (str9x_info->variant) { if (str9x_info->bank1) { adr = bank1start + 0x18; if ((retval = target_write_u16(target, adr, 0x90)) != ERROR_OK) { return retval; } if ((retval = target_read_u16(target, adr, &hstatus)) != ERROR_OK) { return retval; } status = hstatus; } else { adr = bank1start + 0x14; if ((retval = target_write_u16(target, adr, 0x90)) != ERROR_OK) { return retval; } if ((retval = target_read_u32(target, adr, &status)) != ERROR_OK) { return retval; } } } else { adr = bank1start + 0x10; if ((retval = target_write_u16(target, adr, 0x90)) != ERROR_OK) { return retval; } if ((retval = target_read_u16(target, adr, &hstatus)) != ERROR_OK) { return retval; } status = hstatus; } /* read array command */ if ((retval = target_write_u16(target, adr, 0xFF)) != ERROR_OK) { return retval; } for (i = 0; i < bank->num_sectors; i++) { if (status & str9x_info->sector_bits[i]) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } return ERROR_OK; } static int str9x_erase(struct flash_bank *bank, int first, int last) { struct target *target = bank->target; int i; uint32_t adr; uint8_t status; uint8_t erase_cmd; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /*A slower but stable way of erasing*/ /* Erase sector command */ erase_cmd = 0x20; for (i = first; i <= last; i++) { int retval; adr = bank->base + bank->sectors[i].offset; /* erase sectors */ if ((retval = target_write_u16(target, adr, erase_cmd)) != ERROR_OK) { return retval; } if ((retval = target_write_u16(target, adr, 0xD0)) != ERROR_OK) { return retval; } /* get status */ if ((retval = target_write_u16(target, adr, 0x70)) != ERROR_OK) { return retval; } int timeout; for (timeout = 0; timeout < 1000; timeout++) { if ((retval = target_read_u8(target, adr, &status)) != ERROR_OK) { return retval; } if (status & 0x80) break; alive_sleep(1); } if (timeout == 1000) { LOG_ERROR("erase timed out"); return ERROR_FAIL; } /* clear status, also clear read array */ if ((retval = target_write_u16(target, adr, 0x50)) != ERROR_OK) { return retval; } /* read array command */ if ((retval = target_write_u16(target, adr, 0xFF)) != ERROR_OK) { return retval; } if (status & 0x22) { LOG_ERROR("error erasing flash bank, status: 0x%x", status); return ERROR_FLASH_OPERATION_FAILED; } } for (i = first; i <= last; i++) bank->sectors[i].is_erased = 1; return ERROR_OK; } static int str9x_protect(struct flash_bank *bank, int set, int first, int last) { struct target *target = bank->target; int i; uint32_t adr; uint8_t status; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } for (i = first; i <= last; i++) { /* Level One Protection */ adr = bank->base + bank->sectors[i].offset; target_write_u16(target, adr, 0x60); if (set) target_write_u16(target, adr, 0x01); else target_write_u16(target, adr, 0xD0); /* query status */ target_read_u8(target, adr, &status); /* clear status, also clear read array */ target_write_u16(target, adr, 0x50); /* read array command */ target_write_u16(target, adr, 0xFF); } return ERROR_OK; } static int str9x_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct str9x_flash_bank *str9x_info = bank->driver_priv; struct target *target = bank->target; uint32_t buffer_size = 8192; struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[4]; struct arm_algorithm armv4_5_info; int retval = ERROR_OK; uint32_t str9x_flash_write_code[] = { /* write: */ 0xe3c14003, /* bic r4, r1, #3 */ 0xe3a03040, /* mov r3, #0x40 */ 0xe1c430b0, /* strh r3, [r4, #0] */ 0xe0d030b2, /* ldrh r3, [r0], #2 */ 0xe0c130b2, /* strh r3, [r1], #2 */ 0xe3a03070, /* mov r3, #0x70 */ 0xe1c430b0, /* strh r3, [r4, #0] */ /* busy: */ 0xe5d43000, /* ldrb r3, [r4, #0] */ 0xe3130080, /* tst r3, #0x80 */ 0x0afffffc, /* beq busy */ 0xe3a05050, /* mov r5, #0x50 */ 0xe1c450b0, /* strh r5, [r4, #0] */ 0xe3a050ff, /* mov r5, #0xFF */ 0xe1c450b0, /* strh r5, [r4, #0] */ 0xe3130012, /* tst r3, #0x12 */ 0x1a000001, /* bne exit */ 0xe2522001, /* subs r2, r2, #1 */ 0x1affffed, /* bne write */ /* exit: */ 0xeafffffe, /* b exit */ }; /* flash write code */ if (target_alloc_working_area(target, 4 * 19, &str9x_info->write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; target_write_buffer(target, str9x_info->write_algorithm->address, 19 * 4, (uint8_t*)str9x_flash_write_code); /* memory buffer */ while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */ if (str9x_info->write_algorithm) target_free_working_area(target, str9x_info->write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } armv4_5_info.common_magic = ARM_COMMON_MAGIC; armv4_5_info.core_mode = ARM_MODE_SVC; armv4_5_info.core_state = ARM_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); init_reg_param(®_params[2], "r2", 32, PARAM_OUT); init_reg_param(®_params[3], "r3", 32, PARAM_IN); while (count > 0) { uint32_t thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count; target_write_buffer(target, source->address, thisrun_count * 2, buffer); buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, address); buf_set_u32(reg_params[2].value, 0, 32, thisrun_count); if ((retval = target_run_algorithm(target, 0, NULL, 4, reg_params, str9x_info->write_algorithm->address, str9x_info->write_algorithm->address + (18 * 4), 10000, &armv4_5_info)) != ERROR_OK) { LOG_ERROR("error executing str9x flash write algorithm"); retval = ERROR_FLASH_OPERATION_FAILED; break; } if (buf_get_u32(reg_params[3].value, 0, 32) != 0x80) { retval = ERROR_FLASH_OPERATION_FAILED; break; } buffer += thisrun_count * 2; address += thisrun_count * 2; count -= thisrun_count; } target_free_working_area(target, source); target_free_working_area(target, str9x_info->write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); return retval; } static int str9x_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; uint32_t words_remaining = (count / 2); uint32_t bytes_remaining = (count & 0x00000001); uint32_t address = bank->base + offset; uint32_t bytes_written = 0; uint8_t status; int retval; uint32_t check_address = offset; uint32_t bank_adr; int i; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset & 0x1) { LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } for (i = 0; i < bank->num_sectors; i++) { uint32_t sec_start = bank->sectors[i].offset; uint32_t sec_end = sec_start + bank->sectors[i].size; /* check if destination falls within the current sector */ if ((check_address >= sec_start) && (check_address < sec_end)) { /* check if destination ends in the current sector */ if (offset + count < sec_end) check_address = offset + count; else check_address = sec_end; } } if (check_address != offset + count) return ERROR_FLASH_DST_OUT_OF_BANK; /* multiple half words (2-byte) to be programmed? */ if (words_remaining > 0) { /* try using a block write */ if ((retval = str9x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK) { if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* if block write failed (no sufficient working area), * we use normal (slow) single dword accesses */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); } else if (retval == ERROR_FLASH_OPERATION_FAILED) { LOG_ERROR("flash writing failed with error code: 0x%x", retval); return ERROR_FLASH_OPERATION_FAILED; } } else { buffer += words_remaining * 2; address += words_remaining * 2; words_remaining = 0; } } while (words_remaining > 0) { bank_adr = address & ~0x03; /* write data command */ target_write_u16(target, bank_adr, 0x40); target_write_memory(target, address, 2, 1, buffer + bytes_written); /* get status command */ target_write_u16(target, bank_adr, 0x70); int timeout; for (timeout = 0; timeout < 1000; timeout++) { target_read_u8(target, bank_adr, &status); if (status & 0x80) break; alive_sleep(1); } if (timeout == 1000) { LOG_ERROR("write timed out"); return ERROR_FAIL; } /* clear status reg and read array */ target_write_u16(target, bank_adr, 0x50); target_write_u16(target, bank_adr, 0xFF); if (status & 0x10) return ERROR_FLASH_OPERATION_FAILED; else if (status & 0x02) return ERROR_FLASH_OPERATION_FAILED; bytes_written += 2; words_remaining--; address += 2; } if (bytes_remaining) { uint8_t last_halfword[2] = {0xff, 0xff}; int i = 0; while (bytes_remaining > 0) { last_halfword[i++] = *(buffer + bytes_written); bytes_remaining--; bytes_written++; } bank_adr = address & ~0x03; /* write data command */ target_write_u16(target, bank_adr, 0x40); target_write_memory(target, address, 2, 1, last_halfword); /* query status command */ target_write_u16(target, bank_adr, 0x70); int timeout; for (timeout = 0; timeout < 1000; timeout++) { target_read_u8(target, bank_adr, &status); if (status & 0x80) break; alive_sleep(1); } if (timeout == 1000) { LOG_ERROR("write timed out"); return ERROR_FAIL; } /* clear status reg and read array */ target_write_u16(target, bank_adr, 0x50); target_write_u16(target, bank_adr, 0xFF); if (status & 0x10) return ERROR_FLASH_OPERATION_FAILED; else if (status & 0x02) return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int str9x_probe(struct flash_bank *bank) { return ERROR_OK; } #if 0 COMMAND_HANDLER(str9x_handle_part_id_command) { return ERROR_OK; } #endif static int str9x_info(struct flash_bank *bank, char *buf, int buf_size) { snprintf(buf, buf_size, "str9x flash driver info"); return ERROR_OK; } COMMAND_HANDLER(str9x_handle_flash_config_command) { struct str9x_flash_bank *str9x_info; struct target *target = NULL; if (CMD_ARGC < 5) { return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; uint32_t bbsr, nbbsr, bbadr, nbbadr; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], bbsr); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], nbbsr); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], bbadr); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], nbbadr); str9x_info = bank->driver_priv; target = bank->target; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* config flash controller */ target_write_u32(target, FLASH_BBSR, bbsr); target_write_u32(target, FLASH_NBBSR, nbbsr); target_write_u32(target, FLASH_BBADR, bbadr >> 2); target_write_u32(target, FLASH_NBBADR, nbbadr >> 2); /* set bit 18 instruction TCM order as per flash programming manual */ arm966e_write_cp15(target, 62, 0x40000); /* enable flash bank 1 */ target_write_u32(target, FLASH_CR, 0x18); return ERROR_OK; } static const struct command_registration str9x_config_command_handlers[] = { { .name = "flash_config", .handler = &str9x_handle_flash_config_command, .mode = COMMAND_EXEC, .help = "Configure str9x flash controller, prior to " "programming the flash.", .usage = "bank_id BBSR NBBSR BBADR NBBADR", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration str9x_command_handlers[] = { { .name = "str9x", .mode = COMMAND_ANY, .help = "str9x flash command group", .chain = str9x_config_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver str9x_flash = { .name = "str9x", .commands = str9x_command_handlers, .flash_bank_command = &str9x_flash_bank_command, .erase = &str9x_erase, .protect = &str9x_protect, .write = &str9x_write, .probe = &str9x_probe, .auto_probe = &str9x_probe, .erase_check = &default_flash_blank_check, .protect_check = &str9x_protect_check, .info = &str9x_info, };