/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "replacements.h" #include "stm32x.h" #include "flash.h" #include "target.h" #include "log.h" #include "armv7m.h" #include "algorithm.h" #include "binarybuffer.h" #include <stdlib.h> #include <string.h> int stm32x_register_commands(struct command_context_s *cmd_ctx); int stm32x_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank); int stm32x_erase(struct flash_bank_s *bank, int first, int last); int stm32x_protect(struct flash_bank_s *bank, int set, int first, int last); int stm32x_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count); int stm32x_probe(struct flash_bank_s *bank); int stm32x_auto_probe(struct flash_bank_s *bank); int stm32x_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int stm32x_protect_check(struct flash_bank_s *bank); int stm32x_info(struct flash_bank_s *bank, char *buf, int buf_size); int stm32x_handle_lock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int stm32x_handle_unlock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int stm32x_handle_options_read_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int stm32x_handle_options_write_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int stm32x_handle_mass_erase_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int stm32x_mass_erase(struct flash_bank_s *bank); flash_driver_t stm32x_flash = { .name = "stm32x", .register_commands = stm32x_register_commands, .flash_bank_command = stm32x_flash_bank_command, .erase = stm32x_erase, .protect = stm32x_protect, .write = stm32x_write, .probe = stm32x_probe, .auto_probe = stm32x_auto_probe, .erase_check = default_flash_mem_blank_check, .protect_check = stm32x_protect_check, .info = stm32x_info }; int stm32x_register_commands(struct command_context_s *cmd_ctx) { command_t *stm32x_cmd = register_command(cmd_ctx, NULL, "stm32x", NULL, COMMAND_ANY, "stm32x flash specific commands"); register_command(cmd_ctx, stm32x_cmd, "lock", stm32x_handle_lock_command, COMMAND_EXEC, "lock device"); register_command(cmd_ctx, stm32x_cmd, "unlock", stm32x_handle_unlock_command, COMMAND_EXEC, "unlock protected device"); register_command(cmd_ctx, stm32x_cmd, "mass_erase", stm32x_handle_mass_erase_command, COMMAND_EXEC, "mass erase device"); register_command(cmd_ctx, stm32x_cmd, "options_read", stm32x_handle_options_read_command, COMMAND_EXEC, "read device option bytes"); register_command(cmd_ctx, stm32x_cmd, "options_write", stm32x_handle_options_write_command, COMMAND_EXEC, "write device option bytes"); return ERROR_OK; } /* flash bank stm32x <base> <size> 0 0 <target#> */ int stm32x_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank) { stm32x_flash_bank_t *stm32x_info; if (argc < 6) { LOG_WARNING("incomplete flash_bank stm32x configuration"); return ERROR_FLASH_BANK_INVALID; } stm32x_info = malloc(sizeof(stm32x_flash_bank_t)); bank->driver_priv = stm32x_info; stm32x_info->write_algorithm = NULL; stm32x_info->probed = 0; return ERROR_OK; } u32 stm32x_get_flash_status(flash_bank_t *bank) { target_t *target = bank->target; u32 status; target_read_u32(target, STM32_FLASH_SR, &status); return status; } u32 stm32x_wait_status_busy(flash_bank_t *bank, int timeout) { u32 status; /* wait for busy to clear */ while (((status = stm32x_get_flash_status(bank)) & FLASH_BSY) && (timeout-- > 0)) { LOG_DEBUG("status: 0x%x", status); alive_sleep(1); } return status; } int stm32x_read_options(struct flash_bank_s *bank) { u32 optiondata; stm32x_flash_bank_t *stm32x_info = NULL; target_t *target = bank->target; stm32x_info = bank->driver_priv; /* read current option bytes */ target_read_u32(target, STM32_FLASH_OBR, &optiondata); stm32x_info->option_bytes.user_options = (u16)0xFFF8|((optiondata >> 2) & 0x07); stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5; if (optiondata & (1 << OPT_READOUT)) LOG_INFO("Device Security Bit Set"); /* each bit refers to a 4bank protection */ target_read_u32(target, STM32_FLASH_WRPR, &optiondata); stm32x_info->option_bytes.protection[0] = (u16)optiondata; stm32x_info->option_bytes.protection[1] = (u16)(optiondata >> 8); stm32x_info->option_bytes.protection[2] = (u16)(optiondata >> 16); stm32x_info->option_bytes.protection[3] = (u16)(optiondata >> 24); return ERROR_OK; } int stm32x_erase_options(struct flash_bank_s *bank) { stm32x_flash_bank_t *stm32x_info = NULL; target_t *target = bank->target; u32 status; stm32x_info = bank->driver_priv; /* read current options */ stm32x_read_options(bank); /* unlock flash registers */ target_write_u32(target, STM32_FLASH_KEYR, KEY1); target_write_u32(target, STM32_FLASH_KEYR, KEY2); /* unlock option flash registers */ target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1); target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2); /* erase option bytes */ target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_OPTWRE); target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER|FLASH_STRT|FLASH_OPTWRE); status = stm32x_wait_status_busy(bank, 10); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; /* clear readout protection and complementary option bytes * this will also force a device unlock if set */ stm32x_info->option_bytes.RDP = 0x5AA5; return ERROR_OK; } int stm32x_write_options(struct flash_bank_s *bank) { stm32x_flash_bank_t *stm32x_info = NULL; target_t *target = bank->target; u32 status; stm32x_info = bank->driver_priv; /* unlock flash registers */ target_write_u32(target, STM32_FLASH_KEYR, KEY1); target_write_u32(target, STM32_FLASH_KEYR, KEY2); /* unlock option flash registers */ target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1); target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2); /* program option bytes */ target_write_u32(target, STM32_FLASH_CR, FLASH_OPTPG|FLASH_OPTWRE); /* write user option byte */ target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options); status = stm32x_wait_status_busy(bank, 10); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; /* write protection byte 1 */ target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]); status = stm32x_wait_status_busy(bank, 10); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; /* write protection byte 2 */ target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]); status = stm32x_wait_status_busy(bank, 10); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; /* write protection byte 3 */ target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]); status = stm32x_wait_status_busy(bank, 10); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; /* write protection byte 4 */ target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]); status = stm32x_wait_status_busy(bank, 10); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; /* write readout protection bit */ target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP); status = stm32x_wait_status_busy(bank, 10); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK); return ERROR_OK; } int stm32x_protect_check(struct flash_bank_s *bank) { target_t *target = bank->target; stm32x_flash_bank_t *stm32x_info = bank->driver_priv; u32 protection; int i, s; int num_bits; int set; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* medium density - each bit refers to a 4bank protection * high density - each bit refers to a 2bank protection */ target_read_u32(target, STM32_FLASH_WRPR, &protection); /* medium density - each protection bit is for 4 * 1K pages * high density - each protection bit is for 2 * 2K pages */ num_bits = (bank->num_sectors / stm32x_info->ppage_size); if (stm32x_info->ppage_size == 2) { /* high density flash */ set = 1; if (protection & (1 << 31)) set = 0; /* bit 31 controls sector 62 - 255 protection */ for (s = 62; s < bank->num_sectors; s++) { bank->sectors[s].is_protected = set; } if (bank->num_sectors > 61) num_bits = 31; for (i = 0; i < num_bits; i++) { set = 1; if (protection & (1 << i)) set = 0; for (s = 0; s < stm32x_info->ppage_size; s++) bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set; } } else { /* medium density flash */ for (i = 0; i < num_bits; i++) { set = 1; if( protection & (1 << i)) set = 0; for (s = 0; s < stm32x_info->ppage_size; s++) bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set; } } return ERROR_OK; } int stm32x_erase(struct flash_bank_s *bank, int first, int last) { target_t *target = bank->target; int i; u32 status; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first == 0) && (last == (bank->num_sectors - 1))) { return stm32x_mass_erase(bank); } /* unlock flash registers */ target_write_u32(target, STM32_FLASH_KEYR, KEY1); target_write_u32(target, STM32_FLASH_KEYR, KEY2); for (i = first; i <= last; i++) { target_write_u32(target, STM32_FLASH_CR, FLASH_PER); target_write_u32(target, STM32_FLASH_AR, bank->base + bank->sectors[i].offset); target_write_u32(target, STM32_FLASH_CR, FLASH_PER|FLASH_STRT); status = stm32x_wait_status_busy(bank, 10); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; bank->sectors[i].is_erased = 1; } target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK); return ERROR_OK; } int stm32x_protect(struct flash_bank_s *bank, int set, int first, int last) { stm32x_flash_bank_t *stm32x_info = NULL; target_t *target = bank->target; u16 prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF}; int i, reg, bit; int status; u32 protection; stm32x_info = bank->driver_priv; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first && (first % stm32x_info->ppage_size)) || ((last + 1) && (last + 1) % stm32x_info->ppage_size)) { LOG_WARNING("sector start/end incorrect - stm32 has %dK sector protection", stm32x_info->ppage_size); return ERROR_FLASH_SECTOR_INVALID; } /* medium density - each bit refers to a 4bank protection * high density - each bit refers to a 2bank protection */ target_read_u32(target, STM32_FLASH_WRPR, &protection); prot_reg[0] = (u16)protection; prot_reg[1] = (u16)(protection >> 8); prot_reg[2] = (u16)(protection >> 16); prot_reg[3] = (u16)(protection >> 24); if (stm32x_info->ppage_size == 2) { /* high density flash */ /* bit 7 controls sector 62 - 255 protection */ if (last > 61) { if (set) prot_reg[3] &= ~(1 << 7); else prot_reg[3] |= (1 << 7); } if (first > 61) first = 62; if (last > 61) last = 61; for (i = first; i <= last; i++) { reg = (i / stm32x_info->ppage_size) / 8; bit = (i / stm32x_info->ppage_size) - (reg * 8); if( set ) prot_reg[reg] &= ~(1 << bit); else prot_reg[reg] |= (1 << bit); } } else { /* medium density flash */ for (i = first; i <= last; i++) { reg = (i / stm32x_info->ppage_size) / 8; bit = (i / stm32x_info->ppage_size) - (reg * 8); if( set ) prot_reg[reg] &= ~(1 << bit); else prot_reg[reg] |= (1 << bit); } } if ((status = stm32x_erase_options(bank)) != ERROR_OK) return status; stm32x_info->option_bytes.protection[0] = prot_reg[0]; stm32x_info->option_bytes.protection[1] = prot_reg[1]; stm32x_info->option_bytes.protection[2] = prot_reg[2]; stm32x_info->option_bytes.protection[3] = prot_reg[3]; return stm32x_write_options(bank); } int stm32x_write_block(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count) { stm32x_flash_bank_t *stm32x_info = bank->driver_priv; target_t *target = bank->target; u32 buffer_size = 8192; working_area_t *source; u32 address = bank->base + offset; reg_param_t reg_params[4]; armv7m_algorithm_t armv7m_info; int retval = ERROR_OK; u8 stm32x_flash_write_code[] = { /* write: */ 0xDF, 0xF8, 0x24, 0x40, /* ldr r4, STM32_FLASH_CR */ 0x09, 0x4D, /* ldr r5, STM32_FLASH_SR */ 0x4F, 0xF0, 0x01, 0x03, /* mov r3, #1 */ 0x23, 0x60, /* str r3, [r4, #0] */ 0x30, 0xF8, 0x02, 0x3B, /* ldrh r3, [r0], #2 */ 0x21, 0xF8, 0x02, 0x3B, /* strh r3, [r1], #2 */ /* busy: */ 0x2B, 0x68, /* ldr r3, [r5, #0] */ 0x13, 0xF0, 0x01, 0x0F, /* tst r3, #0x01 */ 0xFB, 0xD0, /* beq busy */ 0x13, 0xF0, 0x14, 0x0F, /* tst r3, #0x14 */ 0x01, 0xD1, /* bne exit */ 0x01, 0x3A, /* subs r2, r2, #1 */ 0xED, 0xD1, /* bne write */ /* exit: */ 0xFE, 0xE7, /* b exit */ 0x10, 0x20, 0x02, 0x40, /* STM32_FLASH_CR: .word 0x40022010 */ 0x0C, 0x20, 0x02, 0x40 /* STM32_FLASH_SR: .word 0x4002200C */ }; /* flash write code */ if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), &stm32x_info->write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; if ((retval=target_write_buffer(target, stm32x_info->write_algorithm->address, sizeof(stm32x_flash_write_code), stm32x_flash_write_code))!=ERROR_OK) return retval; /* memory buffer */ while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */ if (stm32x_info->write_algorithm) target_free_working_area(target, stm32x_info->write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } }; armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARMV7M_MODE_ANY; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); init_reg_param(®_params[2], "r2", 32, PARAM_OUT); init_reg_param(®_params[3], "r3", 32, PARAM_IN); while (count > 0) { u32 thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count; if ((retval = target_write_buffer(target, source->address, thisrun_count * 2, buffer))!=ERROR_OK) break; buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, address); buf_set_u32(reg_params[2].value, 0, 32, thisrun_count); if ((retval = target->type->run_algorithm(target, 0, NULL, 4, reg_params, stm32x_info->write_algorithm->address, \ stm32x_info->write_algorithm->address + (sizeof(stm32x_flash_write_code) - 10), 10000, &armv7m_info)) != ERROR_OK) { LOG_ERROR("error executing stm32x flash write algorithm"); retval = ERROR_FLASH_OPERATION_FAILED; break; } if (buf_get_u32(reg_params[3].value, 0, 32) & 0x14) { retval = ERROR_FLASH_OPERATION_FAILED; break; } buffer += thisrun_count * 2; address += thisrun_count * 2; count -= thisrun_count; } target_free_working_area(target, source); target_free_working_area(target, stm32x_info->write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); return retval; } int stm32x_write(struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count) { target_t *target = bank->target; u32 words_remaining = (count / 2); u32 bytes_remaining = (count & 0x00000001); u32 address = bank->base + offset; u32 bytes_written = 0; u8 status; u32 retval; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset & 0x1) { LOG_WARNING("offset 0x%x breaks required 2-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } /* unlock flash registers */ target_write_u32(target, STM32_FLASH_KEYR, KEY1); target_write_u32(target, STM32_FLASH_KEYR, KEY2); /* multiple half words (2-byte) to be programmed? */ if (words_remaining > 0) { /* try using a block write */ if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK) { if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* if block write failed (no sufficient working area), * we use normal (slow) single dword accesses */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); } else if (retval == ERROR_FLASH_OPERATION_FAILED) { LOG_ERROR("flash writing failed with error code: 0x%x", retval); return ERROR_FLASH_OPERATION_FAILED; } } else { buffer += words_remaining * 2; address += words_remaining * 2; words_remaining = 0; } } while (words_remaining > 0) { target_write_u32(target, STM32_FLASH_CR, FLASH_PG); target_write_u16(target, address, *(u16*)(buffer + bytes_written)); status = stm32x_wait_status_busy(bank, 5); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; bytes_written += 2; words_remaining--; address += 2; } if (bytes_remaining) { u8 last_halfword[2] = {0xff, 0xff}; int i = 0; while(bytes_remaining > 0) { last_halfword[i++] = *(buffer + bytes_written); bytes_remaining--; bytes_written++; } target_write_u32(target, STM32_FLASH_CR, FLASH_PG); target_write_u16(target, address, *(u16*)last_halfword); status = stm32x_wait_status_busy(bank, 5); if( status & FLASH_WRPRTERR ) return ERROR_FLASH_OPERATION_FAILED; if( status & FLASH_PGERR ) return ERROR_FLASH_OPERATION_FAILED; } target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK); return ERROR_OK; } int stm32x_probe(struct flash_bank_s *bank) { target_t *target = bank->target; stm32x_flash_bank_t *stm32x_info = bank->driver_priv; int i; u16 num_pages; u32 device_id; int page_size; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } stm32x_info->probed = 0; /* read stm32 device id register */ target_read_u32(target, 0xE0042000, &device_id); LOG_INFO( "device id = 0x%08x", device_id ); /* get flash size from target */ if (target_read_u16(target, 0x1FFFF7E0, &num_pages) != ERROR_OK) { /* failed reading flash size, default to max target family */ num_pages = 0xffff; } if ((device_id & 0x7ff) == 0x410) { /* medium density - we have 1k pages * 4 pages for a protection area */ page_size = 1024; stm32x_info->ppage_size = 4; /* check for early silicon */ if (num_pages == 0xffff) { /* number of sectors incorrect on revA */ LOG_WARNING( "STM32 flash size failed, probe inaccurate - assuming 128k flash" ); num_pages = 128; } } else if ((device_id & 0x7ff) == 0x414) { /* high density - we have 2k pages * 2 pages for a protection area */ page_size = 2048; stm32x_info->ppage_size = 2; /* check for early silicon */ if (num_pages == 0xffff) { /* number of sectors incorrect on revZ */ LOG_WARNING( "STM32 flash size failed, probe inaccurate - assuming 512k flash" ); num_pages = 512; } } else { LOG_WARNING( "Cannot identify target as a STM32 family." ); return ERROR_FLASH_OPERATION_FAILED; } LOG_INFO( "flash size = %dkbytes", num_pages ); /* calculate numbers of pages */ num_pages /= (page_size / 1024); bank->base = 0x08000000; bank->size = (num_pages * page_size); bank->num_sectors = num_pages; bank->sectors = malloc(sizeof(flash_sector_t) * num_pages); for (i = 0; i < num_pages; i++) { bank->sectors[i].offset = i * page_size; bank->sectors[i].size = page_size; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 1; } stm32x_info->probed = 1; return ERROR_OK; } int stm32x_auto_probe(struct flash_bank_s *bank) { stm32x_flash_bank_t *stm32x_info = bank->driver_priv; if (stm32x_info->probed) return ERROR_OK; return stm32x_probe(bank); } int stm32x_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { return ERROR_OK; } int stm32x_info(struct flash_bank_s *bank, char *buf, int buf_size) { target_t *target = bank->target; u32 device_id; int printed; /* read stm32 device id register */ target_read_u32(target, 0xE0042000, &device_id); if ((device_id & 0x7ff) == 0x410) { printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: "); buf += printed; buf_size -= printed; switch(device_id >> 16) { case 0x0000: snprintf(buf, buf_size, "A"); break; case 0x2000: snprintf(buf, buf_size, "B"); break; case 0x2001: snprintf(buf, buf_size, "Z"); break; case 0x2003: snprintf(buf, buf_size, "Y"); break; default: snprintf(buf, buf_size, "unknown"); break; } } else if ((device_id & 0x7ff) == 0x414) { printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: "); buf += printed; buf_size -= printed; switch(device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; case 0x1001: snprintf(buf, buf_size, "Z"); break; default: snprintf(buf, buf_size, "unknown"); break; } } else { snprintf(buf, buf_size, "Cannot identify target as a stm32x\n"); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } int stm32x_handle_lock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { flash_bank_t *bank; target_t *target = NULL; stm32x_flash_bank_t *stm32x_info = NULL; if (argc < 1) { command_print(cmd_ctx, "stm32x lock <bank>"); return ERROR_OK; } bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0)); if (!bank) { command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]); return ERROR_OK; } stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (stm32x_erase_options(bank) != ERROR_OK) { command_print(cmd_ctx, "stm32x failed to erase options"); return ERROR_OK; } /* set readout protection */ stm32x_info->option_bytes.RDP = 0; if (stm32x_write_options(bank) != ERROR_OK) { command_print(cmd_ctx, "stm32x failed to lock device"); return ERROR_OK; } command_print(cmd_ctx, "stm32x locked"); return ERROR_OK; } int stm32x_handle_unlock_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { flash_bank_t *bank; target_t *target = NULL; stm32x_flash_bank_t *stm32x_info = NULL; if (argc < 1) { command_print(cmd_ctx, "stm32x unlock <bank>"); return ERROR_OK; } bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0)); if (!bank) { command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]); return ERROR_OK; } stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (stm32x_erase_options(bank) != ERROR_OK) { command_print(cmd_ctx, "stm32x failed to unlock device"); return ERROR_OK; } if (stm32x_write_options(bank) != ERROR_OK) { command_print(cmd_ctx, "stm32x failed to lock device"); return ERROR_OK; } command_print(cmd_ctx, "stm32x unlocked"); return ERROR_OK; } int stm32x_handle_options_read_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { flash_bank_t *bank; u32 optionbyte; target_t *target = NULL; stm32x_flash_bank_t *stm32x_info = NULL; if (argc < 1) { command_print(cmd_ctx, "stm32x options_read <bank>"); return ERROR_OK; } bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0)); if (!bank) { command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]); return ERROR_OK; } stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } target_read_u32(target, STM32_FLASH_OBR, &optionbyte); command_print(cmd_ctx, "Option Byte: 0x%x", optionbyte); if (buf_get_u32((u8*)&optionbyte, OPT_ERROR, 1)) command_print(cmd_ctx, "Option Byte Complement Error"); if (buf_get_u32((u8*)&optionbyte, OPT_READOUT, 1)) command_print(cmd_ctx, "Readout Protection On"); else command_print(cmd_ctx, "Readout Protection Off"); if (buf_get_u32((u8*)&optionbyte, OPT_RDWDGSW, 1)) command_print(cmd_ctx, "Software Watchdog"); else command_print(cmd_ctx, "Hardware Watchdog"); if (buf_get_u32((u8*)&optionbyte, OPT_RDRSTSTOP, 1)) command_print(cmd_ctx, "Stop: No reset generated"); else command_print(cmd_ctx, "Stop: Reset generated"); if (buf_get_u32((u8*)&optionbyte, OPT_RDRSTSTDBY, 1)) command_print(cmd_ctx, "Standby: No reset generated"); else command_print(cmd_ctx, "Standby: Reset generated"); return ERROR_OK; } int stm32x_handle_options_write_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { flash_bank_t *bank; target_t *target = NULL; stm32x_flash_bank_t *stm32x_info = NULL; u16 optionbyte = 0xF8; if (argc < 4) { command_print(cmd_ctx, "stm32x options_write <bank> <SWWDG|HWWDG> <RSTSTNDBY|NORSTSTNDBY> <RSTSTOP|NORSTSTOP>"); return ERROR_OK; } bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0)); if (!bank) { command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]); return ERROR_OK; } stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (strcmp(args[1], "SWWDG") == 0) { optionbyte |= (1<<0); } else { optionbyte &= ~(1<<0); } if (strcmp(args[2], "NORSTSTNDBY") == 0) { optionbyte |= (1<<1); } else { optionbyte &= ~(1<<1); } if (strcmp(args[3], "NORSTSTOP") == 0) { optionbyte |= (1<<2); } else { optionbyte &= ~(1<<2); } if (stm32x_erase_options(bank) != ERROR_OK) { command_print(cmd_ctx, "stm32x failed to erase options"); return ERROR_OK; } stm32x_info->option_bytes.user_options = optionbyte; if (stm32x_write_options(bank) != ERROR_OK) { command_print(cmd_ctx, "stm32x failed to write options"); return ERROR_OK; } command_print(cmd_ctx, "stm32x write options complete"); return ERROR_OK; } int stm32x_mass_erase(struct flash_bank_s *bank) { target_t *target = bank->target; u32 status; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* unlock option flash registers */ target_write_u32(target, STM32_FLASH_KEYR, KEY1); target_write_u32(target, STM32_FLASH_KEYR, KEY2); /* mass erase flash memory */ target_write_u32(target, STM32_FLASH_CR, FLASH_MER); target_write_u32(target, STM32_FLASH_CR, FLASH_MER|FLASH_STRT); status = stm32x_wait_status_busy(bank, 10); target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK); if( status & FLASH_WRPRTERR ) { LOG_ERROR("stm32x device protected"); return ERROR_OK; } if( status & FLASH_PGERR ) { LOG_ERROR("stm32x device programming failed"); return ERROR_OK; } return ERROR_OK; } int stm32x_handle_mass_erase_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { flash_bank_t *bank; int i; if (argc < 1) { command_print(cmd_ctx, "stm32x mass_erase <bank>"); return ERROR_OK; } bank = get_flash_bank_by_num(strtoul(args[0], NULL, 0)); if (!bank) { command_print(cmd_ctx, "flash bank '#%s' is out of bounds", args[0]); return ERROR_OK; } if (stm32x_mass_erase(bank) == ERROR_OK) { /* set all sectors as erased */ for (i = 0; i < bank->num_sectors; i++) { bank->sectors[i].is_erased = 1; } command_print(cmd_ctx, "stm32x mass erase complete"); } else { command_print(cmd_ctx, "stm32x mass erase failed"); } return ERROR_OK; }