/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
*
* Copyright (C) 2008 by Oyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "str9x.h"
#include "arm966e.h"
static uint32_t bank1start = 0x00080000;
static int str9x_build_block_list(struct flash_bank_s *bank)
{
struct str9x_flash_bank *str9x_info = bank->driver_priv;
int i;
int num_sectors;
int b0_sectors = 0, b1_sectors = 0;
uint32_t offset = 0;
/* set if we have large flash str9 */
str9x_info->variant = 0;
str9x_info->bank1 = 0;
switch (bank->size)
{
case (256 * 1024):
b0_sectors = 4;
break;
case (512 * 1024):
b0_sectors = 8;
break;
case (1024 * 1024):
bank1start = 0x00100000;
str9x_info->variant = 1;
b0_sectors = 16;
break;
case (2048 * 1024):
bank1start = 0x00200000;
str9x_info->variant = 1;
b0_sectors = 32;
break;
case (128 * 1024):
str9x_info->variant = 1;
str9x_info->bank1 = 1;
b1_sectors = 8;
bank1start = bank->base;
break;
case (32 * 1024):
str9x_info->bank1 = 1;
b1_sectors = 4;
bank1start = bank->base;
break;
default:
LOG_ERROR("BUG: unknown bank->size encountered");
exit(-1);
}
num_sectors = b0_sectors + b1_sectors;
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
str9x_info->sector_bits = malloc(sizeof(uint32_t) * num_sectors);
num_sectors = 0;
for (i = 0; i < b0_sectors; i++)
{
bank->sectors[num_sectors].offset = offset;
bank->sectors[num_sectors].size = 0x10000;
offset += bank->sectors[i].size;
bank->sectors[num_sectors].is_erased = -1;
bank->sectors[num_sectors].is_protected = 1;
str9x_info->sector_bits[num_sectors++] = (1 << i);
}
for (i = 0; i < b1_sectors; i++)
{
bank->sectors[num_sectors].offset = offset;
bank->sectors[num_sectors].size = str9x_info->variant == 0 ? 0x2000 : 0x4000;
offset += bank->sectors[i].size;
bank->sectors[num_sectors].is_erased = -1;
bank->sectors[num_sectors].is_protected = 1;
if (str9x_info->variant)
str9x_info->sector_bits[num_sectors++] = (1 << i);
else
str9x_info->sector_bits[num_sectors++] = (1 << (i + 8));
}
return ERROR_OK;
}
/* flash bank str9x 0 0
*/
FLASH_BANK_COMMAND_HANDLER(str9x_flash_bank_command)
{
struct str9x_flash_bank *str9x_info;
if (argc < 6)
{
LOG_WARNING("incomplete flash_bank str9x configuration");
return ERROR_FLASH_BANK_INVALID;
}
str9x_info = malloc(sizeof(struct str9x_flash_bank));
bank->driver_priv = str9x_info;
str9x_build_block_list(bank);
str9x_info->write_algorithm = NULL;
return ERROR_OK;
}
static int str9x_protect_check(struct flash_bank_s *bank)
{
int retval;
struct str9x_flash_bank *str9x_info = bank->driver_priv;
target_t *target = bank->target;
int i;
uint32_t adr;
uint32_t status = 0;
uint16_t hstatus = 0;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* read level one protection */
if (str9x_info->variant)
{
if (str9x_info->bank1)
{
adr = bank1start + 0x18;
if ((retval = target_write_u16(target, adr, 0x90)) != ERROR_OK)
{
return retval;
}
if ((retval = target_read_u16(target, adr, &hstatus)) != ERROR_OK)
{
return retval;
}
status = hstatus;
}
else
{
adr = bank1start + 0x14;
if ((retval = target_write_u16(target, adr, 0x90)) != ERROR_OK)
{
return retval;
}
if ((retval = target_read_u32(target, adr, &status)) != ERROR_OK)
{
return retval;
}
}
}
else
{
adr = bank1start + 0x10;
if ((retval = target_write_u16(target, adr, 0x90)) != ERROR_OK)
{
return retval;
}
if ((retval = target_read_u16(target, adr, &hstatus)) != ERROR_OK)
{
return retval;
}
status = hstatus;
}
/* read array command */
if ((retval = target_write_u16(target, adr, 0xFF)) != ERROR_OK)
{
return retval;
}
for (i = 0; i < bank->num_sectors; i++)
{
if (status & str9x_info->sector_bits[i])
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return ERROR_OK;
}
static int str9x_erase(struct flash_bank_s *bank, int first, int last)
{
target_t *target = bank->target;
int i;
uint32_t adr;
uint8_t status;
uint8_t erase_cmd;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Check if we erase whole bank */
if ((first == 0) && (last == (bank->num_sectors - 1)))
{
/* Optimize to run erase bank command instead of sector */
erase_cmd = 0x80;
}
else
{
/* Erase sector command */
erase_cmd = 0x20;
}
for (i = first; i <= last; i++)
{
int retval;
adr = bank->base + bank->sectors[i].offset;
/* erase sectors */
if ((retval = target_write_u16(target, adr, erase_cmd)) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_u16(target, adr, 0xD0)) != ERROR_OK)
{
return retval;
}
/* get status */
if ((retval = target_write_u16(target, adr, 0x70)) != ERROR_OK)
{
return retval;
}
int timeout;
for (timeout = 0; timeout < 1000; timeout++) {
if ((retval = target_read_u8(target, adr, &status)) != ERROR_OK)
{
return retval;
}
if (status & 0x80)
break;
alive_sleep(1);
}
if (timeout == 1000)
{
LOG_ERROR("erase timed out");
return ERROR_FAIL;
}
/* clear status, also clear read array */
if ((retval = target_write_u16(target, adr, 0x50)) != ERROR_OK)
{
return retval;
}
/* read array command */
if ((retval = target_write_u16(target, adr, 0xFF)) != ERROR_OK)
{
return retval;
}
if (status & 0x22)
{
LOG_ERROR("error erasing flash bank, status: 0x%x", status);
return ERROR_FLASH_OPERATION_FAILED;
}
/* If we ran erase bank command, we are finished */
if (erase_cmd == 0x80)
break;
}
for (i = first; i <= last; i++)
bank->sectors[i].is_erased = 1;
return ERROR_OK;
}
static int str9x_protect(struct flash_bank_s *bank,
int set, int first, int last)
{
target_t *target = bank->target;
int i;
uint32_t adr;
uint8_t status;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
for (i = first; i <= last; i++)
{
/* Level One Protection */
adr = bank->base + bank->sectors[i].offset;
target_write_u16(target, adr, 0x60);
if (set)
target_write_u16(target, adr, 0x01);
else
target_write_u16(target, adr, 0xD0);
/* query status */
target_read_u8(target, adr, &status);
/* clear status, also clear read array */
target_write_u16(target, adr, 0x50);
/* read array command */
target_write_u16(target, adr, 0xFF);
}
return ERROR_OK;
}
static int str9x_write_block(struct flash_bank_s *bank,
uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct str9x_flash_bank *str9x_info = bank->driver_priv;
target_t *target = bank->target;
uint32_t buffer_size = 8192;
working_area_t *source;
uint32_t address = bank->base + offset;
reg_param_t reg_params[4];
armv4_5_algorithm_t armv4_5_info;
int retval = ERROR_OK;
uint32_t str9x_flash_write_code[] = {
/* write: */
0xe3c14003, /* bic r4, r1, #3 */
0xe3a03040, /* mov r3, #0x40 */
0xe1c430b0, /* strh r3, [r4, #0] */
0xe0d030b2, /* ldrh r3, [r0], #2 */
0xe0c130b2, /* strh r3, [r1], #2 */
0xe3a03070, /* mov r3, #0x70 */
0xe1c430b0, /* strh r3, [r4, #0] */
/* busy: */
0xe5d43000, /* ldrb r3, [r4, #0] */
0xe3130080, /* tst r3, #0x80 */
0x0afffffc, /* beq busy */
0xe3a05050, /* mov r5, #0x50 */
0xe1c450b0, /* strh r5, [r4, #0] */
0xe3a050ff, /* mov r5, #0xFF */
0xe1c450b0, /* strh r5, [r4, #0] */
0xe3130012, /* tst r3, #0x12 */
0x1a000001, /* bne exit */
0xe2522001, /* subs r2, r2, #1 */
0x1affffed, /* bne write */
/* exit: */
0xeafffffe, /* b exit */
};
/* flash write code */
if (target_alloc_working_area(target, 4 * 19, &str9x_info->write_algorithm) != ERROR_OK)
{
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
target_write_buffer(target, str9x_info->write_algorithm->address, 19 * 4, (uint8_t*)str9x_flash_write_code);
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
if (str9x_info->write_algorithm)
target_free_working_area(target, str9x_info->write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
armv4_5_info.core_state = ARMV4_5_STATE_ARM;
init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
init_reg_param(®_params[3], "r3", 32, PARAM_IN);
while (count > 0)
{
uint32_t thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count;
target_write_buffer(target, source->address, thisrun_count * 2, buffer);
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
if ((retval = target_run_algorithm(target, 0, NULL, 4, reg_params, str9x_info->write_algorithm->address, str9x_info->write_algorithm->address + (18 * 4), 10000, &armv4_5_info)) != ERROR_OK)
{
LOG_ERROR("error executing str9x flash write algorithm");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (buf_get_u32(reg_params[3].value, 0, 32) != 0x80)
{
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count * 2;
address += thisrun_count * 2;
count -= thisrun_count;
}
target_free_working_area(target, source);
target_free_working_area(target, str9x_info->write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
return retval;
}
static int str9x_write(struct flash_bank_s *bank,
uint8_t *buffer, uint32_t offset, uint32_t count)
{
target_t *target = bank->target;
uint32_t words_remaining = (count / 2);
uint32_t bytes_remaining = (count & 0x00000001);
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
uint8_t status;
int retval;
uint32_t check_address = offset;
uint32_t bank_adr;
int i;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1)
{
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
for (i = 0; i < bank->num_sectors; i++)
{
uint32_t sec_start = bank->sectors[i].offset;
uint32_t sec_end = sec_start + bank->sectors[i].size;
/* check if destination falls within the current sector */
if ((check_address >= sec_start) && (check_address < sec_end))
{
/* check if destination ends in the current sector */
if (offset + count < sec_end)
check_address = offset + count;
else
check_address = sec_end;
}
}
if (check_address != offset + count)
return ERROR_FLASH_DST_OUT_OF_BANK;
/* multiple half words (2-byte) to be programmed? */
if (words_remaining > 0)
{
/* try using a block write */
if ((retval = str9x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK)
{
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
/* if block write failed (no sufficient working area),
* we use normal (slow) single dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
else if (retval == ERROR_FLASH_OPERATION_FAILED)
{
LOG_ERROR("flash writing failed with error code: 0x%x", retval);
return ERROR_FLASH_OPERATION_FAILED;
}
}
else
{
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}
}
while (words_remaining > 0)
{
bank_adr = address & ~0x03;
/* write data command */
target_write_u16(target, bank_adr, 0x40);
target_write_memory(target, address, 2, 1, buffer + bytes_written);
/* get status command */
target_write_u16(target, bank_adr, 0x70);
int timeout;
for (timeout = 0; timeout < 1000; timeout++)
{
target_read_u8(target, bank_adr, &status);
if (status & 0x80)
break;
alive_sleep(1);
}
if (timeout == 1000)
{
LOG_ERROR("write timed out");
return ERROR_FAIL;
}
/* clear status reg and read array */
target_write_u16(target, bank_adr, 0x50);
target_write_u16(target, bank_adr, 0xFF);
if (status & 0x10)
return ERROR_FLASH_OPERATION_FAILED;
else if (status & 0x02)
return ERROR_FLASH_OPERATION_FAILED;
bytes_written += 2;
words_remaining--;
address += 2;
}
if (bytes_remaining)
{
uint8_t last_halfword[2] = {0xff, 0xff};
int i = 0;
while (bytes_remaining > 0)
{
last_halfword[i++] = *(buffer + bytes_written);
bytes_remaining--;
bytes_written++;
}
bank_adr = address & ~0x03;
/* write data command */
target_write_u16(target, bank_adr, 0x40);
target_write_memory(target, address, 2, 1, last_halfword);
/* query status command */
target_write_u16(target, bank_adr, 0x70);
int timeout;
for (timeout = 0; timeout < 1000; timeout++)
{
target_read_u8(target, bank_adr, &status);
if (status & 0x80)
break;
alive_sleep(1);
}
if (timeout == 1000)
{
LOG_ERROR("write timed out");
return ERROR_FAIL;
}
/* clear status reg and read array */
target_write_u16(target, bank_adr, 0x50);
target_write_u16(target, bank_adr, 0xFF);
if (status & 0x10)
return ERROR_FLASH_OPERATION_FAILED;
else if (status & 0x02)
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int str9x_probe(struct flash_bank_s *bank)
{
return ERROR_OK;
}
#if 0
COMMAND_HANDLER(str9x_handle_part_id_command)
{
return ERROR_OK;
}
#endif
static int str9x_info(struct flash_bank_s *bank, char *buf, int buf_size)
{
snprintf(buf, buf_size, "str9x flash driver info");
return ERROR_OK;
}
COMMAND_HANDLER(str9x_handle_flash_config_command)
{
struct str9x_flash_bank *str9x_info;
target_t *target = NULL;
if (argc < 5)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
flash_bank_t *bank;
int retval = flash_command_get_bank_by_num(cmd_ctx, args[0], &bank);
if (ERROR_OK != retval)
return retval;
uint32_t bbsr, nbbsr, bbadr, nbbadr;
COMMAND_PARSE_NUMBER(u32, args[1], bbsr);
COMMAND_PARSE_NUMBER(u32, args[2], nbbsr);
COMMAND_PARSE_NUMBER(u32, args[3], bbadr);
COMMAND_PARSE_NUMBER(u32, args[4], nbbadr);
str9x_info = bank->driver_priv;
target = bank->target;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* config flash controller */
target_write_u32(target, FLASH_BBSR, bbsr);
target_write_u32(target, FLASH_NBBSR, nbbsr);
target_write_u32(target, FLASH_BBADR, bbadr >> 2);
target_write_u32(target, FLASH_NBBADR, nbbadr >> 2);
/* set bit 18 instruction TCM order as per flash programming manual */
arm966e_write_cp15(target, 62, 0x40000);
/* enable flash bank 1 */
target_write_u32(target, FLASH_CR, 0x18);
return ERROR_OK;
}
static int str9x_register_commands(struct command_context_s *cmd_ctx)
{
command_t *str9x_cmd = register_command(cmd_ctx, NULL, "str9x",
NULL, COMMAND_ANY, "str9x flash commands");
register_command(cmd_ctx, str9x_cmd, "flash_config",
str9x_handle_flash_config_command, COMMAND_EXEC,
"configure str9 flash controller");
return ERROR_OK;
}
struct flash_driver str9x_flash = {
.name = "str9x",
.register_commands = &str9x_register_commands,
.flash_bank_command = &str9x_flash_bank_command,
.erase = &str9x_erase,
.protect = &str9x_protect,
.write = &str9x_write,
.probe = &str9x_probe,
.auto_probe = &str9x_probe,
.erase_check = &default_flash_blank_check,
.protect_check = &str9x_protect_check,
.info = &str9x_info,
};