/*
 * Copyright (C) 2009 by Simon Qian
 * SimonQian@SimonQian.com
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */


/* The specification for SVF is available here:
 * http://www.asset-intertech.com/support/svf.pdf
 * Below, this document is refered to as the "SVF spec".
 *
 * The specification for XSVF is available here:
 * http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf
 * Below, this document is refered to as the "XSVF spec".
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <jtag/jtag.h>
#include "svf.h"
#include <helper/time_support.h>


// SVF command
typedef enum
{
	ENDDR,
	ENDIR,
	FREQUENCY,
	HDR,
	HIR,
	PIO,
	PIOMAP,
	RUNTEST,
	SDR,
	SIR,
	STATE,
	TDR,
	TIR,
	TRST,
}svf_command_t;

static const char *svf_command_name[14] =
{
	"ENDDR",
	"ENDIR",
	"FREQUENCY",
	"HDR",
	"HIR",
	"PIO",
	"PIOMAP",
	"RUNTEST",
	"SDR",
	"SIR",
	"STATE",
	"TDR",
	"TIR",
	"TRST"
};

typedef enum
{
	TRST_ON,
	TRST_OFF,
	TRST_Z,
	TRST_ABSENT
}trst_mode_t;

static const char *svf_trst_mode_name[4] =
{
	"ON",
	"OFF",
	"Z",
	"ABSENT"
};

struct svf_statemove
{
	tap_state_t from;
	tap_state_t to;
	uint32_t num_of_moves;
	tap_state_t paths[8];
};

/*
 * These paths are from the SVF specification for the STATE command, to be
 * used when the STATE command only includes the final state.  The first
 * element of the path is the "from" (current) state, and the last one is
 * the "to" (target) state.
 *
 * All specified paths are the shortest ones in the JTAG spec, and are thus
 * not (!!) exact matches for the paths used elsewhere in OpenOCD.  Note
 * that PAUSE-to-PAUSE transitions all go through UPDATE and then CAPTURE,
 * which has specific effects on the various registers; they are not NOPs.
 *
 * Paths to RESET are disabled here.  As elsewhere in OpenOCD, and in XSVF
 * and many SVF implementations, we don't want to risk missing that state.
 * To get to RESET, always we ignore the current state.
 */
static const struct svf_statemove svf_statemoves[] =
{
	// from			to				num_of_moves,	paths[8]
//	{TAP_RESET,		TAP_RESET,		1,				{TAP_RESET}},
	{TAP_RESET,		TAP_IDLE,		2,				{TAP_RESET, TAP_IDLE}},
	{TAP_RESET,		TAP_DRPAUSE,	6,				{TAP_RESET, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}},
	{TAP_RESET,		TAP_IRPAUSE,	7,				{TAP_RESET, TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}},

//	{TAP_IDLE,		TAP_RESET,		4,				{TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}},
	{TAP_IDLE,		TAP_IDLE,		1,				{TAP_IDLE}},
	{TAP_IDLE,		TAP_DRPAUSE,	5,				{TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}},
	{TAP_IDLE,		TAP_IRPAUSE,	6,				{TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}},

//	{TAP_DRPAUSE,	TAP_RESET,		6,				{TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}},
	{TAP_DRPAUSE,	TAP_IDLE,		4,				{TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE}},
	{TAP_DRPAUSE,	TAP_DRPAUSE,	7,				{TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}},
	{TAP_DRPAUSE,	TAP_IRPAUSE,	8,				{TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}},

//	{TAP_IRPAUSE,	TAP_RESET,		6,				{TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}},
	{TAP_IRPAUSE,	TAP_IDLE,		4,				{TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_IDLE}},
	{TAP_IRPAUSE,	TAP_DRPAUSE,	7,				{TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}},
	{TAP_IRPAUSE,	TAP_IRPAUSE,	8,				{TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}}
};


#define XXR_TDI						(1 << 0)
#define XXR_TDO						(1 << 1)
#define XXR_MASK					(1 << 2)
#define XXR_SMASK					(1 << 3)
struct svf_xxr_para
{
	int len;
	int data_mask;
	uint8_t *tdi;
	uint8_t *tdo;
	uint8_t *mask;
	uint8_t *smask;
};

struct svf_para
{
	float frequency;
	tap_state_t ir_end_state;
	tap_state_t dr_end_state;
	tap_state_t runtest_run_state;
	tap_state_t runtest_end_state;
	trst_mode_t trst_mode;

	struct svf_xxr_para hir_para;
	struct svf_xxr_para hdr_para;
	struct svf_xxr_para tir_para;
	struct svf_xxr_para tdr_para;
	struct svf_xxr_para sir_para;
	struct svf_xxr_para sdr_para;
};

static struct svf_para svf_para;
static const struct svf_para svf_para_init =
{
//	frequency,	ir_end_state,	dr_end_state,	runtest_run_state,	runtest_end_state,	trst_mode
	0,			TAP_IDLE,		TAP_IDLE,		TAP_IDLE,			TAP_IDLE,			TRST_Z,
//	hir_para
//	{len,	data_mask,	tdi,	tdo,	mask,	smask},
	{0,		0,			NULL,	NULL,	NULL,	NULL},
//	hdr_para
//	{len,	data_mask,	tdi,	tdo,	mask,	smask},
	{0,		0,			NULL,	NULL,	NULL,	NULL},
//	tir_para
//	{len,	data_mask,	tdi,	tdo,	mask,	smask},
	{0,		0,			NULL,	NULL,	NULL,	NULL},
//	tdr_para
//	{len,	data_mask,	tdi,	tdo,	mask,	smask},
	{0,		0,			NULL,	NULL,	NULL,	NULL},
//	sir_para
//	{len,	data_mask,	tdi,	tdo,	mask,	smask},
	{0,		0,			NULL,	NULL,	NULL,	NULL},
//	sdr_para
//	{len,	data_mask,	tdi,	tdo,	mask,	smask},
	{0,		0,			NULL,	NULL,	NULL,	NULL},
};

struct svf_check_tdo_para
{
	int line_num;		// used to record line number of the check operation
						// so more information could be printed
	int enabled;		// check is enabled or not
	int buffer_offset;	// buffer_offset to buffers
	int bit_len;		// bit length to check
};

#define SVF_CHECK_TDO_PARA_SIZE	1024
static struct svf_check_tdo_para *svf_check_tdo_para = NULL;
static int svf_check_tdo_para_index = 0;

static int svf_read_command_from_file(FILE * fd);
static int svf_check_tdo(void);
static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len);
static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str);

static FILE * svf_fd = NULL;
static char * svf_read_line = NULL;
static size_t svf_read_line_size = 0;
static char *svf_command_buffer = NULL;
static size_t svf_command_buffer_size = 0;
static int svf_line_number = 1;
static int svf_getline (char **lineptr, size_t *n, FILE *stream);

#define SVF_MAX_BUFFER_SIZE_TO_COMMIT	(1024 * 1024)
static uint8_t *svf_tdi_buffer = NULL, *svf_tdo_buffer = NULL, *svf_mask_buffer = NULL;
static int svf_buffer_index = 0, svf_buffer_size = 0;
static int svf_quiet = 0;
static int svf_nil = 0;

// Targetting particular tap
static int svf_tap_is_specified = 0;
static int svf_set_padding(struct svf_xxr_para *para, int len, unsigned char tdi);

// Progress Indicator
static int svf_progress_enabled = 0;
static long svf_total_lines = 0;
static int svf_percentage = 0;
static int svf_last_printed_percentage = -1;

static void svf_free_xxd_para(struct svf_xxr_para *para)
{
	if (NULL != para)
	{
		if (para->tdi != NULL)
		{
			free(para->tdi);
			para->tdi = NULL;
		}
		if (para->tdo != NULL)
		{
			free(para->tdo);
			para->tdo = NULL;
		}
		if (para->mask != NULL)
		{
			free(para->mask);
			para->mask = NULL;
		}
		if (para->smask != NULL)
		{
			free(para->smask);
			para->smask = NULL;
		}
	}
}

static unsigned svf_get_mask_u32(int bitlen)
{
	uint32_t bitmask;

	if (bitlen < 0)
	{
		bitmask = 0;
	}
	else if (bitlen >= 32)
	{
		bitmask = 0xFFFFFFFF;
	}
	else
	{
		bitmask = (1 << bitlen) - 1;
	}

	return bitmask;
}

int svf_add_statemove(tap_state_t state_to)
{
	tap_state_t state_from = cmd_queue_cur_state;
	unsigned index_var;

	/* when resetting, be paranoid and ignore current state */
	if (state_to == TAP_RESET) {
		if (svf_nil)
			return ERROR_OK;

		jtag_add_tlr();
		return ERROR_OK;
	}

	for (index_var = 0; index_var < ARRAY_SIZE(svf_statemoves); index_var++)
	{
		if ((svf_statemoves[index_var].from == state_from)
			&& (svf_statemoves[index_var].to == state_to))
		{
			if (svf_nil)
			{
				continue;
			}
			/* recorded path includes current state ... avoid extra TCKs! */
			if (svf_statemoves[index_var].num_of_moves > 1)
				jtag_add_pathmove(svf_statemoves[index_var].num_of_moves - 1,
						svf_statemoves[index_var].paths + 1);
			else
				jtag_add_pathmove(svf_statemoves[index_var].num_of_moves,
						svf_statemoves[index_var].paths);
			return ERROR_OK;
		}
	}
	LOG_ERROR("SVF: can not move to %s", tap_state_name(state_to));
	return ERROR_FAIL;
}

COMMAND_HANDLER(handle_svf_command)
{
#define SVF_MIN_NUM_OF_OPTIONS			1
#define SVF_MAX_NUM_OF_OPTIONS			5
	int command_num = 0;
	int ret = ERROR_OK;
	long long time_measure_ms;
	int time_measure_s, time_measure_m;

	/* use NULL to indicate a "plain" svf file which accounts for
	   any additional devices in the scan chain, otherwise the device
	   that should be affected
	*/
	struct jtag_tap *tap = NULL;

	if ((CMD_ARGC < SVF_MIN_NUM_OF_OPTIONS) || (CMD_ARGC > SVF_MAX_NUM_OF_OPTIONS))
	{
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	// parse command line
	svf_quiet = 0;
	svf_nil = 0;
	for (unsigned int i = 0; i < CMD_ARGC; i++)
	{
		if (strcmp(CMD_ARGV[i], "-tap") == 0)
		{
			tap = jtag_tap_by_string(CMD_ARGV[i+1]);
			if (!tap)
			{
				command_print(CMD_CTX, "Tap: %s unknown", CMD_ARGV[i+1]);
				return ERROR_FAIL;
			}
			i++;
		}
		else if ((strcmp(CMD_ARGV[i], "quiet") == 0) || (strcmp(CMD_ARGV[i], "-quiet") == 0))
		{
			svf_quiet = 1;
		}
		else if ((strcmp(CMD_ARGV[i], "nil") == 0) || (strcmp(CMD_ARGV[i], "-nil") == 0))
		{
			svf_nil = 1;
		}
		else if ((strcmp(CMD_ARGV[i], "progress") == 0) || (strcmp(CMD_ARGV[i], "-progress") == 0))
		{
			svf_progress_enabled = 1;
		}
		else if ((svf_fd = fopen(CMD_ARGV[i], "r")) == NULL)
		{
			int err = errno;
			command_print(CMD_CTX, "open(\"%s\"): %s", CMD_ARGV[i], strerror(err));
			// no need to free anything now
			return ERROR_COMMAND_SYNTAX_ERROR;
		}
		else
		{
			LOG_USER("svf processing file: \"%s\"", CMD_ARGV[i]);
		}
	}

	if (svf_fd == NULL)
	{
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	// get time
	time_measure_ms = timeval_ms();

	// init
	svf_line_number = 1;
	svf_command_buffer_size = 0;

	svf_check_tdo_para_index = 0;
	svf_check_tdo_para = malloc(sizeof(struct svf_check_tdo_para) * SVF_CHECK_TDO_PARA_SIZE);
	if (NULL == svf_check_tdo_para)
	{
		LOG_ERROR("not enough memory");
		ret = ERROR_FAIL;
		goto free_all;
	}

	svf_buffer_index = 0;
	// double the buffer size
	// in case current command cannot be committed, and next command is a bit scan command
	// here is 32K bits for this big scan command, it should be enough
	// buffer will be reallocated if buffer size is not enough
	svf_tdi_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT);
	if (NULL == svf_tdi_buffer)
	{
		LOG_ERROR("not enough memory");
		ret = ERROR_FAIL;
		goto free_all;
	}
	svf_tdo_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT);
	if (NULL == svf_tdo_buffer)
	{
		LOG_ERROR("not enough memory");
		ret = ERROR_FAIL;
		goto free_all;
	}
	svf_mask_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT);
	if (NULL == svf_mask_buffer)
	{
		LOG_ERROR("not enough memory");
		ret = ERROR_FAIL;
		goto free_all;
	}
	svf_buffer_size = 2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT;

	memcpy(&svf_para, &svf_para_init, sizeof(svf_para));

	if (!svf_nil)
	{
		// TAP_RESET
		jtag_add_tlr();
	}

	if (tap)
	{
		/* Tap is specified, set header/trailer paddings */
		int header_ir_len = 0, header_dr_len = 0, trailer_ir_len = 0, trailer_dr_len = 0;
		struct jtag_tap *check_tap;

		svf_tap_is_specified = 1;

		for (check_tap = jtag_all_taps(); check_tap; check_tap = check_tap->next_tap) {
			if (check_tap->abs_chain_position < tap->abs_chain_position)
			{
				//Header
				header_ir_len += check_tap->ir_length;
				header_dr_len ++;
			}
			else if (check_tap->abs_chain_position > tap->abs_chain_position)
			{
				//Trailer
				trailer_ir_len += check_tap->ir_length;
				trailer_dr_len ++;
			}
		}

		// HDR %d TDI (0)
		if (ERROR_OK != svf_set_padding(&svf_para.hdr_para, header_dr_len, 0))
		{
			LOG_ERROR("failed to set data header");
			return ERROR_FAIL;
		}

		// HIR %d TDI (0xFF)
		if (ERROR_OK != svf_set_padding(&svf_para.hir_para, header_ir_len, 0xFF))
		{
			LOG_ERROR("failed to set instruction header");
			return ERROR_FAIL;
		}

		// TDR %d TDI (0)
		if (ERROR_OK != svf_set_padding(&svf_para.tdr_para, trailer_dr_len, 0))
		{
			LOG_ERROR("failed to set data trailer");
			return ERROR_FAIL;
		}

		// TIR %d TDI (0xFF)
		if (ERROR_OK != svf_set_padding(&svf_para.tir_para, trailer_ir_len, 0xFF))
		{
			LOG_ERROR("failed to set instruction trailer");
			return ERROR_FAIL;
		}

	}

	if (svf_progress_enabled)
	{
		// Count total lines in file.
		while ( ! feof (svf_fd) )
		 {
		   svf_getline (&svf_command_buffer, &svf_command_buffer_size, svf_fd);
		   svf_total_lines++;
		 }
		rewind(svf_fd);
	}
	while (ERROR_OK == svf_read_command_from_file(svf_fd))
	{
		// Log Output
		if (svf_quiet)
		{
			if (svf_progress_enabled)
			{
				svf_percentage = ((svf_line_number * 20) / svf_total_lines) * 5;
				if (svf_last_printed_percentage != svf_percentage)
				{
					LOG_USER_N("\r%d%%    ", svf_percentage);
					svf_last_printed_percentage = svf_percentage;
				}
			}
		}
		else
		{
			if (svf_progress_enabled)
			{
				svf_percentage = ((svf_line_number * 20) / svf_total_lines) * 5;
				LOG_USER_N("%3d%%  %s", svf_percentage, svf_read_line);
			}
			else
			{
				LOG_USER_N("%s",svf_read_line);
			}
		}
			// Run Command
		if (ERROR_OK != svf_run_command(CMD_CTX, svf_command_buffer))
		{
			LOG_ERROR("fail to run command at line %d", svf_line_number);
			ret = ERROR_FAIL;
			break;
		}
		command_num++;
	}

	if ((!svf_nil) && (ERROR_OK != jtag_execute_queue()))
	{
		ret = ERROR_FAIL;
	}
	else if (ERROR_OK != svf_check_tdo())
	{
		ret = ERROR_FAIL;
	}

	// print time
	time_measure_ms = timeval_ms() - time_measure_ms;
	time_measure_s = time_measure_ms / 1000;
	time_measure_ms %= 1000;
	time_measure_m = time_measure_s / 60;
	time_measure_s %= 60;
	if (time_measure_ms < 1000)
	{
		command_print(CMD_CTX, "\r\nTime used: %dm%ds%lldms ", time_measure_m, time_measure_s, time_measure_ms);
	}

free_all:

	fclose(svf_fd);
	svf_fd = 0;

	// free buffers
	if (svf_command_buffer)
	{
		free(svf_command_buffer);
		svf_command_buffer = NULL;
		svf_command_buffer_size = 0;
	}
	if (svf_check_tdo_para)
	{
		free(svf_check_tdo_para);
		svf_check_tdo_para = NULL;
		svf_check_tdo_para_index = 0;
	}
	if (svf_tdi_buffer)
	{
		free(svf_tdi_buffer);
		svf_tdi_buffer = NULL;
	}
	if (svf_tdo_buffer)
	{
		free(svf_tdo_buffer);
		svf_tdo_buffer = NULL;
	}
	if (svf_mask_buffer)
	{
		free(svf_mask_buffer);
		svf_mask_buffer = NULL;
	}
	svf_buffer_index = 0;
	svf_buffer_size = 0;

	svf_free_xxd_para(&svf_para.hdr_para);
	svf_free_xxd_para(&svf_para.hir_para);
	svf_free_xxd_para(&svf_para.tdr_para);
	svf_free_xxd_para(&svf_para.tir_para);
	svf_free_xxd_para(&svf_para.sdr_para);
	svf_free_xxd_para(&svf_para.sir_para);

	if (ERROR_OK == ret)
	{
		command_print(CMD_CTX, "svf file programmed successfully for %d commands", command_num);
	}
	else
	{
		command_print(CMD_CTX, "svf file programmed failed");
	}

	return ret;
}

static int svf_getline (char **lineptr, size_t *n, FILE *stream)
{
#define MIN_CHUNK 16	//Buffer is increased by this size each time as required
  size_t i = 0;

  if (*lineptr == NULL)
    {
      *n = MIN_CHUNK;
      *lineptr = (char *)malloc (*n);
      if (!*lineptr)
        {
		  return -1;
        }
    }

	(*lineptr)[0] = fgetc(stream);
	while ((*lineptr)[i] != '\n')
	{
		(*lineptr)[++i] = fgetc(stream);
		if (feof(stream))
		{
			(*lineptr)[0] = 0;
			return -1;
		}
		if ((i + 2) > *n)
		{
			*n += MIN_CHUNK;
			*lineptr = realloc(*lineptr, *n);
		}
	}

	(*lineptr)[++i] = 0;

	return sizeof(*lineptr);
}

#define SVFP_CMD_INC_CNT			1024
static int svf_read_command_from_file(FILE * fd)
{
	unsigned char ch;
	int i = 0;
	size_t cmd_pos = 0;
	int cmd_ok = 0, slash = 0;

	if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
	{
		return ERROR_FAIL;
	}
	svf_line_number++;
	ch = svf_read_line[0];
	while (!cmd_ok && (ch != 0))
	{
		switch (ch)
		{
		case '!':
			slash = 0;
			if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
			{
				return ERROR_FAIL;
			}
			svf_line_number++;
			i = -1;
			break;
		case '/':
			if (++slash == 2)
			{
				slash = 0;
				if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
				{
					return ERROR_FAIL;
				}
				svf_line_number++;
				i = -1;
			}
			break;
		case ';':
			slash = 0;
			cmd_ok = 1;
			break;
		case '\n':
			svf_line_number++;
			if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
			{
				return ERROR_FAIL;
			}
			i = -1;
		case '\r':
			slash = 0;
			/* Don't save '\r' and '\n' if no data is parsed */
			if (!cmd_pos)
				break;
		default:
			/* The parsing code currently expects a space
			 * before parentheses -- "TDI (123)".  Also a
			 * space afterwards -- "TDI (123) TDO(456)".
			 * But such spaces are optional... instead of
			 * parser updates, cope with that by adding the
			 * spaces as needed.
			 *
			 * Ensure there are 3 bytes available, for:
			 *  - current character
			 *  - added space.
			 *  - terminating NUL ('\0')
			 */
			if ((cmd_pos + 2) >= svf_command_buffer_size)
			{
				svf_command_buffer = realloc(svf_command_buffer, (cmd_pos + 2));
				if (svf_command_buffer == NULL)
				{
					LOG_ERROR("not enough memory");
					return ERROR_FAIL;
				}
			}

			/* insert a space before '(' */
			if ('(' == ch)
				svf_command_buffer[cmd_pos++] = ' ';

			svf_command_buffer[cmd_pos++] = (char)toupper(ch);

			/* insert a space after ')' */
			if (')' == ch)
				svf_command_buffer[cmd_pos++] = ' ';
			break;
		}
		ch = svf_read_line[++i];
	}

	if (cmd_ok)
	{
		svf_command_buffer[cmd_pos] = '\0';
		return ERROR_OK;
	}
	else
	{
		return ERROR_FAIL;
	}
}

static int svf_parse_cmd_string(char *str, int len, char **argus, int *num_of_argu)
{
	int pos = 0, num = 0, space_found = 1, in_bracket = 0;

	while (pos < len)
	{
		switch (str[pos])
		{
		case '!':
		case '/':
			LOG_ERROR("fail to parse svf command");
			return ERROR_FAIL;
		case '(':
			in_bracket = 1;
			goto parse_char;
		case ')':
			in_bracket = 0;
			goto parse_char;
		default:
parse_char:
			if (!in_bracket && isspace((int) str[pos]))
			{
				space_found = 1;
				str[pos] = '\0';
			}
			else if (space_found)
			{
				argus[num++] = &str[pos];
				space_found = 0;
			}
			break;
		}
		pos++;
	}

	*num_of_argu = num;

	return ERROR_OK;
}

bool svf_tap_state_is_stable(tap_state_t state)
{
	return (TAP_RESET == state) || (TAP_IDLE == state)
			|| (TAP_DRPAUSE == state) || (TAP_IRPAUSE == state);
}

static int svf_find_string_in_array(char *str, char **strs, int num_of_element)
{
	int i;

	for (i = 0; i < num_of_element; i++)
	{
		if (!strcmp(str, strs[i]))
		{
			return i;
		}
	}
	return 0xFF;
}

static int svf_adjust_array_length(uint8_t **arr, int orig_bit_len, int new_bit_len)
{
	int new_byte_len = (new_bit_len + 7) >> 3;

	if ((NULL == *arr) || (((orig_bit_len + 7) >> 3) < ((new_bit_len + 7) >> 3)))
	{
		if (*arr != NULL)
		{
			free(*arr);
			*arr = NULL;
		}
		*arr = (uint8_t*)malloc(new_byte_len);
		if (NULL == *arr)
		{
			LOG_ERROR("not enough memory");
			return ERROR_FAIL;
		}
		memset(*arr, 0, new_byte_len);
	}
	return ERROR_OK;
}

static int svf_set_padding(struct svf_xxr_para *para, int len, unsigned char tdi)
{
	int error = ERROR_OK;
	error |= svf_adjust_array_length(&para->tdi, para->len, len);
	memset(para->tdi, tdi, (len + 7) >> 3);
	error |= svf_adjust_array_length(&para->tdo, para->len, len);
	error |= svf_adjust_array_length(&para->mask, para->len, len);
	para->len = len;
	para->data_mask = XXR_TDI;

	return error;
}

static int svf_copy_hexstring_to_binary(char *str, uint8_t **bin, int orig_bit_len, int bit_len)
{
	int i, str_len = strlen(str), str_hbyte_len = (bit_len + 3) >> 2;
	uint8_t ch = 0;

	if (ERROR_OK != svf_adjust_array_length(bin, orig_bit_len, bit_len))
	{
		LOG_ERROR("fail to adjust length of array");
		return ERROR_FAIL;
	}

	/* fill from LSB (end of str) to MSB (beginning of str) */
	for (i = 0; i < str_hbyte_len; i++)
	{
		ch = 0;
		while (str_len > 0)
		{
			ch = str[--str_len];

			/* Skip whitespace.  The SVF specification (rev E) is
			 * deficient in terms of basic lexical issues like
			 * where whitespace is allowed.  Long bitstrings may
			 * require line ends for correctness, since there is
			 * a hard limit on line length.
			 */
			if (!isspace(ch))
			{
				if ((ch >= '0') && (ch <= '9'))
				{
					ch = ch - '0';
					break;
				}
				else if ((ch >= 'A') && (ch <= 'F'))
				{
					ch = ch - 'A' + 10;
					break;
				}
				else
				{
					LOG_ERROR("invalid hex string");
					return ERROR_FAIL;
				}
			}

			ch = 0;
		}

		// write bin
		if (i % 2)
		{
			// MSB
			(*bin)[i / 2] |= ch << 4;
		}
		else
		{
			// LSB
			(*bin)[i / 2] = 0;
			(*bin)[i / 2] |= ch;
		}
	}

	/* consume optional leading '0' MSBs or whitespace */
	while (str_len > 0 && ((str[str_len - 1] == '0')
				|| isspace((int) str[str_len - 1])))
		str_len--;

	/* check validity: we must have consumed everything */
	if (str_len > 0 || (ch & ~((2 << ((bit_len - 1) % 4)) - 1)) != 0)
	{
		LOG_ERROR("value execeeds length");
		return ERROR_FAIL;
	}

	return ERROR_OK;
}

static int svf_check_tdo(void)
{
	int i, len, index_var;

	for (i = 0; i < svf_check_tdo_para_index; i++)
	{
		index_var = svf_check_tdo_para[i].buffer_offset;
		len = svf_check_tdo_para[i].bit_len;
		if ((svf_check_tdo_para[i].enabled)
			&& buf_cmp_mask(&svf_tdi_buffer[index_var], &svf_tdo_buffer[index_var], &svf_mask_buffer[index_var], len))
		{
			unsigned bitmask;
			unsigned received, expected, tapmask;
			bitmask = svf_get_mask_u32(svf_check_tdo_para[i].bit_len);

			memcpy(&received, svf_tdi_buffer + index_var, sizeof(unsigned));
			memcpy(&expected, svf_tdo_buffer + index_var, sizeof(unsigned));
			memcpy(&tapmask, svf_mask_buffer + index_var, sizeof(unsigned));
			LOG_ERROR("tdo check error at line %d",
					  svf_check_tdo_para[i].line_num);
			LOG_ERROR("read = 0x%X, want = 0x%X, mask = 0x%X",
					  received & bitmask,
					  expected & bitmask,
					  tapmask & bitmask);
			return ERROR_FAIL;
		}
	}
	svf_check_tdo_para_index = 0;

	return ERROR_OK;
}

static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len)
{
	if (svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE)
	{
		LOG_ERROR("toooooo many operation undone");
		return ERROR_FAIL;
	}

	svf_check_tdo_para[svf_check_tdo_para_index].line_num = svf_line_number;
	svf_check_tdo_para[svf_check_tdo_para_index].bit_len = bit_len;
	svf_check_tdo_para[svf_check_tdo_para_index].enabled = enabled;
	svf_check_tdo_para[svf_check_tdo_para_index].buffer_offset = buffer_offset;
	svf_check_tdo_para_index++;

	return ERROR_OK;
}

static int svf_execute_tap(void)
{
	if ((!svf_nil) && (ERROR_OK != jtag_execute_queue()))
	{
		return ERROR_FAIL;
	}
	else if (ERROR_OK != svf_check_tdo())
	{
		return ERROR_FAIL;
	}

	svf_buffer_index = 0;

	return ERROR_OK;
}

static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str)
{
	char *argus[256], command;
	int num_of_argu = 0, i;

	// tmp variable
	int i_tmp;

	// for RUNTEST
	int run_count;
	float min_time, max_time;
	// for XXR
	struct svf_xxr_para *xxr_para_tmp;
	uint8_t **pbuffer_tmp;
	struct scan_field field;
	// for STATE
	tap_state_t *path = NULL, state;
	// flag padding commands skipped due to -tap command
	int padding_command_skipped = 0;

	if (ERROR_OK != svf_parse_cmd_string(cmd_str, strlen(cmd_str), argus, &num_of_argu))
	{
		return ERROR_FAIL;
	}

	/* NOTE: we're a bit loose here, because we ignore case in
	 * TAP state names (instead of insisting on uppercase).
	 */

	command = svf_find_string_in_array(argus[0],
			(char **)svf_command_name, ARRAY_SIZE(svf_command_name));
	switch (command)
	{
	case ENDDR:
	case ENDIR:
		if (num_of_argu != 2)
		{
			LOG_ERROR("invalid parameter of %s", argus[0]);
			return ERROR_FAIL;
		}

		i_tmp = tap_state_by_name(argus[1]);

		if (svf_tap_state_is_stable(i_tmp))
		{
			if (command == ENDIR)
			{
				svf_para.ir_end_state = i_tmp;
				LOG_DEBUG("\tIR end_state = %s",
						tap_state_name(i_tmp));
			}
			else
			{
				svf_para.dr_end_state = i_tmp;
				LOG_DEBUG("\tDR end_state = %s",
						tap_state_name(i_tmp));
			}
		}
		else
		{
			LOG_ERROR("%s: %s is not a stable state",
					argus[0], argus[1]);
			return ERROR_FAIL;
		}
		break;
	case FREQUENCY:
		if ((num_of_argu != 1) && (num_of_argu != 3))
		{
			LOG_ERROR("invalid parameter of %s", argus[0]);
			return ERROR_FAIL;
		}
		if (1 == num_of_argu)
		{
			// TODO: set jtag speed to full speed
			svf_para.frequency = 0;
		}
		else
		{
			if (strcmp(argus[2], "HZ"))
			{
				LOG_ERROR("HZ not found in FREQUENCY command");
				return ERROR_FAIL;
			}
			if (ERROR_OK != svf_execute_tap())
			{
				return ERROR_FAIL;
			}
			svf_para.frequency = atof(argus[1]);
			// TODO: set jtag speed to
			if (svf_para.frequency > 0)
			{
				command_run_linef(cmd_ctx, "adapter_khz %d", (int)svf_para.frequency / 1000);
				LOG_DEBUG("\tfrequency = %f", svf_para.frequency);
			}
		}
		break;
	case HDR:
		if (svf_tap_is_specified)
		{
			padding_command_skipped = 1;
			break;
		}
		xxr_para_tmp = &svf_para.hdr_para;
		goto XXR_common;
	case HIR:
		if (svf_tap_is_specified)
		{
			padding_command_skipped = 1;
			break;
		}
		xxr_para_tmp = &svf_para.hir_para;
		goto XXR_common;
	case TDR:
		if (svf_tap_is_specified)
		{
			padding_command_skipped = 1;
			break;
		}
		xxr_para_tmp = &svf_para.tdr_para;
		goto XXR_common;
	case TIR:
		if (svf_tap_is_specified)
		{
			padding_command_skipped = 1;
			break;
		}
		xxr_para_tmp = &svf_para.tir_para;
		goto XXR_common;
	case SDR:
		xxr_para_tmp = &svf_para.sdr_para;
		goto XXR_common;
	case SIR:
		xxr_para_tmp = &svf_para.sir_para;
		goto XXR_common;
		XXR_common:
		// XXR length [TDI (tdi)] [TDO (tdo)][MASK (mask)] [SMASK (smask)]
		if ((num_of_argu > 10) || (num_of_argu % 2))
		{
			LOG_ERROR("invalid parameter of %s", argus[0]);
			return ERROR_FAIL;
		}
		i_tmp = xxr_para_tmp->len;
		xxr_para_tmp->len = atoi(argus[1]);
		LOG_DEBUG("\tlength = %d", xxr_para_tmp->len);
		xxr_para_tmp->data_mask = 0;
		for (i = 2; i < num_of_argu; i += 2)
		{
			if ((strlen(argus[i + 1]) < 3) || (argus[i + 1][0] != '(') || (argus[i + 1][strlen(argus[i + 1]) - 1] != ')'))
			{
				LOG_ERROR("data section error");
				return ERROR_FAIL;
			}
			argus[i + 1][strlen(argus[i + 1]) - 1] = '\0';
			// TDI, TDO, MASK, SMASK
			if (!strcmp(argus[i], "TDI"))
			{
				// TDI
				pbuffer_tmp = &xxr_para_tmp->tdi;
				xxr_para_tmp->data_mask |= XXR_TDI;
			}
			else if (!strcmp(argus[i], "TDO"))
			{
				// TDO
				pbuffer_tmp = &xxr_para_tmp->tdo;
				xxr_para_tmp->data_mask |= XXR_TDO;
			}
			else if (!strcmp(argus[i], "MASK"))
			{
				// MASK
				pbuffer_tmp = &xxr_para_tmp->mask;
				xxr_para_tmp->data_mask |= XXR_MASK;
			}
			else if (!strcmp(argus[i], "SMASK"))
			{
				// SMASK
				pbuffer_tmp = &xxr_para_tmp->smask;
				xxr_para_tmp->data_mask |= XXR_SMASK;
			}
			else
			{
				LOG_ERROR("unknow parameter: %s", argus[i]);
				return ERROR_FAIL;
			}
			if (ERROR_OK != svf_copy_hexstring_to_binary(&argus[i + 1][1], pbuffer_tmp, i_tmp, xxr_para_tmp->len))
			{
				LOG_ERROR("fail to parse hex value");
				return ERROR_FAIL;
			}
			LOG_DEBUG("\t%s = 0x%X", argus[i], (**(int**)pbuffer_tmp) & svf_get_mask_u32(xxr_para_tmp->len));
		}
		// If a command changes the length of the last scan of the same type and the MASK parameter is absent,
		// the mask pattern used is all cares
		if (!(xxr_para_tmp->data_mask & XXR_MASK) && (i_tmp != xxr_para_tmp->len))
		{
			// MASK not defined and length changed
			if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp, xxr_para_tmp->len))
			{
				LOG_ERROR("fail to adjust length of array");
				return ERROR_FAIL;
			}
			buf_set_ones(xxr_para_tmp->mask, xxr_para_tmp->len);
		}
		// If TDO is absent, no comparison is needed, set the mask to 0
		if (!(xxr_para_tmp->data_mask & XXR_TDO))
		{
			if (NULL == xxr_para_tmp->tdo)
			{
				if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->tdo, i_tmp, xxr_para_tmp->len))
				{
					LOG_ERROR("fail to adjust length of array");
					return ERROR_FAIL;
				}
			}
			if (NULL == xxr_para_tmp->mask)
			{
				if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp, xxr_para_tmp->len))
				{
					LOG_ERROR("fail to adjust length of array");
					return ERROR_FAIL;
				}
			}
			memset(xxr_para_tmp->mask, 0, (xxr_para_tmp->len + 7) >> 3);
		}
		// do scan if necessary
		if (SDR == command)
		{
			// check buffer size first, reallocate if necessary
			i = svf_para.hdr_para.len + svf_para.sdr_para.len + svf_para.tdr_para.len;
			if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3))
			{
#if 1
				// simply print error message
				LOG_ERROR("buffer is not enough, report to author");
				return ERROR_FAIL;
#else
				uint8_t *buffer_tmp;

				// reallocate buffer
				buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
				if (NULL == buffer_tmp)
				{
					LOG_ERROR("not enough memory");
					return ERROR_FAIL;
				}
				memcpy(buffer_tmp, svf_tdi_buffer, svf_buffer_index);
				// svf_tdi_buffer isn't NULL here
				free(svf_tdi_buffer);
				svf_tdi_buffer = buffer_tmp;

				buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
				if (NULL == buffer_tmp)
				{
					LOG_ERROR("not enough memory");
					return ERROR_FAIL;
				}
				memcpy(buffer_tmp, svf_tdo_buffer, svf_buffer_index);
				// svf_tdo_buffer isn't NULL here
				free(svf_tdo_buffer);
				svf_tdo_buffer = buffer_tmp;

				buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
				if (NULL == buffer_tmp)
				{
					LOG_ERROR("not enough memory");
					return ERROR_FAIL;
				}
				memcpy(buffer_tmp, svf_mask_buffer, svf_buffer_index);
				// svf_mask_buffer isn't NULL here
				free(svf_mask_buffer);
				svf_mask_buffer = buffer_tmp;

				buffer_tmp = NULL;
				svf_buffer_size = svf_buffer_index + ((i + 7) >> 3);
#endif
			}

			// assemble dr data
			i = 0;
			buf_set_buf(svf_para.hdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.hdr_para.len);
			i += svf_para.hdr_para.len;
			buf_set_buf(svf_para.sdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.sdr_para.len);
			i += svf_para.sdr_para.len;
			buf_set_buf(svf_para.tdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.tdr_para.len);
			i += svf_para.tdr_para.len;

			// add check data
			if (svf_para.sdr_para.data_mask & XXR_TDO)
			{
				// assemble dr mask data
				i = 0;
				buf_set_buf(svf_para.hdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.hdr_para.len);
				i += svf_para.hdr_para.len;
				buf_set_buf(svf_para.sdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.sdr_para.len);
				i += svf_para.sdr_para.len;
				buf_set_buf(svf_para.tdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.tdr_para.len);
				i += svf_para.tdr_para.len;
				// assemble dr check data
				i = 0;
				buf_set_buf(svf_para.hdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.hdr_para.len);
				i += svf_para.hdr_para.len;
				buf_set_buf(svf_para.sdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.sdr_para.len);
				i += svf_para.sdr_para.len;
				buf_set_buf(svf_para.tdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.tdr_para.len);
				i += svf_para.tdr_para.len;

				svf_add_check_para(1, svf_buffer_index, i);
			}
			else
			{
				svf_add_check_para(0, svf_buffer_index, i);
			}
			field.num_bits = i;
			field.out_value = &svf_tdi_buffer[svf_buffer_index];
			field.in_value = &svf_tdi_buffer[svf_buffer_index];
			if (!svf_nil)
			{
				/* NOTE:  doesn't use SVF-specified state paths */
				jtag_add_plain_dr_scan(field.num_bits, field.out_value, field.in_value, svf_para.dr_end_state);
			}

			svf_buffer_index += (i + 7) >> 3;
		}
		else if (SIR == command)
		{
			// check buffer size first, reallocate if necessary
			i = svf_para.hir_para.len + svf_para.sir_para.len + svf_para.tir_para.len;
			if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3))
			{
#if 1
				// simply print error message
				LOG_ERROR("buffer is not enough, report to author");
				return ERROR_FAIL;
#else
				uint8_t *buffer_tmp;

				// reallocate buffer
				buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
				if (NULL == buffer_tmp)
				{
					LOG_ERROR("not enough memory");
					return ERROR_FAIL;
				}
				memcpy(buffer_tmp, svf_tdi_buffer, svf_buffer_index);
				// svf_tdi_buffer isn't NULL here
				free(svf_tdi_buffer);
				svf_tdi_buffer = buffer_tmp;

				buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
				if (NULL == buffer_tmp)
				{
					LOG_ERROR("not enough memory");
					return ERROR_FAIL;
				}
				memcpy(buffer_tmp, svf_tdo_buffer, svf_buffer_index);
				// svf_tdo_buffer isn't NULL here
				free(svf_tdo_buffer);
				svf_tdo_buffer = buffer_tmp;

				buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
				if (NULL == buffer_tmp)
				{
					LOG_ERROR("not enough memory");
					return ERROR_FAIL;
				}
				memcpy(buffer_tmp, svf_mask_buffer, svf_buffer_index);
				// svf_mask_buffer isn't NULL here
				free(svf_mask_buffer);
				svf_mask_buffer = buffer_tmp;

				buffer_tmp = NULL;
				svf_buffer_size = svf_buffer_index + ((i + 7) >> 3);
#endif
			}

			// assemble ir data
			i = 0;
			buf_set_buf(svf_para.hir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.hir_para.len);
			i += svf_para.hir_para.len;
			buf_set_buf(svf_para.sir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.sir_para.len);
			i += svf_para.sir_para.len;
			buf_set_buf(svf_para.tir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.tir_para.len);
			i += svf_para.tir_para.len;

			// add check data
			if (svf_para.sir_para.data_mask & XXR_TDO)
			{
				// assemble dr mask data
				i = 0;
				buf_set_buf(svf_para.hir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.hir_para.len);
				i += svf_para.hir_para.len;
				buf_set_buf(svf_para.sir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.sir_para.len);
				i += svf_para.sir_para.len;
				buf_set_buf(svf_para.tir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.tir_para.len);
				i += svf_para.tir_para.len;
				// assemble dr check data
				i = 0;
				buf_set_buf(svf_para.hir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.hir_para.len);
				i += svf_para.hir_para.len;
				buf_set_buf(svf_para.sir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.sir_para.len);
				i += svf_para.sir_para.len;
				buf_set_buf(svf_para.tir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.tir_para.len);
				i += svf_para.tir_para.len;

				svf_add_check_para(1, svf_buffer_index, i);
			}
			else
			{
				svf_add_check_para(0, svf_buffer_index, i);
			}
			field.num_bits = i;
			field.out_value = &svf_tdi_buffer[svf_buffer_index];
			field.in_value = &svf_tdi_buffer[svf_buffer_index];
			if (!svf_nil)
			{
				/* NOTE:  doesn't use SVF-specified state paths */
				jtag_add_plain_ir_scan(field.num_bits, field.out_value, field.in_value,
						svf_para.ir_end_state);
			}

			svf_buffer_index += (i + 7) >> 3;
		}
		break;
	case PIO:
	case PIOMAP:
		LOG_ERROR("PIO and PIOMAP are not supported");
		return ERROR_FAIL;
		break;
	case RUNTEST:
		// RUNTEST [run_state] run_count run_clk [min_time SEC [MAXIMUM max_time SEC]] [ENDSTATE end_state]
		// RUNTEST [run_state] min_time SEC [MAXIMUM max_time SEC] [ENDSTATE end_state]
		if ((num_of_argu < 3) && (num_of_argu > 11))
		{
			LOG_ERROR("invalid parameter of %s", argus[0]);
			return ERROR_FAIL;
		}
		// init
		run_count = 0;
		min_time = 0;
		max_time = 0;
		i = 1;

		// run_state
		i_tmp = tap_state_by_name(argus[i]);
		if (i_tmp != TAP_INVALID)
		{
			if (svf_tap_state_is_stable(i_tmp))
			{
				svf_para.runtest_run_state = i_tmp;

				/* When a run_state is specified, the new
				 * run_state becomes the default end_state.
				 */
				svf_para.runtest_end_state = i_tmp;
				LOG_DEBUG("\trun_state = %s",
						tap_state_name(i_tmp));
				i++;
			}
			else
			{
				LOG_ERROR("%s: %s is not a stable state",
					argus[0], tap_state_name(i_tmp));
				return ERROR_FAIL;
			}
		}

		// run_count run_clk
		if (((i + 2) <= num_of_argu) && strcmp(argus[i + 1], "SEC"))
		{
			if (!strcmp(argus[i + 1], "TCK"))
			{
				// clock source is TCK
				run_count = atoi(argus[i]);
				LOG_DEBUG("\trun_count@TCK = %d", run_count);
			}
			else
			{
				LOG_ERROR("%s not supported for clock", argus[i + 1]);
				return ERROR_FAIL;
			}
			i += 2;
		}
		// min_time SEC
		if (((i + 2) <= num_of_argu) && !strcmp(argus[i + 1], "SEC"))
		{
			min_time = atof(argus[i]);
			LOG_DEBUG("\tmin_time = %fs", min_time);
			i += 2;
		}
		// MAXIMUM max_time SEC
		if (((i + 3) <= num_of_argu) && !strcmp(argus[i], "MAXIMUM") && !strcmp(argus[i + 2], "SEC"))
		{
			max_time = atof(argus[i + 1]);
			LOG_DEBUG("\tmax_time = %fs", max_time);
			i += 3;
		}
		// ENDSTATE end_state
		if (((i + 2) <= num_of_argu) && !strcmp(argus[i], "ENDSTATE"))
		{
			i_tmp = tap_state_by_name(argus[i + 1]);

			if (svf_tap_state_is_stable(i_tmp))
			{
				svf_para.runtest_end_state = i_tmp;
				LOG_DEBUG("\tend_state = %s",
					tap_state_name(i_tmp));
			}
			else
			{
				LOG_ERROR("%s: %s is not a stable state",
					argus[0], tap_state_name(i_tmp));
				return ERROR_FAIL;
			}
			i += 2;
		}

		// all parameter should be parsed
		if (i == num_of_argu)
		{
#if 1
			/* FIXME handle statemove failures */
			uint32_t min_usec = 1000000 * min_time;

			// enter into run_state if necessary
			if (cmd_queue_cur_state != svf_para.runtest_run_state)
			{
				svf_add_statemove(svf_para.runtest_run_state);
			}

			// add clocks and/or min wait
			if (run_count > 0) {
				if (!svf_nil)
					jtag_add_clocks(run_count);
			}

			if (min_usec > 0) {
				if (!svf_nil)
					jtag_add_sleep(min_usec);
			}

			// move to end_state if necessary
			if (svf_para.runtest_end_state != svf_para.runtest_run_state)
			{
				svf_add_statemove(svf_para.runtest_end_state);
			}
#else
			if (svf_para.runtest_run_state != TAP_IDLE)
			{
				LOG_ERROR("cannot runtest in %s state",
					tap_state_name(svf_para.runtest_run_state));
				return ERROR_FAIL;
			}

			if (!svf_nil)
				jtag_add_runtest(run_count, svf_para.runtest_end_state);
#endif
		}
		else
		{
			LOG_ERROR("fail to parse parameter of RUNTEST, %d out of %d is parsed", i, num_of_argu);
			return ERROR_FAIL;
		}
		break;
	case STATE:
		// STATE [pathstate1 [pathstate2 ...[pathstaten]]] stable_state
		if (num_of_argu < 2)
		{
			LOG_ERROR("invalid parameter of %s", argus[0]);
			return ERROR_FAIL;
		}
		if (num_of_argu > 2)
		{
			// STATE pathstate1 ... stable_state
			path = (tap_state_t *)malloc((num_of_argu - 1) * sizeof(tap_state_t));
			if (NULL == path)
			{
				LOG_ERROR("not enough memory");
				return ERROR_FAIL;
			}
			num_of_argu--;		// num of path
			i_tmp = 1;		/* path is from parameter 1 */
			for (i = 0; i < num_of_argu; i++, i_tmp++)
			{
				path[i] = tap_state_by_name(argus[i_tmp]);
				if (path[i] == TAP_INVALID)
				{
					LOG_ERROR("%s: %s is not a valid state",
						argus[0], argus[i_tmp]);
					free(path);
					return ERROR_FAIL;
				}
				/* OpenOCD refuses paths containing TAP_RESET */
				if (TAP_RESET == path[i])
				{
					/* FIXME last state MUST be stable! */
					if (i > 0)
					{
						if (!svf_nil)
							jtag_add_pathmove(i, path);
					}
					if (!svf_nil)
						jtag_add_tlr();
					num_of_argu -= i + 1;
					i = -1;
				}
			}
			if (num_of_argu > 0)
			{
				// execute last path if necessary
				if (svf_tap_state_is_stable(path[num_of_argu - 1]))
				{
					// last state MUST be stable state
					if (!svf_nil)
						jtag_add_pathmove(num_of_argu, path);
					LOG_DEBUG("\tmove to %s by path_move",
						tap_state_name(path[num_of_argu - 1]));
				}
				else
				{
					LOG_ERROR("%s: %s is not a stable state",
						argus[0],
						tap_state_name(path[num_of_argu - 1]));
					free(path);
					return ERROR_FAIL;
				}
			}

			free(path);
			path = NULL;
		}
		else
		{
			// STATE stable_state
			state = tap_state_by_name(argus[1]);
			if (svf_tap_state_is_stable(state))
			{
				LOG_DEBUG("\tmove to %s by svf_add_statemove",
						tap_state_name(state));
				/* FIXME handle statemove failures */
				svf_add_statemove(state);
			}
			else
			{
				LOG_ERROR("%s: %s is not a stable state",
					argus[0], tap_state_name(state));
				return ERROR_FAIL;
			}
		}
		break;
	case TRST:
		// TRST trst_mode
		if (num_of_argu != 2)
		{
			LOG_ERROR("invalid parameter of %s", argus[0]);
			return ERROR_FAIL;
		}
		if (svf_para.trst_mode != TRST_ABSENT)
		{
			if (ERROR_OK != svf_execute_tap())
			{
				return ERROR_FAIL;
			}
			i_tmp = svf_find_string_in_array(argus[1],
					(char **)svf_trst_mode_name,
					ARRAY_SIZE(svf_trst_mode_name));
			switch (i_tmp)
			{
			case TRST_ON:
				if (!svf_nil)
					jtag_add_reset(1, 0);
				break;
			case TRST_Z:
			case TRST_OFF:
				if (!svf_nil)
					jtag_add_reset(0, 0);
				break;
			case TRST_ABSENT:
				break;
			default:
				LOG_ERROR("unknown TRST mode: %s", argus[1]);
				return ERROR_FAIL;
			}
			svf_para.trst_mode = i_tmp;
			LOG_DEBUG("\ttrst_mode = %s", svf_trst_mode_name[svf_para.trst_mode]);
		}
		else
		{
			LOG_ERROR("can not accpet TRST command if trst_mode is ABSENT");
			return ERROR_FAIL;
		}
		break;
	default:
		LOG_ERROR("invalid svf command: %s", argus[0]);
		return ERROR_FAIL;
		break;
	}

	if (!svf_quiet)
	{
		if (padding_command_skipped)
		{
			LOG_USER("(Above Padding command skipped, as per -tap argument)");
		}
	}

	if (debug_level >= LOG_LVL_DEBUG)
	{
		// for convenient debugging, execute tap if possible
		if ((svf_buffer_index > 0) && \
			(((command != STATE) && (command != RUNTEST)) || \
			((command == STATE) && (num_of_argu == 2))))
		{
			if (ERROR_OK != svf_execute_tap())
			{
				return ERROR_FAIL;
			}

			// output debug info
			if ((SIR == command) || (SDR == command))
			{
				int read_value;
				memcpy(&read_value, svf_tdi_buffer, sizeof(int));
				// in debug mode, data is from index 0
				int read_mask = svf_get_mask_u32(svf_check_tdo_para[0].bit_len);
				LOG_DEBUG("\tTDO read = 0x%X", read_value & read_mask);
			}
		}
	}
	else
	{
		// for fast executing, execute tap if necessary
		// half of the buffer is for the next command
		if (((svf_buffer_index >= SVF_MAX_BUFFER_SIZE_TO_COMMIT) || (svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE / 2)) && \
			(((command != STATE) && (command != RUNTEST)) || \
			((command == STATE) && (num_of_argu == 2))))
		{
			return svf_execute_tap();
		}
	}

	return ERROR_OK;
}

static const struct command_registration svf_command_handlers[] = {
	{
		.name = "svf",
		.handler = handle_svf_command,
		.mode = COMMAND_EXEC,
		.help = "Runs a SVF file.",
		.usage = "svf [-tap device.tap] <file> [quiet] [nil] [progress]",
	},
	COMMAND_REGISTRATION_DONE
};

int svf_register_commands(struct command_context *cmd_ctx)
{
	return register_commands(cmd_ctx, NULL, svf_command_handlers);
}