/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2007,2008 Øyvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by Hongtao Zheng * * hontor@126.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "embeddedice.h" #include "target_request.h" #include "arm7_9_common.h" #include "time_support.h" #include "arm_simulator.h" int arm7_9_debug_entry(target_t *target); /** * Clear watchpoints for an ARM7/9 target. * * @param arm7_9 Pointer to the common struct for an ARM7/9 target * @return JTAG error status after executing queue */ static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9) { LOG_DEBUG("-"); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0); arm7_9->sw_breakpoint_count = 0; arm7_9->sw_breakpoints_added = 0; arm7_9->wp0_used = 0; arm7_9->wp1_used = arm7_9->wp1_used_default; arm7_9->wp_available = arm7_9->wp_available_max; return jtag_execute_queue(); } /** * Assign a watchpoint to one of the two available hardware comparators in an * ARM7 or ARM9 target. * * @param arm7_9 Pointer to the common struct for an ARM7/9 target * @param breakpoint Pointer to the breakpoint to be used as a watchpoint */ static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, breakpoint_t *breakpoint) { if (!arm7_9->wp0_used) { arm7_9->wp0_used = 1; breakpoint->set = 1; arm7_9->wp_available--; } else if (!arm7_9->wp1_used) { arm7_9->wp1_used = 1; breakpoint->set = 2; arm7_9->wp_available--; } else { LOG_ERROR("BUG: no hardware comparator available"); } LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d", breakpoint->unique_id, breakpoint->address, breakpoint->set ); } /** * Setup an ARM7/9 target's embedded ICE registers for software breakpoints. * * @param arm7_9 Pointer to common struct for ARM7/9 targets * @return Error codes if there is a problem finding a watchpoint or the result * of executing the JTAG queue */ static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9) { if (arm7_9->sw_breakpoints_added) { return ERROR_OK; } if (arm7_9->wp_available < 1) { LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } arm7_9->wp_available--; /* pick a breakpoint unit */ if (!arm7_9->wp0_used) { arm7_9->sw_breakpoints_added = 1; arm7_9->wp0_used = 3; } else if (!arm7_9->wp1_used) { arm7_9->sw_breakpoints_added = 2; arm7_9->wp1_used = 3; } else { LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1"); return ERROR_FAIL; } if (arm7_9->sw_breakpoints_added == 1) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE); } else if (arm7_9->sw_breakpoints_added == 2) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE); } else { LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1"); return ERROR_FAIL; } LOG_DEBUG("SW BP using hw wp: %d", arm7_9->sw_breakpoints_added ); return jtag_execute_queue(); } /** * Setup the common pieces for an ARM7/9 target after reset or on startup. * * @param target Pointer to an ARM7/9 target to setup * @return Result of clearing the watchpoints on the target */ int arm7_9_setup(target_t *target) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); return arm7_9_clear_watchpoints(arm7_9); } /** * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9 * targets. A return of ERROR_OK signifies that the target is a valid target * and that the pointers have been set properly. * * @param target Pointer to the target device to get the pointers from * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5 * targets * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9 * targets * @return ERROR_OK if successful */ int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, struct arm7_9_common **arm7_9_p) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; /* FIXME stop using this routine; just target_to_arm7_9() and * verify the resulting pointer using a replacement routine * that emits a usage message. */ if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC) return ERROR_TARGET_INVALID; if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC) return ERROR_TARGET_INVALID; *armv4_5_p = armv4_5; *arm7_9_p = arm7_9; return ERROR_OK; } /** * Set either a hardware or software breakpoint on an ARM7/9 target. The * breakpoint is set up even if it is already set. Some actions, e.g. reset, * might have erased the values in Embedded ICE. * * @param target Pointer to the target device to set the breakpoints on * @param breakpoint Pointer to the breakpoint to be set * @return For hardware breakpoints, this is the result of executing the JTAG * queue. For software breakpoints, this will be the status of the * required memory reads and writes */ int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); int retval = ERROR_OK; LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" , breakpoint->unique_id, breakpoint->address, breakpoint->type); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (breakpoint->type == BKPT_HARD) { /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */ uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u; /* reassign a hw breakpoint */ if (breakpoint->set == 0) { arm7_9_assign_wp(arm7_9, breakpoint); } if (breakpoint->set == 1) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE); } else if (breakpoint->set == 2) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE); } else { LOG_ERROR("BUG: no hardware comparator available"); return ERROR_OK; } retval = jtag_execute_queue(); } else if (breakpoint->type == BKPT_SOFT) { /* did we already set this breakpoint? */ if (breakpoint->set) return ERROR_OK; if (breakpoint->length == 4) { uint32_t verify = 0xffffffff; /* keep the original instruction in target endianness */ if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */ if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK) { return retval; } if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK) { return retval; } if (verify != arm7_9->arm_bkpt) { LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address); return ERROR_OK; } } else { uint16_t verify = 0xffff; /* keep the original instruction in target endianness */ if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */ if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK) { return retval; } if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK) { return retval; } if (verify != arm7_9->thumb_bkpt) { LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address); return ERROR_OK; } } if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK) return retval; arm7_9->sw_breakpoint_count++; breakpoint->set = 1; } return retval; } /** * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware * breakpoint, the watchpoint used will be freed and the Embedded ICE registers * will be updated. Otherwise, the software breakpoint will be restored to its * original instruction if it hasn't already been modified. * * @param target Pointer to ARM7/9 target to unset the breakpoint from * @param breakpoint Pointer to breakpoint to be unset * @return For hardware breakpoints, this is the result of executing the JTAG * queue. For software breakpoints, this will be the status of the * required memory reads and writes */ int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { int retval = ERROR_OK; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32, breakpoint->unique_id, breakpoint->address ); if (!breakpoint->set) { LOG_WARNING("breakpoint not set"); return ERROR_OK; } if (breakpoint->type == BKPT_HARD) { LOG_DEBUG("BPID: %d Releasing hw wp: %d", breakpoint->unique_id, breakpoint->set ); if (breakpoint->set == 1) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0); arm7_9->wp0_used = 0; arm7_9->wp_available++; } else if (breakpoint->set == 2) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0); arm7_9->wp1_used = 0; arm7_9->wp_available++; } retval = jtag_execute_queue(); breakpoint->set = 0; } else { /* restore original instruction (kept in target endianness) */ if (breakpoint->length == 4) { uint32_t current_instr; /* check that user program as not modified breakpoint instruction */ if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)¤t_instr)) != ERROR_OK) { return retval; } if (current_instr == arm7_9->arm_bkpt) if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } } else { uint16_t current_instr; /* check that user program as not modified breakpoint instruction */ if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)¤t_instr)) != ERROR_OK) { return retval; } if (current_instr == arm7_9->thumb_bkpt) if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } } if (--arm7_9->sw_breakpoint_count==0) { /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */ if (arm7_9->sw_breakpoints_added == 1) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0); } else if (arm7_9->sw_breakpoints_added == 2) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0); } } breakpoint->set = 0; } return retval; } /** * Add a breakpoint to an ARM7/9 target. This makes sure that there are no * dangling breakpoints and that the desired breakpoint can be added. * * @param target Pointer to the target ARM7/9 device to add a breakpoint to * @param breakpoint Pointer to the breakpoint to be added * @return An error status if there is a problem adding the breakpoint or the * result of setting the breakpoint */ int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (arm7_9->breakpoint_count == 0) { /* make sure we don't have any dangling breakpoints. This is vital upon * GDB connect/disconnect */ arm7_9_clear_watchpoints(arm7_9); } if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1)) { LOG_INFO("no watchpoint unit available for hardware breakpoint"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if ((breakpoint->length != 2) && (breakpoint->length != 4)) { LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if (breakpoint->type == BKPT_HARD) { arm7_9_assign_wp(arm7_9, breakpoint); } arm7_9->breakpoint_count++; return arm7_9_set_breakpoint(target, breakpoint); } /** * Removes a breakpoint from an ARM7/9 target. This will make sure there are no * dangling breakpoints and updates available watchpoints if it is a hardware * breakpoint. * * @param target Pointer to the target to have a breakpoint removed * @param breakpoint Pointer to the breakpoint to be removed * @return Error status if there was a problem unsetting the breakpoint or the * watchpoints could not be cleared */ int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { int retval = ERROR_OK; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK) { return retval; } if (breakpoint->type == BKPT_HARD) arm7_9->wp_available++; arm7_9->breakpoint_count--; if (arm7_9->breakpoint_count == 0) { /* make sure we don't have any dangling breakpoints */ if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK) { return retval; } } return ERROR_OK; } /** * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is * considered a bug to call this function when there are no available watchpoint * units. * * @param target Pointer to an ARM7/9 target to set a watchpoint on * @param watchpoint Pointer to the watchpoint to be set * @return Error status if watchpoint set fails or the result of executing the * JTAG queue */ int arm7_9_set_watchpoint(struct target_s *target, struct watchpoint *watchpoint) { int retval = ERROR_OK; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); int rw_mask = 1; uint32_t mask; mask = watchpoint->length - 1; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (watchpoint->rw == WPT_ACCESS) rw_mask = 0; else rw_mask = 1; if (!arm7_9->wp0_used) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask); if (watchpoint->mask != 0xffffffffu) embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1)); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } watchpoint->set = 1; arm7_9->wp0_used = 2; } else if (!arm7_9->wp1_used) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask); if (watchpoint->mask != 0xffffffffu) embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask); embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1)); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } watchpoint->set = 2; arm7_9->wp1_used = 2; } else { LOG_ERROR("BUG: no hardware comparator available"); return ERROR_OK; } return ERROR_OK; } /** * Unset an existing watchpoint and clear the used watchpoint unit. * * @param target Pointer to the target to have the watchpoint removed * @param watchpoint Pointer to the watchpoint to be removed * @return Error status while trying to unset the watchpoint or the result of * executing the JTAG queue */ int arm7_9_unset_watchpoint(struct target_s *target, struct watchpoint *watchpoint) { int retval = ERROR_OK; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!watchpoint->set) { LOG_WARNING("breakpoint not set"); return ERROR_OK; } if (watchpoint->set == 1) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } arm7_9->wp0_used = 0; } else if (watchpoint->set == 2) { embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } arm7_9->wp1_used = 0; } watchpoint->set = 0; return ERROR_OK; } /** * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units * available, an error response is returned. * * @param target Pointer to the ARM7/9 target to add a watchpoint to * @param watchpoint Pointer to the watchpoint to be added * @return Error status while trying to add the watchpoint */ int arm7_9_add_watchpoint(struct target_s *target, struct watchpoint *watchpoint) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (arm7_9->wp_available < 1) { return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4)) { return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } arm7_9->wp_available--; return ERROR_OK; } /** * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and * the used watchpoint unit will be reopened. * * @param target Pointer to the target to remove a watchpoint from * @param watchpoint Pointer to the watchpoint to be removed * @return Result of trying to unset the watchpoint */ int arm7_9_remove_watchpoint(struct target_s *target, struct watchpoint *watchpoint) { int retval = ERROR_OK; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); if (watchpoint->set) { if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK) { return retval; } } arm7_9->wp_available++; return ERROR_OK; } /** * Restarts the target by sending a RESTART instruction and moving the JTAG * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be * asserted by the processor. * * @param target Pointer to target to issue commands to * @return Error status if there is a timeout or a problem while executing the * JTAG queue */ int arm7_9_execute_sys_speed(struct target_s *target) { int retval; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct arm_jtag *jtag_info = &arm7_9->jtag_info; reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT]; /* set RESTART instruction */ jtag_set_end_state(TAP_IDLE); if (arm7_9->need_bypass_before_restart) { arm7_9->need_bypass_before_restart = 0; arm_jtag_set_instr(jtag_info, 0xf, NULL); } arm_jtag_set_instr(jtag_info, 0x4, NULL); long long then = timeval_ms(); int timeout; while (!(timeout = ((timeval_ms()-then) > 1000))) { /* read debug status register */ embeddedice_read_reg(dbg_stat); if ((retval = jtag_execute_queue()) != ERROR_OK) return retval; if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1))) break; if (debug_level >= 3) { alive_sleep(100); } else { keep_alive(); } } if (timeout) { LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size)); return ERROR_TARGET_TIMEOUT; } return ERROR_OK; } /** * Restarts the target by sending a RESTART instruction and moving the JTAG * state to IDLE. This validates that DBGACK and SYSCOMP are set without * waiting until they are. * * @param target Pointer to the target to issue commands to * @return Always ERROR_OK */ int arm7_9_execute_fast_sys_speed(struct target_s *target) { static int set = 0; static uint8_t check_value[4], check_mask[4]; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct arm_jtag *jtag_info = &arm7_9->jtag_info; reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT]; /* set RESTART instruction */ jtag_set_end_state(TAP_IDLE); if (arm7_9->need_bypass_before_restart) { arm7_9->need_bypass_before_restart = 0; arm_jtag_set_instr(jtag_info, 0xf, NULL); } arm_jtag_set_instr(jtag_info, 0x4, NULL); if (!set) { /* check for DBGACK and SYSCOMP set (others don't care) */ /* NB! These are constants that must be available until after next jtag_execute() and * we evaluate the values upon first execution in lieu of setting up these constants * during early setup. * */ buf_set_u32(check_value, 0, 32, 0x9); buf_set_u32(check_mask, 0, 32, 0x9); set = 1; } /* read debug status register */ embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask); return ERROR_OK; } /** * Get some data from the ARM7/9 target. * * @param target Pointer to the ARM7/9 target to read data from * @param size The number of 32bit words to be read * @param buffer Pointer to the buffer that will hold the data * @return The result of receiving data from the Embedded ICE unit */ int arm7_9_target_request_data(target_t *target, uint32_t size, uint8_t *buffer) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct arm_jtag *jtag_info = &arm7_9->jtag_info; uint32_t *data; int retval = ERROR_OK; uint32_t i; data = malloc(size * (sizeof(uint32_t))); retval = embeddedice_receive(jtag_info, data, size); /* return the 32-bit ints in the 8-bit array */ for (i = 0; i < size; i++) { h_u32_to_le(buffer + (i * 4), data[i]); } free(data); return retval; } /** * Handles requests to an ARM7/9 target. If debug messaging is enabled, the * target is running and the DCC control register has the W bit high, this will * execute the request on the target. * * @param priv Void pointer expected to be a target_t pointer * @return ERROR_OK unless there are issues with the JTAG queue or when reading * from the Embedded ICE unit */ int arm7_9_handle_target_request(void *priv) { int retval = ERROR_OK; target_t *target = priv; if (!target_was_examined(target)) return ERROR_OK; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct arm_jtag *jtag_info = &arm7_9->jtag_info; reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL]; if (!target->dbg_msg_enabled) return ERROR_OK; if (target->state == TARGET_RUNNING) { /* read DCC control register */ embeddedice_read_reg(dcc_control); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } /* check W bit */ if (buf_get_u32(dcc_control->value, 1, 1) == 1) { uint32_t request; if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK) { return retval; } if ((retval = target_request(target, request)) != ERROR_OK) { return retval; } } } return ERROR_OK; } /** * Polls an ARM7/9 target for its current status. If DBGACK is set, the target * is manipulated to the right halted state based on its current state. This is * what happens: * * * * * * * *
State Action
TARGET_RUNNING | TARGET_RESET Enters debug mode. If TARGET_RESET, pc may be checked
TARGET_UNKNOWN Warning is logged
TARGET_DEBUG_RUNNING Enters debug mode
TARGET_HALTED Nothing
* * If the target does not end up in the halted state, a warning is produced. If * DBGACK is cleared, then the target is expected to either be running or * running in debug. * * @param target Pointer to the ARM7/9 target to poll * @return ERROR_OK or an error status if a command fails */ int arm7_9_poll(target_t *target) { int retval; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT]; /* read debug status register */ embeddedice_read_reg(dbg_stat); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) { /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/ if (target->state == TARGET_UNKNOWN) { /* Starting OpenOCD with target in debug-halt */ target->state = TARGET_RUNNING; LOG_DEBUG("DBGACK already set during server startup."); } if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) { int check_pc = 0; if (target->state == TARGET_RESET) { if (target->reset_halt) { enum reset_types jtag_reset_config = jtag_get_reset_config(); if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0) { check_pc = 1; } } } target->state = TARGET_HALTED; if ((retval = arm7_9_debug_entry(target)) != ERROR_OK) return retval; if (check_pc) { reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1); uint32_t t=*((uint32_t *)reg->value); if (t != 0) { LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?"); } } if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK) { return retval; } } if (target->state == TARGET_DEBUG_RUNNING) { target->state = TARGET_HALTED; if ((retval = arm7_9_debug_entry(target)) != ERROR_OK) return retval; if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK) { return retval; } } if (target->state != TARGET_HALTED) { LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state); } } else { if (target->state != TARGET_DEBUG_RUNNING) target->state = TARGET_RUNNING; } return ERROR_OK; } /** * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is * affected) completely stop the JTAG clock while the core is held in reset * (SRST). It isn't possible to program the halt condition once reset is * asserted, hence a hook that allows the target to set up its reset-halt * condition is setup prior to asserting reset. * * @param target Pointer to an ARM7/9 target to assert reset on * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK */ int arm7_9_assert_reset(target_t *target) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); LOG_DEBUG("target->state: %s", target_state_name(target)); enum reset_types jtag_reset_config = jtag_get_reset_config(); if (!(jtag_reset_config & RESET_HAS_SRST)) { LOG_ERROR("Can't assert SRST"); return ERROR_FAIL; } /* At this point trst has been asserted/deasserted once. We would * like to program EmbeddedICE while SRST is asserted, instead of * depending on SRST to leave that module alone. However, many CPUs * gate the JTAG clock while SRST is asserted; or JTAG may need * clock stability guarantees (adaptive clocking might help). * * So we assume JTAG access during SRST is off the menu unless it's * been specifically enabled. */ bool srst_asserted = false; if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0) && (jtag_reset_config & RESET_SRST_NO_GATING)) { jtag_add_reset(0, 1); srst_asserted = true; } if (target->reset_halt) { /* * Some targets do not support communication while SRST is asserted. We need to * set up the reset vector catch here. * * If TRST is asserted, then these settings will be reset anyway, so setting them * here is harmless. */ if (arm7_9->has_vector_catch) { /* program vector catch register to catch reset vector */ embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1); /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */ jtag_add_runtest(1, jtag_get_end_state()); } else { /* program watchpoint unit to match on reset vector address */ embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff); } } /* here we should issue an SRST only, but we may have to assert TRST as well */ if (jtag_reset_config & RESET_SRST_PULLS_TRST) { jtag_add_reset(1, 1); } else if (!srst_asserted) { jtag_add_reset(0, 1); } target->state = TARGET_RESET; jtag_add_sleep(50000); armv4_5_invalidate_core_regs(target); if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)) { /* debug entry was already prepared in arm7_9_assert_reset() */ target->debug_reason = DBG_REASON_DBGRQ; } return ERROR_OK; } /** * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST * and the target is being reset into a halt, a warning will be triggered * because it is not possible to reset into a halted mode in this case. The * target is halted using the target's functions. * * @param target Pointer to the target to have the reset deasserted * @return ERROR_OK or an error from polling or halting the target */ int arm7_9_deassert_reset(target_t *target) { int retval = ERROR_OK; LOG_DEBUG("target->state: %s", target_state_name(target)); /* deassert reset lines */ jtag_add_reset(0, 0); enum reset_types jtag_reset_config = jtag_get_reset_config(); if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0) { LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset."); /* set up embedded ice registers again */ if ((retval = target_examine_one(target)) != ERROR_OK) return retval; if ((retval = target_poll(target)) != ERROR_OK) { return retval; } if ((retval = target_halt(target)) != ERROR_OK) { return retval; } } return retval; } /** * Clears the halt condition for an ARM7/9 target. If it isn't coming out of * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset * vector catch was used, it is restored. Otherwise, the control value is * restored and the watchpoint unit is restored if it was in use. * * @param target Pointer to the ARM7/9 target to have halt cleared * @return Always ERROR_OK */ int arm7_9_clear_halt(target_t *target) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL]; /* we used DBGRQ only if we didn't come out of reset */ if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq) { /* program EmbeddedICE Debug Control Register to deassert DBGRQ */ buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0); embeddedice_store_reg(dbg_ctrl); } else { if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch) { /* if we came out of reset, and vector catch is supported, we used * vector catch to enter debug state * restore the register in that case */ embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]); } else { /* restore registers if watchpoint unit 0 was in use */ if (arm7_9->wp0_used) { if (arm7_9->debug_entry_from_reset) { embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]); } embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]); } /* control value always has to be restored, as it was either disabled, * or enabled with possibly different bits */ embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]); } } return ERROR_OK; } /** * Issue a software reset and halt to an ARM7/9 target. The target is halted * and then there is a wait until the processor shows the halt. This wait can * timeout and results in an error being returned. The software reset involves * clearing the halt, updating the debug control register, changing to ARM mode, * reset of the program counter, and reset of all of the registers. * * @param target Pointer to the ARM7/9 target to be reset and halted by software * @return Error status if any of the commands fail, otherwise ERROR_OK */ int arm7_9_soft_reset_halt(struct target_s *target) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT]; reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL]; int i; int retval; /* FIX!!! replace some of this code with tcl commands * * halt # the halt command is synchronous * armv4_5 core_state arm * */ if ((retval = target_halt(target)) != ERROR_OK) return retval; long long then = timeval_ms(); int timeout; while (!(timeout = ((timeval_ms()-then) > 1000))) { if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0) break; embeddedice_read_reg(dbg_stat); if ((retval = jtag_execute_queue()) != ERROR_OK) return retval; if (debug_level >= 3) { alive_sleep(100); } else { keep_alive(); } } if (timeout) { LOG_ERROR("Failed to halt CPU after 1 sec"); return ERROR_TARGET_TIMEOUT; } target->state = TARGET_HALTED; /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS * ensure that DBGRQ is cleared */ buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1); buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0); buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1); embeddedice_store_reg(dbg_ctrl); if ((retval = arm7_9_clear_halt(target)) != ERROR_OK) { return retval; } /* if the target is in Thumb state, change to ARM state */ if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) { uint32_t r0_thumb, pc_thumb; LOG_DEBUG("target entered debug from Thumb state, changing to ARM"); /* Entered debug from Thumb mode */ armv4_5->core_state = ARMV4_5_STATE_THUMB; arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb); } /* all register content is now invalid */ if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK) { return retval; } /* SVC, ARM state, IRQ and FIQ disabled */ buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3); armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1; armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1; /* start fetching from 0x0 */ buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0); armv4_5->core_cache->reg_list[15].dirty = 1; armv4_5->core_cache->reg_list[15].valid = 1; armv4_5->core_mode = ARMV4_5_MODE_SVC; armv4_5->core_state = ARMV4_5_STATE_ARM; if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; /* reset registers */ for (i = 0; i <= 14; i++) { buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff); ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1; } if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK) { return retval; } return ERROR_OK; } /** * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ * line or by programming a watchpoint to trigger on any address. It is * considered a bug to call this function while the target is in the * TARGET_RESET state. * * @param target Pointer to the ARM7/9 target to be halted * @return Always ERROR_OK */ int arm7_9_halt(target_t *target) { if (target->state == TARGET_RESET) { LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()"); return ERROR_OK; } struct arm7_9_common *arm7_9 = target_to_arm7_9(target); reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL]; LOG_DEBUG("target->state: %s", target_state_name(target)); if (target->state == TARGET_HALTED) { LOG_DEBUG("target was already halted"); return ERROR_OK; } if (target->state == TARGET_UNKNOWN) { LOG_WARNING("target was in unknown state when halt was requested"); } if (arm7_9->use_dbgrq) { /* program EmbeddedICE Debug Control Register to assert DBGRQ */ if (arm7_9->set_special_dbgrq) { arm7_9->set_special_dbgrq(target); } else { buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1); embeddedice_store_reg(dbg_ctrl); } } else { /* program watchpoint unit to match on any address */ embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff); } target->debug_reason = DBG_REASON_DBGRQ; return ERROR_OK; } /** * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the * ARM. The JTAG queue is then executed and the reason for debug entry is * examined. Once done, the target is verified to be halted and the processor * is forced into ARM mode. The core registers are saved for the current core * mode and the program counter (register 15) is updated as needed. The core * registers and CPSR and SPSR are saved for restoration later. * * @param target Pointer to target that is entering debug mode * @return Error code if anything fails, otherwise ERROR_OK */ int arm7_9_debug_entry(target_t *target) { int i; uint32_t context[16]; uint32_t* context_p[16]; uint32_t r0_thumb, pc_thumb; uint32_t cpsr; int retval; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT]; reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL]; #ifdef _DEBUG_ARM7_9_ LOG_DEBUG("-"); #endif /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS * ensure that DBGRQ is cleared */ buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1); buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0); buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1); embeddedice_store_reg(dbg_ctrl); if ((retval = arm7_9_clear_halt(target)) != ERROR_OK) { return retval; } if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK) return retval; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* if the target is in Thumb state, change to ARM state */ if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) { LOG_DEBUG("target entered debug from Thumb state"); /* Entered debug from Thumb mode */ armv4_5->core_state = ARMV4_5_STATE_THUMB; arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb); LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb); } else { LOG_DEBUG("target entered debug from ARM state"); /* Entered debug from ARM mode */ armv4_5->core_state = ARMV4_5_STATE_ARM; } for (i = 0; i < 16; i++) context_p[i] = &context[i]; /* save core registers (r0 - r15 of current core mode) */ arm7_9->read_core_regs(target, 0xffff, context_p); arm7_9->read_xpsr(target, &cpsr, 0); if ((retval = jtag_execute_queue()) != ERROR_OK) return retval; /* if the core has been executing in Thumb state, set the T bit */ if (armv4_5->core_state == ARMV4_5_STATE_THUMB) cpsr |= 0x20; buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr); armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0; armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1; armv4_5->core_mode = cpsr & 0x1f; if (armv4_5_mode_to_number(armv4_5->core_mode) == -1) { target->state = TARGET_UNKNOWN; LOG_ERROR("cpsr contains invalid mode value - communication failure"); return ERROR_TARGET_FAILURE; } LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]); if (armv4_5->core_state == ARMV4_5_STATE_THUMB) { LOG_DEBUG("thumb state, applying fixups"); context[0] = r0_thumb; context[15] = pc_thumb; } else if (armv4_5->core_state == ARMV4_5_STATE_ARM) { /* adjust value stored by STM */ context[15] -= 3 * 4; } if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq)) context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2); else context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2); if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; for (i = 0; i <= 15; i++) { LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]); buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]); ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1; } LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]); if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; /* exceptions other than USR & SYS have a saved program status register */ if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS)) { uint32_t spsr; arm7_9->read_xpsr(target, &spsr, 1); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr); ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1; } /* r0 and r15 (pc) have to be restored later */ ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid; if ((retval = jtag_execute_queue()) != ERROR_OK) return retval; if (arm7_9->post_debug_entry) arm7_9->post_debug_entry(target); return ERROR_OK; } /** * Validate the full context for an ARM7/9 target in all processor modes. If * there are any invalid registers for the target, they will all be read. This * includes the PSR. * * @param target Pointer to the ARM7/9 target to capture the full context from * @return Error if the target is not halted, has an invalid core mode, or if * the JTAG queue fails to execute */ int arm7_9_full_context(target_t *target) { int i; int retval; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; LOG_DEBUG("-"); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND) * SYS shares registers with User, so we don't touch SYS */ for (i = 0; i < 6; i++) { uint32_t mask = 0; uint32_t* reg_p[16]; int j; int valid = 1; /* check if there are invalid registers in the current mode */ for (j = 0; j <= 16; j++) { if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0) valid = 0; } if (!valid) { uint32_t tmp_cpsr; /* change processor mode (and mask T bit) */ tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0; tmp_cpsr |= armv4_5_number_to_mode(i); tmp_cpsr &= ~0x20; arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0); for (j = 0; j < 15; j++) { if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0) { reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value; mask |= 1 << j; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0; } } /* if only the PSR is invalid, mask is all zeroes */ if (mask) arm7_9->read_core_regs(target, mask, reg_p); /* check if the PSR has to be read */ if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0) { arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1); ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0; } } } /* restore processor mode (mask T bit) */ arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } return ERROR_OK; } /** * Restore the processor context on an ARM7/9 target. The full processor * context is analyzed to see if any of the registers are dirty on this end, but * have a valid new value. If this is the case, the processor is changed to the * appropriate mode and the new register values are written out to the * processor. If there happens to be a dirty register with an invalid value, an * error will be logged. * * @param target Pointer to the ARM7/9 target to have its context restored * @return Error status if the target is not halted or the core mode in the * armv4_5 struct is invalid. */ int arm7_9_restore_context(target_t *target) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; reg_t *reg; struct armv4_5_core_reg *reg_arch_info; enum armv4_5_mode current_mode = armv4_5->core_mode; int i, j; int dirty; int mode_change; LOG_DEBUG("-"); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (arm7_9->pre_restore_context) arm7_9->pre_restore_context(target); if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND) * SYS shares registers with User, so we don't touch SYS */ for (i = 0; i < 6; i++) { LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]); dirty = 0; mode_change = 0; /* check if there are dirty registers in the current mode */ for (j = 0; j <= 16; j++) { reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j); reg_arch_info = reg->arch_info; if (reg->dirty == 1) { if (reg->valid == 1) { dirty = 1; LOG_DEBUG("examining dirty reg: %s", reg->name); if ((reg_arch_info->mode != ARMV4_5_MODE_ANY) && (reg_arch_info->mode != current_mode) && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS)) && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR))) { mode_change = 1; LOG_DEBUG("require mode change"); } } else { LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name); } } } if (dirty) { uint32_t mask = 0x0; int num_regs = 0; uint32_t regs[16]; if (mode_change) { uint32_t tmp_cpsr; /* change processor mode (mask T bit) */ tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0; tmp_cpsr |= armv4_5_number_to_mode(i); tmp_cpsr &= ~0x20; arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0); current_mode = armv4_5_number_to_mode(i); } for (j = 0; j <= 14; j++) { reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j); reg_arch_info = reg->arch_info; if (reg->dirty == 1) { regs[j] = buf_get_u32(reg->value, 0, 32); mask |= 1 << j; num_regs++; reg->dirty = 0; reg->valid = 1; LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]); } } if (mask) { arm7_9->write_core_regs(target, mask, regs); } reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16); reg_arch_info = reg->arch_info; if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY)) { LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32)); arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1); } } } if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode)) { /* restore processor mode (mask T bit) */ uint32_t tmp_cpsr; tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0; tmp_cpsr |= armv4_5_number_to_mode(i); tmp_cpsr &= ~0x20; LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr)); arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0); } else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1) { /* CPSR has been changed, full restore necessary (mask T bit) */ LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32)); arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0); armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0; armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1; } /* restore PC */ LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32)); arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32)); armv4_5->core_cache->reg_list[15].dirty = 0; if (arm7_9->post_restore_context) arm7_9->post_restore_context(target); return ERROR_OK; } /** * Restart the core of an ARM7/9 target. A RESTART command is sent to the * instruction register and the JTAG state is set to TAP_IDLE causing a core * restart. * * @param target Pointer to the ARM7/9 target to be restarted * @return Result of executing the JTAG queue */ int arm7_9_restart_core(struct target_s *target) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct arm_jtag *jtag_info = &arm7_9->jtag_info; /* set RESTART instruction */ jtag_set_end_state(TAP_IDLE); if (arm7_9->need_bypass_before_restart) { arm7_9->need_bypass_before_restart = 0; arm_jtag_set_instr(jtag_info, 0xf, NULL); } arm_jtag_set_instr(jtag_info, 0x4, NULL); jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE)); return jtag_execute_queue(); } /** * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are * iterated through and are set on the target if they aren't already set. * * @param target Pointer to the ARM7/9 target to enable watchpoints on */ void arm7_9_enable_watchpoints(struct target_s *target) { struct watchpoint *watchpoint = target->watchpoints; while (watchpoint) { if (watchpoint->set == 0) arm7_9_set_watchpoint(target, watchpoint); watchpoint = watchpoint->next; } } /** * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are * iterated through and are set on the target. * * @param target Pointer to the ARM7/9 target to enable breakpoints on */ void arm7_9_enable_breakpoints(struct target_s *target) { breakpoint_t *breakpoint = target->breakpoints; /* set any pending breakpoints */ while (breakpoint) { arm7_9_set_breakpoint(target, breakpoint); breakpoint = breakpoint->next; } } int arm7_9_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; breakpoint_t *breakpoint = target->breakpoints; reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL]; int err, retval = ERROR_OK; LOG_DEBUG("-"); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!debug_execution) { target_free_all_working_areas(target); } /* current = 1: continue on current pc, otherwise continue at
*/ if (!current) buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address); uint32_t current_pc; current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32); /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) { if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32)))) { LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id ); if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK) { return retval; } /* calculate PC of next instruction */ uint32_t next_pc; if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK) { uint32_t current_opcode; target_read_u32(target, current_pc, ¤t_opcode); LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode); return retval; } LOG_DEBUG("enable single-step"); arm7_9->enable_single_step(target, next_pc); target->debug_reason = DBG_REASON_SINGLESTEP; if ((retval = arm7_9_restore_context(target)) != ERROR_OK) { return retval; } if (armv4_5->core_state == ARMV4_5_STATE_ARM) arm7_9->branch_resume(target); else if (armv4_5->core_state == ARMV4_5_STATE_THUMB) { arm7_9->branch_resume_thumb(target); } else { LOG_ERROR("unhandled core state"); return ERROR_FAIL; } buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0); embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size)); err = arm7_9_execute_sys_speed(target); LOG_DEBUG("disable single-step"); arm7_9->disable_single_step(target); if (err != ERROR_OK) { if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK) { return retval; } target->state = TARGET_UNKNOWN; return err; } arm7_9_debug_entry(target); LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32)); LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address); if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK) { return retval; } } } /* enable any pending breakpoints and watchpoints */ arm7_9_enable_breakpoints(target); arm7_9_enable_watchpoints(target); if ((retval = arm7_9_restore_context(target)) != ERROR_OK) { return retval; } if (armv4_5->core_state == ARMV4_5_STATE_ARM) { arm7_9->branch_resume(target); } else if (armv4_5->core_state == ARMV4_5_STATE_THUMB) { arm7_9->branch_resume_thumb(target); } else { LOG_ERROR("unhandled core state"); return ERROR_FAIL; } /* deassert DBGACK and INTDIS */ buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0); /* INTDIS only when we really resume, not during debug execution */ if (!debug_execution) buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0); embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size)); if ((retval = arm7_9_restart_core(target)) != ERROR_OK) { return retval; } target->debug_reason = DBG_REASON_NOTHALTED; if (!debug_execution) { /* registers are now invalid */ armv4_5_invalidate_core_regs(target); target->state = TARGET_RUNNING; if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK) { return retval; } } else { target->state = TARGET_DEBUG_RUNNING; if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK) { return retval; } } LOG_DEBUG("target resumed"); return ERROR_OK; } void arm7_9_enable_eice_step(target_t *target, uint32_t next_pc) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; uint32_t current_pc; current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32); if (next_pc != current_pc) { /* setup an inverse breakpoint on the current PC * - comparator 1 matches the current address * - rangeout from comparator 1 is connected to comparator 0 rangein * - comparator 0 matches any address, as long as rangein is low */ embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff); } else { embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE); embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff); } } void arm7_9_disable_eice_step(target_t *target) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]); embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]); } int arm7_9_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; breakpoint_t *breakpoint = NULL; int err, retval; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* current = 1: continue on current pc, otherwise continue at
*/ if (!current) buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address); uint32_t current_pc; current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32); /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32)))) if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK) { return retval; } target->debug_reason = DBG_REASON_SINGLESTEP; /* calculate PC of next instruction */ uint32_t next_pc; if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK) { uint32_t current_opcode; target_read_u32(target, current_pc, ¤t_opcode); LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode); return retval; } if ((retval = arm7_9_restore_context(target)) != ERROR_OK) { return retval; } arm7_9->enable_single_step(target, next_pc); if (armv4_5->core_state == ARMV4_5_STATE_ARM) { arm7_9->branch_resume(target); } else if (armv4_5->core_state == ARMV4_5_STATE_THUMB) { arm7_9->branch_resume_thumb(target); } else { LOG_ERROR("unhandled core state"); return ERROR_FAIL; } if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK) { return retval; } err = arm7_9_execute_sys_speed(target); arm7_9->disable_single_step(target); /* registers are now invalid */ armv4_5_invalidate_core_regs(target); if (err != ERROR_OK) { target->state = TARGET_UNKNOWN; } else { arm7_9_debug_entry(target); if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK) { return retval; } LOG_DEBUG("target stepped"); } if (breakpoint) if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK) { return retval; } return err; } int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode) { uint32_t* reg_p[16]; uint32_t value; int retval; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; enum armv4_5_mode reg_mode = ((struct armv4_5_core_reg*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode; if ((num < 0) || (num > 16)) return ERROR_INVALID_ARGUMENTS; if ((mode != ARMV4_5_MODE_ANY) && (mode != armv4_5->core_mode) && (reg_mode != ARMV4_5_MODE_ANY)) { uint32_t tmp_cpsr; /* change processor mode (mask T bit) */ tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0; tmp_cpsr |= mode; tmp_cpsr &= ~0x20; arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0); } if ((num >= 0) && (num <= 15)) { /* read a normal core register */ reg_p[num] = &value; arm7_9->read_core_regs(target, 1 << num, reg_p); } else { /* read a program status register * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr */ struct armv4_5_core_reg *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info; int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1; arm7_9->read_xpsr(target, &value, spsr); } if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0; buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value); if ((mode != ARMV4_5_MODE_ANY) && (mode != armv4_5->core_mode) && (reg_mode != ARMV4_5_MODE_ANY)) { /* restore processor mode (mask T bit) */ arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0); } return ERROR_OK; } int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, uint32_t value) { uint32_t reg[16]; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; enum armv4_5_mode reg_mode = ((struct armv4_5_core_reg*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode; if ((num < 0) || (num > 16)) return ERROR_INVALID_ARGUMENTS; if ((mode != ARMV4_5_MODE_ANY) && (mode != armv4_5->core_mode) && (reg_mode != ARMV4_5_MODE_ANY)) { uint32_t tmp_cpsr; /* change processor mode (mask T bit) */ tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0; tmp_cpsr |= mode; tmp_cpsr &= ~0x20; arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0); } if ((num >= 0) && (num <= 15)) { /* write a normal core register */ reg[num] = value; arm7_9->write_core_regs(target, 1 << num, reg); } else { /* write a program status register * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr */ struct armv4_5_core_reg *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info; int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1; /* if we're writing the CPSR, mask the T bit */ if (!spsr) value &= ~0x20; arm7_9->write_xpsr(target, value, spsr); } ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0; if ((mode != ARMV4_5_MODE_ANY) && (mode != armv4_5->core_mode) && (reg_mode != ARMV4_5_MODE_ANY)) { /* restore processor mode (mask T bit) */ arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0); } return jtag_execute_queue(); } int arm7_9_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; uint32_t reg[16]; uint32_t num_accesses = 0; int thisrun_accesses; int i; uint32_t cpsr; int retval; int last_reg = 0; LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* sanitize arguments */ if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer)) return ERROR_INVALID_ARGUMENTS; if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u))) return ERROR_TARGET_UNALIGNED_ACCESS; /* load the base register with the address of the first word */ reg[0] = address; arm7_9->write_core_regs(target, 0x1, reg); int j = 0; switch (size) { case 4: while (num_accesses < count) { uint32_t reg_list; thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses); reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe; if (last_reg <= thisrun_accesses) last_reg = thisrun_accesses; arm7_9->load_word_regs(target, reg_list); /* fast memory reads are only safe when the target is running * from a sufficiently high clock (32 kHz is usually too slow) */ if (arm7_9->fast_memory_access) retval = arm7_9_execute_fast_sys_speed(target); else retval = arm7_9_execute_sys_speed(target); if (retval != ERROR_OK) return retval; arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4); /* advance buffer, count number of accesses */ buffer += thisrun_accesses * 4; num_accesses += thisrun_accesses; if ((j++%1024) == 0) { keep_alive(); } } break; case 2: while (num_accesses < count) { uint32_t reg_list; thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses); reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe; for (i = 1; i <= thisrun_accesses; i++) { if (i > last_reg) last_reg = i; arm7_9->load_hword_reg(target, i); /* fast memory reads are only safe when the target is running * from a sufficiently high clock (32 kHz is usually too slow) */ if (arm7_9->fast_memory_access) retval = arm7_9_execute_fast_sys_speed(target); else retval = arm7_9_execute_sys_speed(target); if (retval != ERROR_OK) { return retval; } } arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2); /* advance buffer, count number of accesses */ buffer += thisrun_accesses * 2; num_accesses += thisrun_accesses; if ((j++%1024) == 0) { keep_alive(); } } break; case 1: while (num_accesses < count) { uint32_t reg_list; thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses); reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe; for (i = 1; i <= thisrun_accesses; i++) { if (i > last_reg) last_reg = i; arm7_9->load_byte_reg(target, i); /* fast memory reads are only safe when the target is running * from a sufficiently high clock (32 kHz is usually too slow) */ if (arm7_9->fast_memory_access) retval = arm7_9_execute_fast_sys_speed(target); else retval = arm7_9_execute_sys_speed(target); if (retval != ERROR_OK) { return retval; } } arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1); /* advance buffer, count number of accesses */ buffer += thisrun_accesses * 1; num_accesses += thisrun_accesses; if ((j++%1024) == 0) { keep_alive(); } } break; default: LOG_ERROR("BUG: we shouldn't get here"); exit(-1); break; } if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; for (i = 0; i <= last_reg; i++) ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid; arm7_9->read_xpsr(target, &cpsr, 0); if ((retval = jtag_execute_queue()) != ERROR_OK) { LOG_ERROR("JTAG error while reading cpsr"); return ERROR_TARGET_DATA_ABORT; } if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT)) { LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count); arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0); return ERROR_TARGET_DATA_ABORT; } return ERROR_OK; } int arm7_9_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL]; uint32_t reg[16]; uint32_t num_accesses = 0; int thisrun_accesses; int i; uint32_t cpsr; int retval; int last_reg = 0; #ifdef _DEBUG_ARM7_9_ LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count); #endif if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* sanitize arguments */ if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer)) return ERROR_INVALID_ARGUMENTS; if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u))) return ERROR_TARGET_UNALIGNED_ACCESS; /* load the base register with the address of the first word */ reg[0] = address; arm7_9->write_core_regs(target, 0x1, reg); /* Clear DBGACK, to make sure memory fetches work as expected */ buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0); embeddedice_store_reg(dbg_ctrl); switch (size) { case 4: while (num_accesses < count) { uint32_t reg_list; thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses); reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe; for (i = 1; i <= thisrun_accesses; i++) { if (i > last_reg) last_reg = i; reg[i] = target_buffer_get_u32(target, buffer); buffer += 4; } arm7_9->write_core_regs(target, reg_list, reg); arm7_9->store_word_regs(target, reg_list); /* fast memory writes are only safe when the target is running * from a sufficiently high clock (32 kHz is usually too slow) */ if (arm7_9->fast_memory_access) retval = arm7_9_execute_fast_sys_speed(target); else retval = arm7_9_execute_sys_speed(target); if (retval != ERROR_OK) { return retval; } num_accesses += thisrun_accesses; } break; case 2: while (num_accesses < count) { uint32_t reg_list; thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses); reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe; for (i = 1; i <= thisrun_accesses; i++) { if (i > last_reg) last_reg = i; reg[i] = target_buffer_get_u16(target, buffer) & 0xffff; buffer += 2; } arm7_9->write_core_regs(target, reg_list, reg); for (i = 1; i <= thisrun_accesses; i++) { arm7_9->store_hword_reg(target, i); /* fast memory writes are only safe when the target is running * from a sufficiently high clock (32 kHz is usually too slow) */ if (arm7_9->fast_memory_access) retval = arm7_9_execute_fast_sys_speed(target); else retval = arm7_9_execute_sys_speed(target); if (retval != ERROR_OK) { return retval; } } num_accesses += thisrun_accesses; } break; case 1: while (num_accesses < count) { uint32_t reg_list; thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses); reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe; for (i = 1; i <= thisrun_accesses; i++) { if (i > last_reg) last_reg = i; reg[i] = *buffer++ & 0xff; } arm7_9->write_core_regs(target, reg_list, reg); for (i = 1; i <= thisrun_accesses; i++) { arm7_9->store_byte_reg(target, i); /* fast memory writes are only safe when the target is running * from a sufficiently high clock (32 kHz is usually too slow) */ if (arm7_9->fast_memory_access) retval = arm7_9_execute_fast_sys_speed(target); else retval = arm7_9_execute_sys_speed(target); if (retval != ERROR_OK) { return retval; } } num_accesses += thisrun_accesses; } break; default: LOG_ERROR("BUG: we shouldn't get here"); exit(-1); break; } /* Re-Set DBGACK */ buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1); embeddedice_store_reg(dbg_ctrl); if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; for (i = 0; i <= last_reg; i++) ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid; arm7_9->read_xpsr(target, &cpsr, 0); if ((retval = jtag_execute_queue()) != ERROR_OK) { LOG_ERROR("JTAG error while reading cpsr"); return ERROR_TARGET_DATA_ABORT; } if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT)) { LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count); arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0); return ERROR_TARGET_DATA_ABORT; } return ERROR_OK; } static int dcc_count; static uint8_t *dcc_buffer; static int arm7_9_dcc_completion(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info) { int retval = ERROR_OK; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK) return retval; int little = target->endianness == TARGET_LITTLE_ENDIAN; int count = dcc_count; uint8_t *buffer = dcc_buffer; if (count > 2) { /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the * core function repeated. */ embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little)); buffer += 4; struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info; uint8_t reg_addr = ice_reg->addr & 0x1f; struct jtag_tap *tap; tap = ice_reg->jtag_info->tap; embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2); buffer += (count-2)*4; embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little)); } else { int i; for (i = 0; i < count; i++) { embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little)); buffer += 4; } } if ((retval = target_halt(target))!= ERROR_OK) { return retval; } return target_wait_state(target, TARGET_HALTED, 500); } static const uint32_t dcc_code[] = { /* r0 == input, points to memory buffer * r1 == scratch */ /* spin until DCC control (c0) reports data arrived */ 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */ 0xe3110001, /* tst r1, #1 */ 0x0afffffc, /* bne w */ /* read word from DCC (c1), write to memory */ 0xee111e10, /* mrc p14, #0, r1, c1, c0 */ 0xe4801004, /* str r1, [r0], #4 */ /* repeat */ 0xeafffff9 /* b w */ }; int armv4_5_run_algorithm_inner(struct target_s *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info)); int arm7_9_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer) { int retval; struct arm7_9_common *arm7_9 = target_to_arm7_9(target); int i; if (!arm7_9->dcc_downloads) return target_write_memory(target, address, 4, count, buffer); /* regrab previously allocated working_area, or allocate a new one */ if (!arm7_9->dcc_working_area) { uint8_t dcc_code_buf[6 * 4]; /* make sure we have a working area */ if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK) { LOG_INFO("no working area available, falling back to memory writes"); return target_write_memory(target, address, 4, count, buffer); } /* copy target instructions to target endianness */ for (i = 0; i < 6; i++) { target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]); } /* write DCC code to working area */ if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK) { return retval; } } struct armv4_5_algorithm armv4_5_info; struct reg_param reg_params[1]; armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC; armv4_5_info.core_mode = ARMV4_5_MODE_SVC; armv4_5_info.core_state = ARMV4_5_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); dcc_count = count; dcc_buffer = buffer; retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params, arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion); if (retval == ERROR_OK) { uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32); if (endaddress != (address + count*4)) { LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress); retval = ERROR_FAIL; } } destroy_reg_param(®_params[0]); return retval; } int arm7_9_checksum_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* checksum) { working_area_t *crc_algorithm; struct armv4_5_algorithm armv4_5_info; struct reg_param reg_params[2]; int retval; static const uint32_t arm7_9_crc_code[] = { 0xE1A02000, /* mov r2, r0 */ 0xE3E00000, /* mov r0, #0xffffffff */ 0xE1A03001, /* mov r3, r1 */ 0xE3A04000, /* mov r4, #0 */ 0xEA00000B, /* b ncomp */ /* nbyte: */ 0xE7D21004, /* ldrb r1, [r2, r4] */ 0xE59F7030, /* ldr r7, CRC32XOR */ 0xE0200C01, /* eor r0, r0, r1, asl 24 */ 0xE3A05000, /* mov r5, #0 */ /* loop: */ 0xE3500000, /* cmp r0, #0 */ 0xE1A06080, /* mov r6, r0, asl #1 */ 0xE2855001, /* add r5, r5, #1 */ 0xE1A00006, /* mov r0, r6 */ 0xB0260007, /* eorlt r0, r6, r7 */ 0xE3550008, /* cmp r5, #8 */ 0x1AFFFFF8, /* bne loop */ 0xE2844001, /* add r4, r4, #1 */ /* ncomp: */ 0xE1540003, /* cmp r4, r3 */ 0x1AFFFFF1, /* bne nbyte */ /* end: */ 0xEAFFFFFE, /* b end */ 0x04C11DB7 /* CRC32XOR: .word 0x04C11DB7 */ }; uint32_t i; if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK) { return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* convert flash writing code into a buffer in target endianness */ for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(uint32_t)); i++) { if ((retval = target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), arm7_9_crc_code[i])) != ERROR_OK) { return retval; } } armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC; armv4_5_info.core_mode = ARMV4_5_MODE_SVC; armv4_5_info.core_state = ARMV4_5_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); buf_set_u32(reg_params[1].value, 0, 32, count); /* 20 second timeout/megabyte */ int timeout = 20000 * (1 + (count / (1024*1024))); if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), timeout, &armv4_5_info)) != ERROR_OK) { LOG_ERROR("error executing arm7_9 crc algorithm"); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); target_free_working_area(target, crc_algorithm); return retval; } *checksum = buf_get_u32(reg_params[0].value, 0, 32); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); target_free_working_area(target, crc_algorithm); return ERROR_OK; } int arm7_9_blank_check_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* blank) { working_area_t *erase_check_algorithm; struct reg_param reg_params[3]; struct armv4_5_algorithm armv4_5_info; int retval; uint32_t i; static const uint32_t erase_check_code[] = { /* loop: */ 0xe4d03001, /* ldrb r3, [r0], #1 */ 0xe0022003, /* and r2, r2, r3 */ 0xe2511001, /* subs r1, r1, #1 */ 0x1afffffb, /* bne loop */ /* end: */ 0xeafffffe /* b end */ }; /* make sure we have a working area */ if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK) { return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* convert flash writing code into a buffer in target endianness */ for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint32_t)); i++) if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i])) != ERROR_OK) { return retval; } armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC; armv4_5_info.core_mode = ARMV4_5_MODE_SVC; armv4_5_info.core_state = ARMV4_5_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[1].value, 0, 32, count); init_reg_param(®_params[2], "r2", 32, PARAM_IN_OUT); buf_set_u32(reg_params[2].value, 0, 32, 0xff); if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK) { destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); target_free_working_area(target, erase_check_algorithm); return 0; } *blank = buf_get_u32(reg_params[2].value, 0, 32); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); target_free_working_area(target, erase_check_algorithm); return ERROR_OK; } COMMAND_HANDLER(handle_arm7_9_write_xpsr_command) { uint32_t value; int spsr; int retval; target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; struct arm7_9_common *arm7_9; if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target"); return ERROR_OK; } if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "can't write registers while running"); return ERROR_OK; } if (argc < 2) { command_print(cmd_ctx, "usage: write_xpsr "); return ERROR_OK; } COMMAND_PARSE_NUMBER(u32, args[0], value); COMMAND_PARSE_NUMBER(int, args[1], spsr); /* if we're writing the CPSR, mask the T bit */ if (!spsr) value &= ~0x20; arm7_9->write_xpsr(target, value, spsr); if ((retval = jtag_execute_queue()) != ERROR_OK) { LOG_ERROR("JTAG error while writing to xpsr"); return retval; } return ERROR_OK; } COMMAND_HANDLER(handle_arm7_9_write_xpsr_im8_command) { uint32_t value; int rotate; int spsr; int retval; target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; struct arm7_9_common *arm7_9; if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target"); return ERROR_OK; } if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "can't write registers while running"); return ERROR_OK; } if (argc < 3) { command_print(cmd_ctx, "usage: write_xpsr_im8 "); return ERROR_OK; } COMMAND_PARSE_NUMBER(u32, args[0], value); COMMAND_PARSE_NUMBER(int, args[1], rotate); COMMAND_PARSE_NUMBER(int, args[2], spsr); arm7_9->write_xpsr_im8(target, value, rotate, spsr); if ((retval = jtag_execute_queue()) != ERROR_OK) { LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr"); return retval; } return ERROR_OK; } COMMAND_HANDLER(handle_arm7_9_write_core_reg_command) { uint32_t value; uint32_t mode; int num; target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; struct arm7_9_common *arm7_9; if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target"); return ERROR_OK; } if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "can't write registers while running"); return ERROR_OK; } if (argc < 3) { command_print(cmd_ctx, "usage: write_core_reg "); return ERROR_OK; } COMMAND_PARSE_NUMBER(int, args[0], num); COMMAND_PARSE_NUMBER(u32, args[1], mode); COMMAND_PARSE_NUMBER(u32, args[2], value); return arm7_9_write_core_reg(target, num, mode, value); } COMMAND_HANDLER(handle_arm7_9_dbgrq_command) { target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; struct arm7_9_common *arm7_9; if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target"); return ERROR_OK; } if (argc > 0) { if (strcmp("enable", args[0]) == 0) { arm7_9->use_dbgrq = 1; } else if (strcmp("disable", args[0]) == 0) { arm7_9->use_dbgrq = 0; } else { command_print(cmd_ctx, "usage: arm7_9 dbgrq "); } } command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled"); return ERROR_OK; } COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command) { target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; struct arm7_9_common *arm7_9; if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target"); return ERROR_OK; } if (argc > 0) { if (strcmp("enable", args[0]) == 0) { arm7_9->fast_memory_access = 1; } else if (strcmp("disable", args[0]) == 0) { arm7_9->fast_memory_access = 0; } else { command_print(cmd_ctx, "usage: arm7_9 fast_memory_access "); } } command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled"); return ERROR_OK; } COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command) { target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; struct arm7_9_common *arm7_9; if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target"); return ERROR_OK; } if (argc > 0) { if (strcmp("enable", args[0]) == 0) { arm7_9->dcc_downloads = 1; } else if (strcmp("disable", args[0]) == 0) { arm7_9->dcc_downloads = 0; } else { command_print(cmd_ctx, "usage: arm7_9 dcc_downloads "); } } command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled"); return ERROR_OK; } int arm7_9_init_arch_info(target_t *target, struct arm7_9_common *arm7_9) { int retval = ERROR_OK; armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common; arm7_9->common_magic = ARM7_9_COMMON_MAGIC; if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK) return retval; /* caller must have allocated via calloc(), so everything's zeroed */ arm7_9->wp_available_max = 2; arm7_9->fast_memory_access = fast_and_dangerous; arm7_9->dcc_downloads = fast_and_dangerous; armv4_5->arch_info = arm7_9; armv4_5->read_core_reg = arm7_9_read_core_reg; armv4_5->write_core_reg = arm7_9_write_core_reg; armv4_5->full_context = arm7_9_full_context; if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK) return retval; return target_register_timer_callback(arm7_9_handle_target_request, 1, 1, target); } int arm7_9_register_commands(struct command_context_s *cmd_ctx) { command_t *arm7_9_cmd; arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands"); register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register "); register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register " "<8bit immediate> "); register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register "); register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command, COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint " "for target halt requests "); register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command, COMMAND_ANY, "use fast memory accesses instead of slower " "but potentially safer accesses "); register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command, COMMAND_ANY, "use DCC downloads for larger memory writes "); armv4_5_register_commands(cmd_ctx); etm_register_commands(cmd_ctx); return ERROR_OK; }