/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "arm.h" #include "etm.h" #include "etb.h" #include "image.h" #include "arm_disassembler.h" #include "register.h" #include "etm_dummy.h" #if BUILD_OOCD_TRACE == 1 #include "oocd_trace.h" #endif /* * ARM "Embedded Trace Macrocell" (ETM) support -- direct JTAG access. * * ETM modules collect instruction and/or data trace information, compress * it, and transfer it to a debugging host through either a (buffered) trace * port (often a 38-pin Mictor connector) or an Embedded Trace Buffer (ETB). * * There are several generations of these modules. Original versions have * JTAG access through a dedicated scan chain. Recent versions have added * access via coprocessor instructions, memory addressing, and the ARM Debug * Interface v5 (ADIv5); and phased out direct JTAG access. * * This code supports up to the ETMv1.3 architecture, as seen in ETM9 and * most common ARM9 systems. Note: "CoreSight ETM9" implements ETMv3.2, * implying non-JTAG connectivity options. * * Relevant documentation includes: * ARM DDI 0157G ... ETM9 (r2p2) Technical Reference Manual * ARM DDI 0315B ... CoreSight ETM9 (r0p1) Technical Reference Manual * ARM IHI 0014O ... Embedded Trace Macrocell, Architecture Specification */ enum { RO, /* read/only */ WO, /* write/only */ RW, /* read/write */ }; struct etm_reg_info { uint8_t addr; uint8_t size; /* low-N of 32 bits */ uint8_t mode; /* RO, WO, RW */ uint8_t bcd_vers; /* 1.0, 2.0, etc */ char *name; }; /* * Registers 0..0x7f are JTAG-addressable using scanchain 6. * (Or on some processors, through coprocessor operations.) * Newer versions of ETM make some W/O registers R/W, and * provide definitions for some previously-unused bits. */ /* core registers used to version/configure the ETM */ static const struct etm_reg_info etm_core[] = { /* NOTE: we "know" the order here ... */ { ETM_CONFIG, 32, RO, 0x10, "ETM_config", }, { ETM_ID, 32, RO, 0x20, "ETM_id", }, }; /* basic registers that are always there given the right ETM version */ static const struct etm_reg_info etm_basic[] = { /* ETM Trace Registers */ { ETM_CTRL, 32, RW, 0x10, "ETM_ctrl", }, { ETM_TRIG_EVENT, 17, WO, 0x10, "ETM_trig_event", }, { ETM_ASIC_CTRL, 8, WO, 0x10, "ETM_asic_ctrl", }, { ETM_STATUS, 3, RO, 0x11, "ETM_status", }, { ETM_SYS_CONFIG, 9, RO, 0x12, "ETM_sys_config", }, /* TraceEnable configuration */ { ETM_TRACE_RESOURCE_CTRL, 32, WO, 0x12, "ETM_trace_resource_ctrl", }, { ETM_TRACE_EN_CTRL2, 16, WO, 0x12, "ETM_trace_en_ctrl2", }, { ETM_TRACE_EN_EVENT, 17, WO, 0x10, "ETM_trace_en_event", }, { ETM_TRACE_EN_CTRL1, 26, WO, 0x10, "ETM_trace_en_ctrl1", }, /* ViewData configuration (data trace) */ { ETM_VIEWDATA_EVENT, 17, WO, 0x10, "ETM_viewdata_event", }, { ETM_VIEWDATA_CTRL1, 32, WO, 0x10, "ETM_viewdata_ctrl1", }, { ETM_VIEWDATA_CTRL2, 32, WO, 0x10, "ETM_viewdata_ctrl2", }, { ETM_VIEWDATA_CTRL3, 17, WO, 0x10, "ETM_viewdata_ctrl3", }, /* REVISIT exclude VIEWDATA_CTRL2 when it's not there */ { 0x78, 12, WO, 0x20, "ETM_sync_freq", }, { 0x7a, 22, RO, 0x31, "ETM_config_code_ext", }, { 0x7b, 32, WO, 0x31, "ETM_ext_input_select", }, { 0x7c, 32, WO, 0x34, "ETM_trace_start_stop", }, { 0x7d, 8, WO, 0x34, "ETM_behavior_control", }, }; static const struct etm_reg_info etm_fifofull[] = { /* FIFOFULL configuration */ { ETM_FIFOFULL_REGION, 25, WO, 0x10, "ETM_fifofull_region", }, { ETM_FIFOFULL_LEVEL, 8, WO, 0x10, "ETM_fifofull_level", }, }; static const struct etm_reg_info etm_addr_comp[] = { /* Address comparator register pairs */ #define ADDR_COMPARATOR(i) \ { ETM_ADDR_COMPARATOR_VALUE + (i) - 1, 32, WO, 0x10, \ "ETM_addr_" #i "_comparator_value", }, \ { ETM_ADDR_ACCESS_TYPE + (i) - 1, 7, WO, 0x10, \ "ETM_addr_" #i "_access_type", } ADDR_COMPARATOR(1), ADDR_COMPARATOR(2), ADDR_COMPARATOR(3), ADDR_COMPARATOR(4), ADDR_COMPARATOR(5), ADDR_COMPARATOR(6), ADDR_COMPARATOR(7), ADDR_COMPARATOR(8), ADDR_COMPARATOR(9), ADDR_COMPARATOR(10), ADDR_COMPARATOR(11), ADDR_COMPARATOR(12), ADDR_COMPARATOR(13), ADDR_COMPARATOR(14), ADDR_COMPARATOR(15), ADDR_COMPARATOR(16), #undef ADDR_COMPARATOR }; static const struct etm_reg_info etm_data_comp[] = { /* Data Value Comparators (NOTE: odd addresses are reserved) */ #define DATA_COMPARATOR(i) \ { ETM_DATA_COMPARATOR_VALUE + 2*(i) - 1, 32, WO, 0x10, \ "ETM_data_" #i "_comparator_value", }, \ { ETM_DATA_COMPARATOR_MASK + 2*(i) - 1, 32, WO, 0x10, \ "ETM_data_" #i "_comparator_mask", } DATA_COMPARATOR(1), DATA_COMPARATOR(2), DATA_COMPARATOR(3), DATA_COMPARATOR(4), DATA_COMPARATOR(5), DATA_COMPARATOR(6), DATA_COMPARATOR(7), DATA_COMPARATOR(8), #undef DATA_COMPARATOR }; static const struct etm_reg_info etm_counters[] = { #define ETM_COUNTER(i) \ { ETM_COUNTER_RELOAD_VALUE + (i) - 1, 16, WO, 0x10, \ "ETM_counter_" #i "_reload_value", }, \ { ETM_COUNTER_ENABLE + (i) - 1, 18, WO, 0x10, \ "ETM_counter_" #i "_enable", }, \ { ETM_COUNTER_RELOAD_EVENT + (i) - 1, 17, WO, 0x10, \ "ETM_counter_" #i "_reload_event", }, \ { ETM_COUNTER_VALUE + (i) - 1, 16, RO, 0x10, \ "ETM_counter_" #i "_value", } ETM_COUNTER(1), ETM_COUNTER(2), ETM_COUNTER(3), ETM_COUNTER(4), #undef ETM_COUNTER }; static const struct etm_reg_info etm_sequencer[] = { #define ETM_SEQ(i) \ { ETM_SEQUENCER_EVENT + (i), 17, WO, 0x10, \ "ETM_sequencer_event" #i, } ETM_SEQ(0), /* 1->2 */ ETM_SEQ(1), /* 2->1 */ ETM_SEQ(2), /* 2->3 */ ETM_SEQ(3), /* 3->1 */ ETM_SEQ(4), /* 3->2 */ ETM_SEQ(5), /* 1->3 */ #undef ETM_SEQ /* 0x66 reserved */ { ETM_SEQUENCER_STATE, 2, RO, 0x10, "ETM_sequencer_state", }, }; static const struct etm_reg_info etm_outputs[] = { #define ETM_OUTPUT(i) \ { ETM_EXTERNAL_OUTPUT + (i) - 1, 17, WO, 0x10, \ "ETM_external_output" #i, } ETM_OUTPUT(1), ETM_OUTPUT(2), ETM_OUTPUT(3), ETM_OUTPUT(4), #undef ETM_OUTPUT }; #if 0 /* registers from 0x6c..0x7f were added after ETMv1.3 */ /* Context ID Comparators */ { 0x6c, 32, RO, 0x20, "ETM_contextid_comparator_value1", } { 0x6d, 32, RO, 0x20, "ETM_contextid_comparator_value2", } { 0x6e, 32, RO, 0x20, "ETM_contextid_comparator_value3", } { 0x6f, 32, RO, 0x20, "ETM_contextid_comparator_mask", } #endif static int etm_get_reg(struct reg *reg); static int etm_read_reg_w_check(struct reg *reg, uint8_t* check_value, uint8_t* check_mask); static int etm_register_user_commands(struct command_context *cmd_ctx); static int etm_set_reg_w_exec(struct reg *reg, uint8_t *buf); static int etm_write_reg(struct reg *reg, uint32_t value); static const struct reg_arch_type etm_scan6_type = { .get = etm_get_reg, .set = etm_set_reg_w_exec, }; /* Look up register by ID ... most ETM instances only * support a subset of the possible registers. */ static struct reg *etm_reg_lookup(struct etm_context *etm_ctx, unsigned id) { struct reg_cache *cache = etm_ctx->reg_cache; unsigned i; for (i = 0; i < cache->num_regs; i++) { struct etm_reg *reg = cache->reg_list[i].arch_info; if (reg->reg_info->addr == id) return &cache->reg_list[i]; } /* caller asking for nonexistent register is a bug! */ /* REVISIT say which of the N targets was involved */ LOG_ERROR("ETM: register 0x%02x not available", id); return NULL; } static void etm_reg_add(unsigned bcd_vers, struct arm_jtag *jtag_info, struct reg_cache *cache, struct etm_reg *ereg, const struct etm_reg_info *r, unsigned nreg) { struct reg *reg = cache->reg_list; reg += cache->num_regs; ereg += cache->num_regs; /* add up to "nreg" registers from "r", if supported by this * version of the ETM, to the specified cache. */ for (; nreg--; r++) { /* this ETM may be too old to have some registers */ if (r->bcd_vers > bcd_vers) continue; reg->name = r->name; reg->size = r->size; reg->value = &ereg->value; reg->arch_info = ereg; reg->type = &etm_scan6_type; reg++; cache->num_regs++; ereg->reg_info = r; ereg->jtag_info = jtag_info; ereg++; } } struct reg_cache *etm_build_reg_cache(struct target *target, struct arm_jtag *jtag_info, struct etm_context *etm_ctx) { struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache)); struct reg *reg_list = NULL; struct etm_reg *arch_info = NULL; unsigned bcd_vers, config; /* the actual registers are kept in two arrays */ reg_list = calloc(128, sizeof(struct reg)); arch_info = calloc(128, sizeof(struct etm_reg)); /* fill in values for the reg cache */ reg_cache->name = "etm registers"; reg_cache->next = NULL; reg_cache->reg_list = reg_list; reg_cache->num_regs = 0; /* add ETM_CONFIG, then parse its values to see * which other registers exist in this ETM */ etm_reg_add(0x10, jtag_info, reg_cache, arch_info, etm_core, 1); etm_get_reg(reg_list); etm_ctx->config = buf_get_u32((void *)&arch_info->value, 0, 32); config = etm_ctx->config; /* figure ETM version then add base registers */ if (config & (1 << 31)) { bcd_vers = 0x20; LOG_WARNING("ETMv2+ support is incomplete"); /* REVISIT more registers may exist; they may now be * readable; more register bits have defined meanings; * don't presume trace start/stop support is present; * and include any context ID comparator registers. */ etm_reg_add(0x20, jtag_info, reg_cache, arch_info, etm_core + 1, 1); etm_get_reg(reg_list + 1); etm_ctx->id = buf_get_u32( (void *)&arch_info[1].value, 0, 32); LOG_DEBUG("ETM ID: %08x", (unsigned) etm_ctx->id); bcd_vers = 0x10 + (((etm_ctx->id) >> 4) & 0xff); } else { switch (config >> 28) { case 7: case 5: case 3: bcd_vers = 0x13; break; case 4: case 2: bcd_vers = 0x12; break; case 1: bcd_vers = 0x11; break; case 0: bcd_vers = 0x10; break; default: LOG_WARNING("Bad ETMv1 protocol %d", config >> 28); goto fail; } } etm_ctx->bcd_vers = bcd_vers; LOG_INFO("ETM v%d.%d", bcd_vers >> 4, bcd_vers & 0xf); etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info, etm_basic, ARRAY_SIZE(etm_basic)); /* address and data comparators; counters; outputs */ etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info, etm_addr_comp, 4 * (0x0f & (config >> 0))); etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info, etm_data_comp, 2 * (0x0f & (config >> 4))); etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info, etm_counters, 4 * (0x07 & (config >> 13))); etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info, etm_outputs, (0x07 & (config >> 20))); /* FIFOFULL presence is optional * REVISIT for ETMv1.2 and later, don't bother adding this * unless ETM_SYS_CONFIG says it's also *supported* ... */ if (config & (1 << 23)) etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info, etm_fifofull, ARRAY_SIZE(etm_fifofull)); /* sequencer is optional (for state-dependant triggering) */ if (config & (1 << 16)) etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info, etm_sequencer, ARRAY_SIZE(etm_sequencer)); /* REVISIT could realloc and likely save half the memory * in the two chunks we allocated... */ /* the ETM might have an ETB connected */ if (strcmp(etm_ctx->capture_driver->name, "etb") == 0) { struct etb *etb = etm_ctx->capture_driver_priv; if (!etb) { LOG_ERROR("etb selected as etm capture driver, but no ETB configured"); goto fail; } reg_cache->next = etb_build_reg_cache(etb); etb->reg_cache = reg_cache->next; } etm_ctx->reg_cache = reg_cache; return reg_cache; fail: free(reg_cache); free(reg_list); free(arch_info); return NULL; } static int etm_read_reg(struct reg *reg) { return etm_read_reg_w_check(reg, NULL, NULL); } static int etm_store_reg(struct reg *reg) { return etm_write_reg(reg, buf_get_u32(reg->value, 0, reg->size)); } int etm_setup(struct target *target) { int retval; uint32_t etm_ctrl_value; struct arm *arm = target_to_arm(target); struct etm_context *etm_ctx = arm->etm; struct reg *etm_ctrl_reg; etm_ctrl_reg = etm_reg_lookup(etm_ctx, ETM_CTRL); if (!etm_ctrl_reg) return ERROR_OK; /* initialize some ETM control register settings */ etm_get_reg(etm_ctrl_reg); etm_ctrl_value = buf_get_u32(etm_ctrl_reg->value, 0, 32); /* clear the ETM powerdown bit (0) */ etm_ctrl_value &= ~ETM_CTRL_POWERDOWN; /* configure port width (21,6:4), mode (13,17:16) and * for older modules clocking (13) */ etm_ctrl_value = (etm_ctrl_value & ~ETM_PORT_WIDTH_MASK & ~ETM_PORT_MODE_MASK & ~ETM_CTRL_DBGRQ & ~ETM_PORT_CLOCK_MASK) | etm_ctx->control; buf_set_u32(etm_ctrl_reg->value, 0, 32, etm_ctrl_value); etm_store_reg(etm_ctrl_reg); etm_ctx->control = etm_ctrl_value; if ((retval = jtag_execute_queue()) != ERROR_OK) return retval; /* REVISIT for ETMv3.0 and later, read ETM_sys_config to * verify that those width and mode settings are OK ... */ if ((retval = etm_ctx->capture_driver->init(etm_ctx)) != ERROR_OK) { LOG_ERROR("ETM capture driver initialization failed"); return retval; } return ERROR_OK; } static int etm_get_reg(struct reg *reg) { int retval; if ((retval = etm_read_reg(reg)) != ERROR_OK) { LOG_ERROR("BUG: error scheduling etm register read"); return retval; } if ((retval = jtag_execute_queue()) != ERROR_OK) { LOG_ERROR("register read failed"); return retval; } return ERROR_OK; } static int etm_read_reg_w_check(struct reg *reg, uint8_t* check_value, uint8_t* check_mask) { struct etm_reg *etm_reg = reg->arch_info; const struct etm_reg_info *r = etm_reg->reg_info; uint8_t reg_addr = r->addr & 0x7f; struct scan_field fields[3]; int retval; if (etm_reg->reg_info->mode == WO) { LOG_ERROR("BUG: can't read write-only register %s", r->name); return ERROR_INVALID_ARGUMENTS; } LOG_DEBUG("%s (%u)", r->name, reg_addr); retval = arm_jtag_scann(etm_reg->jtag_info, 0x6, TAP_IDLE); if (retval != ERROR_OK) return retval; retval = arm_jtag_set_instr(etm_reg->jtag_info, etm_reg->jtag_info->intest_instr, NULL, TAP_IDLE); if (retval != ERROR_OK) return retval; fields[0].num_bits = 32; fields[0].out_value = reg->value; fields[0].in_value = NULL; fields[0].check_value = NULL; fields[0].check_mask = NULL; fields[1].num_bits = 7; uint8_t temp1; fields[1].out_value = &temp1; buf_set_u32(&temp1, 0, 7, reg_addr); fields[1].in_value = NULL; fields[1].check_value = NULL; fields[1].check_mask = NULL; fields[2].num_bits = 1; uint8_t temp2; fields[2].out_value = &temp2; buf_set_u32(&temp2, 0, 1, 0); fields[2].in_value = NULL; fields[2].check_value = NULL; fields[2].check_mask = NULL; jtag_add_dr_scan(etm_reg->jtag_info->tap, 3, fields, TAP_IDLE); fields[0].in_value = reg->value; fields[0].check_value = check_value; fields[0].check_mask = check_mask; jtag_add_dr_scan_check(etm_reg->jtag_info->tap, 3, fields, TAP_IDLE); return ERROR_OK; } static int etm_set_reg(struct reg *reg, uint32_t value) { int retval; if ((retval = etm_write_reg(reg, value)) != ERROR_OK) { LOG_ERROR("BUG: error scheduling etm register write"); return retval; } buf_set_u32(reg->value, 0, reg->size, value); reg->valid = 1; reg->dirty = 0; return ERROR_OK; } static int etm_set_reg_w_exec(struct reg *reg, uint8_t *buf) { int retval; etm_set_reg(reg, buf_get_u32(buf, 0, reg->size)); if ((retval = jtag_execute_queue()) != ERROR_OK) { LOG_ERROR("register write failed"); return retval; } return ERROR_OK; } static int etm_write_reg(struct reg *reg, uint32_t value) { struct etm_reg *etm_reg = reg->arch_info; const struct etm_reg_info *r = etm_reg->reg_info; uint8_t reg_addr = r->addr & 0x7f; struct scan_field fields[3]; int retval; if (etm_reg->reg_info->mode == RO) { LOG_ERROR("BUG: can't write read--only register %s", r->name); return ERROR_INVALID_ARGUMENTS; } LOG_DEBUG("%s (%u): 0x%8.8" PRIx32 "", r->name, reg_addr, value); retval = arm_jtag_scann(etm_reg->jtag_info, 0x6, TAP_IDLE); if (retval != ERROR_OK) return retval; retval = arm_jtag_set_instr(etm_reg->jtag_info, etm_reg->jtag_info->intest_instr, NULL, TAP_IDLE); if (retval != ERROR_OK) return retval; fields[0].num_bits = 32; uint8_t tmp1[4]; fields[0].out_value = tmp1; buf_set_u32(tmp1, 0, 32, value); fields[0].in_value = NULL; fields[1].num_bits = 7; uint8_t tmp2; fields[1].out_value = &tmp2; buf_set_u32(&tmp2, 0, 7, reg_addr); fields[1].in_value = NULL; fields[2].num_bits = 1; uint8_t tmp3; fields[2].out_value = &tmp3; buf_set_u32(&tmp3, 0, 1, 1); fields[2].in_value = NULL; jtag_add_dr_scan(etm_reg->jtag_info->tap, 3, fields, TAP_IDLE); return ERROR_OK; } /* ETM trace analysis functionality */ static struct etm_capture_driver *etm_capture_drivers[] = { &etb_capture_driver, &etm_dummy_capture_driver, #if BUILD_OOCD_TRACE == 1 &oocd_trace_capture_driver, #endif NULL }; static int etm_read_instruction(struct etm_context *ctx, struct arm_instruction *instruction) { int i; int section = -1; size_t size_read; uint32_t opcode; int retval; if (!ctx->image) return ERROR_TRACE_IMAGE_UNAVAILABLE; /* search for the section the current instruction belongs to */ for (i = 0; i < ctx->image->num_sections; i++) { if ((ctx->image->sections[i].base_address <= ctx->current_pc) && (ctx->image->sections[i].base_address + ctx->image->sections[i].size > ctx->current_pc)) { section = i; break; } } if (section == -1) { /* current instruction couldn't be found in the image */ return ERROR_TRACE_INSTRUCTION_UNAVAILABLE; } if (ctx->core_state == ARM_STATE_ARM) { uint8_t buf[4]; if ((retval = image_read_section(ctx->image, section, ctx->current_pc - ctx->image->sections[section].base_address, 4, buf, &size_read)) != ERROR_OK) { LOG_ERROR("error while reading instruction: %i", retval); return ERROR_TRACE_INSTRUCTION_UNAVAILABLE; } opcode = target_buffer_get_u32(ctx->target, buf); arm_evaluate_opcode(opcode, ctx->current_pc, instruction); } else if (ctx->core_state == ARM_STATE_THUMB) { uint8_t buf[2]; if ((retval = image_read_section(ctx->image, section, ctx->current_pc - ctx->image->sections[section].base_address, 2, buf, &size_read)) != ERROR_OK) { LOG_ERROR("error while reading instruction: %i", retval); return ERROR_TRACE_INSTRUCTION_UNAVAILABLE; } opcode = target_buffer_get_u16(ctx->target, buf); thumb_evaluate_opcode(opcode, ctx->current_pc, instruction); } else if (ctx->core_state == ARM_STATE_JAZELLE) { LOG_ERROR("BUG: tracing of jazelle code not supported"); return ERROR_FAIL; } else { LOG_ERROR("BUG: unknown core state encountered"); return ERROR_FAIL; } return ERROR_OK; } static int etmv1_next_packet(struct etm_context *ctx, uint8_t *packet, int apo) { while (ctx->data_index < ctx->trace_depth) { /* if the caller specified an address packet offset, skip until the * we reach the n-th cycle marked with tracesync */ if (apo > 0) { if (ctx->trace_data[ctx->data_index].flags & ETMV1_TRACESYNC_CYCLE) apo--; if (apo > 0) { ctx->data_index++; ctx->data_half = 0; } continue; } /* no tracedata output during a TD cycle * or in a trigger cycle */ if ((ctx->trace_data[ctx->data_index].pipestat == STAT_TD) || (ctx->trace_data[ctx->data_index].flags & ETMV1_TRIGGER_CYCLE)) { ctx->data_index++; ctx->data_half = 0; continue; } /* FIXME there are more port widths than these... */ if ((ctx->control & ETM_PORT_WIDTH_MASK) == ETM_PORT_16BIT) { if (ctx->data_half == 0) { *packet = ctx->trace_data[ctx->data_index].packet & 0xff; ctx->data_half = 1; } else { *packet = (ctx->trace_data[ctx->data_index].packet & 0xff00) >> 8; ctx->data_half = 0; ctx->data_index++; } } else if ((ctx->control & ETM_PORT_WIDTH_MASK) == ETM_PORT_8BIT) { *packet = ctx->trace_data[ctx->data_index].packet & 0xff; ctx->data_index++; } else { /* on a 4-bit port, a packet will be output during two consecutive cycles */ if (ctx->data_index > (ctx->trace_depth - 2)) return -1; *packet = ctx->trace_data[ctx->data_index].packet & 0xf; *packet |= (ctx->trace_data[ctx->data_index + 1].packet & 0xf) << 4; ctx->data_index += 2; } return 0; } return -1; } static int etmv1_branch_address(struct etm_context *ctx) { int retval; uint8_t packet; int shift = 0; int apo; uint32_t i; /* quit analysis if less than two cycles are left in the trace * because we can't extract the APO */ if (ctx->data_index > (ctx->trace_depth - 2)) return -1; /* a BE could be output during an APO cycle, skip the current * and continue with the new one */ if (ctx->trace_data[ctx->pipe_index + 1].pipestat & 0x4) return 1; if (ctx->trace_data[ctx->pipe_index + 2].pipestat & 0x4) return 2; /* address packet offset encoded in the next two cycles' pipestat bits */ apo = ctx->trace_data[ctx->pipe_index + 1].pipestat & 0x3; apo |= (ctx->trace_data[ctx->pipe_index + 2].pipestat & 0x3) << 2; /* count number of tracesync cycles between current pipe_index and data_index * i.e. the number of tracesyncs that data_index already passed by * to subtract them from the APO */ for (i = ctx->pipe_index; i < ctx->data_index; i++) { if (ctx->trace_data[ctx->pipe_index + 1].pipestat & ETMV1_TRACESYNC_CYCLE) apo--; } /* extract up to four 7-bit packets */ do { if ((retval = etmv1_next_packet(ctx, &packet, (shift == 0) ? apo + 1 : 0)) != 0) return -1; ctx->last_branch &= ~(0x7f << shift); ctx->last_branch |= (packet & 0x7f) << shift; shift += 7; } while ((packet & 0x80) && (shift < 28)); /* one last packet holding 4 bits of the address, plus the branch reason code */ if ((shift == 28) && (packet & 0x80)) { if ((retval = etmv1_next_packet(ctx, &packet, 0)) != 0) return -1; ctx->last_branch &= 0x0fffffff; ctx->last_branch |= (packet & 0x0f) << 28; ctx->last_branch_reason = (packet & 0x70) >> 4; shift += 4; } else { ctx->last_branch_reason = 0; } if (shift == 32) { ctx->pc_ok = 1; } /* if a full address was output, we might have branched into Jazelle state */ if ((shift == 32) && (packet & 0x80)) { ctx->core_state = ARM_STATE_JAZELLE; } else { /* if we didn't branch into Jazelle state, the current processor state is * encoded in bit 0 of the branch target address */ if (ctx->last_branch & 0x1) { ctx->core_state = ARM_STATE_THUMB; ctx->last_branch &= ~0x1; } else { ctx->core_state = ARM_STATE_ARM; ctx->last_branch &= ~0x3; } } return 0; } static int etmv1_data(struct etm_context *ctx, int size, uint32_t *data) { int j; uint8_t buf[4]; int retval; for (j = 0; j < size; j++) { if ((retval = etmv1_next_packet(ctx, &buf[j], 0)) != 0) return -1; } if (size == 8) { LOG_ERROR("TODO: add support for 64-bit values"); return -1; } else if (size == 4) *data = target_buffer_get_u32(ctx->target, buf); else if (size == 2) *data = target_buffer_get_u16(ctx->target, buf); else if (size == 1) *data = buf[0]; else return -1; return 0; } static int etmv1_analyze_trace(struct etm_context *ctx, struct command_context *cmd_ctx) { int retval; struct arm_instruction instruction; /* read the trace data if it wasn't read already */ if (ctx->trace_depth == 0) ctx->capture_driver->read_trace(ctx); if (ctx->trace_depth == 0) { command_print(cmd_ctx, "Trace is empty."); return ERROR_OK; } /* start at the beginning of the captured trace */ ctx->pipe_index = 0; ctx->data_index = 0; ctx->data_half = 0; /* neither the PC nor the data pointer are valid */ ctx->pc_ok = 0; ctx->ptr_ok = 0; while (ctx->pipe_index < ctx->trace_depth) { uint8_t pipestat = ctx->trace_data[ctx->pipe_index].pipestat; uint32_t next_pc = ctx->current_pc; uint32_t old_data_index = ctx->data_index; uint32_t old_data_half = ctx->data_half; uint32_t old_index = ctx->pipe_index; uint32_t last_instruction = ctx->last_instruction; uint32_t cycles = 0; int current_pc_ok = ctx->pc_ok; if (ctx->trace_data[ctx->pipe_index].flags & ETMV1_TRIGGER_CYCLE) { command_print(cmd_ctx, "--- trigger ---"); } /* instructions execute in IE/D or BE/D cycles */ if ((pipestat == STAT_IE) || (pipestat == STAT_ID)) ctx->last_instruction = ctx->pipe_index; /* if we don't have a valid pc skip until we reach an indirect branch */ if ((!ctx->pc_ok) && (pipestat != STAT_BE)) { ctx->pipe_index++; continue; } /* any indirect branch could have interrupted instruction flow * - the branch reason code could indicate a trace discontinuity * - a branch to the exception vectors indicates an exception */ if ((pipestat == STAT_BE) || (pipestat == STAT_BD)) { /* backup current data index, to be able to consume the branch address * before examining data address and values */ old_data_index = ctx->data_index; old_data_half = ctx->data_half; ctx->last_instruction = ctx->pipe_index; if ((retval = etmv1_branch_address(ctx)) != 0) { /* negative return value from etmv1_branch_address means we ran out of packets, * quit analysing the trace */ if (retval < 0) break; /* a positive return values means the current branch was abandoned, * and a new branch was encountered in cycle ctx->pipe_index + retval; */ LOG_WARNING("abandoned branch encountered, correctnes of analysis uncertain"); ctx->pipe_index += retval; continue; } /* skip over APO cycles */ ctx->pipe_index += 2; switch (ctx->last_branch_reason) { case 0x0: /* normal PC change */ next_pc = ctx->last_branch; break; case 0x1: /* tracing enabled */ command_print(cmd_ctx, "--- tracing enabled at 0x%8.8" PRIx32 " ---", ctx->last_branch); ctx->current_pc = ctx->last_branch; ctx->pipe_index++; continue; break; case 0x2: /* trace restarted after FIFO overflow */ command_print(cmd_ctx, "--- trace restarted after FIFO overflow at 0x%8.8" PRIx32 " ---", ctx->last_branch); ctx->current_pc = ctx->last_branch; ctx->pipe_index++; continue; break; case 0x3: /* exit from debug state */ command_print(cmd_ctx, "--- exit from debug state at 0x%8.8" PRIx32 " ---", ctx->last_branch); ctx->current_pc = ctx->last_branch; ctx->pipe_index++; continue; break; case 0x4: /* periodic synchronization point */ next_pc = ctx->last_branch; /* if we had no valid PC prior to this synchronization point, * we have to move on with the next trace cycle */ if (!current_pc_ok) { command_print(cmd_ctx, "--- periodic synchronization point at 0x%8.8" PRIx32 " ---", next_pc); ctx->current_pc = next_pc; ctx->pipe_index++; continue; } break; default: /* reserved */ LOG_ERROR("BUG: branch reason code 0x%" PRIx32 " is reserved", ctx->last_branch_reason); return ERROR_FAIL; } /* if we got here the branch was a normal PC change * (or a periodic synchronization point, which means the same for that matter) * if we didn't accquire a complete PC continue with the next cycle */ if (!ctx->pc_ok) continue; /* indirect branch to the exception vector means an exception occured */ if ((ctx->last_branch <= 0x20) || ((ctx->last_branch >= 0xffff0000) && (ctx->last_branch <= 0xffff0020))) { if ((ctx->last_branch & 0xff) == 0x10) { command_print(cmd_ctx, "data abort"); } else { command_print(cmd_ctx, "exception vector 0x%2.2" PRIx32 "", ctx->last_branch); ctx->current_pc = ctx->last_branch; ctx->pipe_index++; continue; } } } /* an instruction was executed (or not, depending on the condition flags) * retrieve it from the image for displaying */ if (ctx->pc_ok && (pipestat != STAT_WT) && (pipestat != STAT_TD) && !(((pipestat == STAT_BE) || (pipestat == STAT_BD)) && ((ctx->last_branch_reason != 0x0) && (ctx->last_branch_reason != 0x4)))) { if ((retval = etm_read_instruction(ctx, &instruction)) != ERROR_OK) { /* can't continue tracing with no image available */ if (retval == ERROR_TRACE_IMAGE_UNAVAILABLE) { return retval; } else if (retval == ERROR_TRACE_INSTRUCTION_UNAVAILABLE) { /* TODO: handle incomplete images * for now we just quit the analsysis*/ return retval; } } cycles = old_index - last_instruction; } if ((pipestat == STAT_ID) || (pipestat == STAT_BD)) { uint32_t new_data_index = ctx->data_index; uint32_t new_data_half = ctx->data_half; /* in case of a branch with data, the branch target address was consumed before * we temporarily go back to the saved data index */ if (pipestat == STAT_BD) { ctx->data_index = old_data_index; ctx->data_half = old_data_half; } if (ctx->control & ETM_CTRL_TRACE_ADDR) { uint8_t packet; int shift = 0; do { if ((retval = etmv1_next_packet(ctx, &packet, 0)) != 0) return ERROR_ETM_ANALYSIS_FAILED; ctx->last_ptr &= ~(0x7f << shift); ctx->last_ptr |= (packet & 0x7f) << shift; shift += 7; } while ((packet & 0x80) && (shift < 32)); if (shift >= 32) ctx->ptr_ok = 1; if (ctx->ptr_ok) { command_print(cmd_ctx, "address: 0x%8.8" PRIx32 "", ctx->last_ptr); } } if (ctx->control & ETM_CTRL_TRACE_DATA) { if ((instruction.type == ARM_LDM) || (instruction.type == ARM_STM)) { int i; for (i = 0; i < 16; i++) { if (instruction.info.load_store_multiple.register_list & (1 << i)) { uint32_t data; if (etmv1_data(ctx, 4, &data) != 0) return ERROR_ETM_ANALYSIS_FAILED; command_print(cmd_ctx, "data: 0x%8.8" PRIx32 "", data); } } } else if ((instruction.type >= ARM_LDR) && (instruction.type <= ARM_STRH)) { uint32_t data; if (etmv1_data(ctx, arm_access_size(&instruction), &data) != 0) return ERROR_ETM_ANALYSIS_FAILED; command_print(cmd_ctx, "data: 0x%8.8" PRIx32 "", data); } } /* restore data index after consuming BD address and data */ if (pipestat == STAT_BD) { ctx->data_index = new_data_index; ctx->data_half = new_data_half; } } /* adjust PC */ if ((pipestat == STAT_IE) || (pipestat == STAT_ID)) { if (((instruction.type == ARM_B) || (instruction.type == ARM_BL) || (instruction.type == ARM_BLX)) && (instruction.info.b_bl_bx_blx.target_address != 0xffffffff)) { next_pc = instruction.info.b_bl_bx_blx.target_address; } else { next_pc += (ctx->core_state == ARM_STATE_ARM) ? 4 : 2; } } else if (pipestat == STAT_IN) { next_pc += (ctx->core_state == ARM_STATE_ARM) ? 4 : 2; } if ((pipestat != STAT_TD) && (pipestat != STAT_WT)) { char cycles_text[32] = ""; /* if the trace was captured with cycle accurate tracing enabled, * output the number of cycles since the last executed instruction */ if (ctx->control & ETM_CTRL_CYCLE_ACCURATE) { snprintf(cycles_text, 32, " (%i %s)", (int)cycles, (cycles == 1) ? "cycle" : "cycles"); } command_print(cmd_ctx, "%s%s%s", instruction.text, (pipestat == STAT_IN) ? " (not executed)" : "", cycles_text); ctx->current_pc = next_pc; /* packets for an instruction don't start on or before the preceding * functional pipestat (i.e. other than WT or TD) */ if (ctx->data_index <= ctx->pipe_index) { ctx->data_index = ctx->pipe_index + 1; ctx->data_half = 0; } } ctx->pipe_index += 1; } return ERROR_OK; } static COMMAND_HELPER(handle_etm_tracemode_command_update, uint32_t *mode) { uint32_t tracemode; /* what parts of data access are traced? */ if (strcmp(CMD_ARGV[0], "none") == 0) tracemode = 0; else if (strcmp(CMD_ARGV[0], "data") == 0) tracemode = ETM_CTRL_TRACE_DATA; else if (strcmp(CMD_ARGV[0], "address") == 0) tracemode = ETM_CTRL_TRACE_ADDR; else if (strcmp(CMD_ARGV[0], "all") == 0) tracemode = ETM_CTRL_TRACE_DATA | ETM_CTRL_TRACE_ADDR; else { command_print(CMD_CTX, "invalid option '%s'", CMD_ARGV[0]); return ERROR_INVALID_ARGUMENTS; } uint8_t context_id; COMMAND_PARSE_NUMBER(u8, CMD_ARGV[1], context_id); switch (context_id) { case 0: tracemode |= ETM_CTRL_CONTEXTID_NONE; break; case 8: tracemode |= ETM_CTRL_CONTEXTID_8; break; case 16: tracemode |= ETM_CTRL_CONTEXTID_16; break; case 32: tracemode |= ETM_CTRL_CONTEXTID_32; break; default: command_print(CMD_CTX, "invalid option '%s'", CMD_ARGV[1]); return ERROR_INVALID_ARGUMENTS; } bool etmv1_cycle_accurate; COMMAND_PARSE_ENABLE(CMD_ARGV[2], etmv1_cycle_accurate); if (etmv1_cycle_accurate) tracemode |= ETM_CTRL_CYCLE_ACCURATE; bool etmv1_branch_output; COMMAND_PARSE_ENABLE(CMD_ARGV[3], etmv1_branch_output); if (etmv1_branch_output) tracemode |= ETM_CTRL_BRANCH_OUTPUT; /* IGNORED: * - CPRT tracing (coprocessor register transfers) * - debug request (causes debug entry on trigger) * - stall on FIFOFULL (preventing tracedata lossage) */ *mode = tracemode; return ERROR_OK; } COMMAND_HANDLER(handle_etm_tracemode_command) { struct target *target = get_current_target(CMD_CTX); struct arm *arm = target_to_arm(target); struct etm_context *etm; if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: current target isn't an ARM"); return ERROR_FAIL; } etm = arm->etm; if (!etm) { command_print(CMD_CTX, "current target doesn't have an ETM configured"); return ERROR_FAIL; } uint32_t tracemode = etm->control; switch (CMD_ARGC) { case 0: break; case 4: CALL_COMMAND_HANDLER(handle_etm_tracemode_command_update, &tracemode); break; default: command_print(CMD_CTX, "usage: tracemode " "('none'|'data'|'address'|'all') " "context_id_bits " "('enable'|'disable') " "('enable'|'disable')" ); return ERROR_FAIL; } /** * todo: fail if parameters were invalid for this hardware, * or couldn't be written; display actual hardware state... */ command_print(CMD_CTX, "current tracemode configuration:"); switch (tracemode & ETM_CTRL_TRACE_MASK) { default: command_print(CMD_CTX, "data tracing: none"); break; case ETM_CTRL_TRACE_DATA: command_print(CMD_CTX, "data tracing: data only"); break; case ETM_CTRL_TRACE_ADDR: command_print(CMD_CTX, "data tracing: address only"); break; case ETM_CTRL_TRACE_DATA | ETM_CTRL_TRACE_ADDR: command_print(CMD_CTX, "data tracing: address and data"); break; } switch (tracemode & ETM_CTRL_CONTEXTID_MASK) { case ETM_CTRL_CONTEXTID_NONE: command_print(CMD_CTX, "contextid tracing: none"); break; case ETM_CTRL_CONTEXTID_8: command_print(CMD_CTX, "contextid tracing: 8 bit"); break; case ETM_CTRL_CONTEXTID_16: command_print(CMD_CTX, "contextid tracing: 16 bit"); break; case ETM_CTRL_CONTEXTID_32: command_print(CMD_CTX, "contextid tracing: 32 bit"); break; } if (tracemode & ETM_CTRL_CYCLE_ACCURATE) { command_print(CMD_CTX, "cycle-accurate tracing enabled"); } else { command_print(CMD_CTX, "cycle-accurate tracing disabled"); } if (tracemode & ETM_CTRL_BRANCH_OUTPUT) { command_print(CMD_CTX, "full branch address output enabled"); } else { command_print(CMD_CTX, "full branch address output disabled"); } #define TRACEMODE_MASK ( \ ETM_CTRL_CONTEXTID_MASK \ | ETM_CTRL_BRANCH_OUTPUT \ | ETM_CTRL_CYCLE_ACCURATE \ | ETM_CTRL_TRACE_MASK \ ) /* only update ETM_CTRL register if tracemode changed */ if ((etm->control & TRACEMODE_MASK) != tracemode) { struct reg *etm_ctrl_reg; etm_ctrl_reg = etm_reg_lookup(etm, ETM_CTRL); if (!etm_ctrl_reg) return ERROR_FAIL; etm->control &= ~TRACEMODE_MASK; etm->control |= tracemode & TRACEMODE_MASK; buf_set_u32(etm_ctrl_reg->value, 0, 32, etm->control); etm_store_reg(etm_ctrl_reg); /* invalidate old trace data */ etm->capture_status = TRACE_IDLE; if (etm->trace_depth > 0) { free(etm->trace_data); etm->trace_data = NULL; } etm->trace_depth = 0; } #undef TRACEMODE_MASK return ERROR_OK; } COMMAND_HANDLER(handle_etm_config_command) { struct target *target; struct arm *arm; uint32_t portmode = 0x0; struct etm_context *etm_ctx; int i; if (CMD_ARGC != 5) return ERROR_COMMAND_SYNTAX_ERROR; target = get_target(CMD_ARGV[0]); if (!target) { LOG_ERROR("target '%s' not defined", CMD_ARGV[0]); return ERROR_FAIL; } arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "target '%s' is '%s'; not an ARM", target_name(target), target_type_name(target)); return ERROR_FAIL; } /* FIXME for ETMv3.0 and above -- and we don't yet know what ETM * version we'll be using!! -- so we can't know how to validate * params yet. "etm config" should likely be *AFTER* hookup... * * - Many more widths might be supported ... and we can easily * check whether our setting "took". * * - The "clock" and "mode" bits are interpreted differently. * See ARM IHI 0014O table 2-17 for the old behavior, and * table 2-18 for the new. With ETB it's best to specify * "normal full" ... */ uint8_t port_width; COMMAND_PARSE_NUMBER(u8, CMD_ARGV[1], port_width); switch (port_width) { /* before ETMv3.0 */ case 4: portmode |= ETM_PORT_4BIT; break; case 8: portmode |= ETM_PORT_8BIT; break; case 16: portmode |= ETM_PORT_16BIT; break; /* ETMv3.0 and later*/ case 24: portmode |= ETM_PORT_24BIT; break; case 32: portmode |= ETM_PORT_32BIT; break; case 48: portmode |= ETM_PORT_48BIT; break; case 64: portmode |= ETM_PORT_64BIT; break; case 1: portmode |= ETM_PORT_1BIT; break; case 2: portmode |= ETM_PORT_2BIT; break; default: command_print(CMD_CTX, "unsupported ETM port width '%s'", CMD_ARGV[1]); return ERROR_FAIL; } if (strcmp("normal", CMD_ARGV[2]) == 0) { portmode |= ETM_PORT_NORMAL; } else if (strcmp("multiplexed", CMD_ARGV[2]) == 0) { portmode |= ETM_PORT_MUXED; } else if (strcmp("demultiplexed", CMD_ARGV[2]) == 0) { portmode |= ETM_PORT_DEMUXED; } else { command_print(CMD_CTX, "unsupported ETM port mode '%s', must be 'normal', 'multiplexed' or 'demultiplexed'", CMD_ARGV[2]); return ERROR_FAIL; } if (strcmp("half", CMD_ARGV[3]) == 0) { portmode |= ETM_PORT_HALF_CLOCK; } else if (strcmp("full", CMD_ARGV[3]) == 0) { portmode |= ETM_PORT_FULL_CLOCK; } else { command_print(CMD_CTX, "unsupported ETM port clocking '%s', must be 'full' or 'half'", CMD_ARGV[3]); return ERROR_FAIL; } etm_ctx = calloc(1, sizeof(struct etm_context)); if (!etm_ctx) { LOG_DEBUG("out of memory"); return ERROR_FAIL; } for (i = 0; etm_capture_drivers[i]; i++) { if (strcmp(CMD_ARGV[4], etm_capture_drivers[i]->name) == 0) { int retval = register_commands(CMD_CTX, NULL, etm_capture_drivers[i]->commands); if (ERROR_OK != retval) { free(etm_ctx); return retval; } etm_ctx->capture_driver = etm_capture_drivers[i]; break; } } if (!etm_capture_drivers[i]) { /* no supported capture driver found, don't register an ETM */ free(etm_ctx); LOG_ERROR("trace capture driver '%s' not found", CMD_ARGV[4]); return ERROR_FAIL; } etm_ctx->target = target; etm_ctx->trace_data = NULL; etm_ctx->control = portmode; etm_ctx->core_state = ARM_STATE_ARM; arm->etm = etm_ctx; return etm_register_user_commands(CMD_CTX); } COMMAND_HANDLER(handle_etm_info_command) { struct target *target; struct arm *arm; struct etm_context *etm; struct reg *etm_sys_config_reg; int max_port_size; uint32_t config; target = get_current_target(CMD_CTX); arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: current target isn't an ARM"); return ERROR_FAIL; } etm = arm->etm; if (!etm) { command_print(CMD_CTX, "current target doesn't have an ETM configured"); return ERROR_FAIL; } command_print(CMD_CTX, "ETM v%d.%d", etm->bcd_vers >> 4, etm->bcd_vers & 0xf); command_print(CMD_CTX, "pairs of address comparators: %i", (int) (etm->config >> 0) & 0x0f); command_print(CMD_CTX, "data comparators: %i", (int) (etm->config >> 4) & 0x0f); command_print(CMD_CTX, "memory map decoders: %i", (int) (etm->config >> 8) & 0x1f); command_print(CMD_CTX, "number of counters: %i", (int) (etm->config >> 13) & 0x07); command_print(CMD_CTX, "sequencer %spresent", (int) (etm->config & (1 << 16)) ? "" : "not "); command_print(CMD_CTX, "number of ext. inputs: %i", (int) (etm->config >> 17) & 0x07); command_print(CMD_CTX, "number of ext. outputs: %i", (int) (etm->config >> 20) & 0x07); command_print(CMD_CTX, "FIFO full %spresent", (int) (etm->config & (1 << 23)) ? "" : "not "); if (etm->bcd_vers < 0x20) command_print(CMD_CTX, "protocol version: %i", (int) (etm->config >> 28) & 0x07); else { command_print(CMD_CTX, "coprocessor and memory access %ssupported", (etm->config & (1 << 26)) ? "" : "not "); command_print(CMD_CTX, "trace start/stop %spresent", (etm->config & (1 << 26)) ? "" : "not "); command_print(CMD_CTX, "number of context comparators: %i", (int) (etm->config >> 24) & 0x03); } /* SYS_CONFIG isn't present before ETMv1.2 */ etm_sys_config_reg = etm_reg_lookup(etm, ETM_SYS_CONFIG); if (!etm_sys_config_reg) return ERROR_OK; etm_get_reg(etm_sys_config_reg); config = buf_get_u32(etm_sys_config_reg->value, 0, 32); LOG_DEBUG("ETM SYS CONFIG %08x", (unsigned) config); max_port_size = config & 0x7; if (etm->bcd_vers >= 0x30) max_port_size |= (config >> 6) & 0x08; switch (max_port_size) { /* before ETMv3.0 */ case 0: max_port_size = 4; break; case 1: max_port_size = 8; break; case 2: max_port_size = 16; break; /* ETMv3.0 and later*/ case 3: max_port_size = 24; break; case 4: max_port_size = 32; break; case 5: max_port_size = 48; break; case 6: max_port_size = 64; break; case 8: max_port_size = 1; break; case 9: max_port_size = 2; break; default: LOG_ERROR("Illegal max_port_size"); return ERROR_FAIL; } command_print(CMD_CTX, "max. port size: %i", max_port_size); if (etm->bcd_vers < 0x30) { command_print(CMD_CTX, "half-rate clocking %ssupported", (config & (1 << 3)) ? "" : "not "); command_print(CMD_CTX, "full-rate clocking %ssupported", (config & (1 << 4)) ? "" : "not "); command_print(CMD_CTX, "normal trace format %ssupported", (config & (1 << 5)) ? "" : "not "); command_print(CMD_CTX, "multiplex trace format %ssupported", (config & (1 << 6)) ? "" : "not "); command_print(CMD_CTX, "demultiplex trace format %ssupported", (config & (1 << 7)) ? "" : "not "); } else { /* REVISIT show which size and format are selected ... */ command_print(CMD_CTX, "current port size %ssupported", (config & (1 << 10)) ? "" : "not "); command_print(CMD_CTX, "current trace format %ssupported", (config & (1 << 11)) ? "" : "not "); } if (etm->bcd_vers >= 0x21) command_print(CMD_CTX, "fetch comparisons %ssupported", (config & (1 << 17)) ? "not " : ""); command_print(CMD_CTX, "FIFO full %ssupported", (config & (1 << 8)) ? "" : "not "); return ERROR_OK; } COMMAND_HANDLER(handle_etm_status_command) { struct target *target; struct arm *arm; struct etm_context *etm; trace_status_t trace_status; target = get_current_target(CMD_CTX); arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: current target isn't an ARM"); return ERROR_FAIL; } etm = arm->etm; if (!etm) { command_print(CMD_CTX, "current target doesn't have an ETM configured"); return ERROR_FAIL; } /* ETM status */ if (etm->bcd_vers >= 0x11) { struct reg *reg; reg = etm_reg_lookup(etm, ETM_STATUS); if (!reg) return ERROR_FAIL; if (etm_get_reg(reg) == ERROR_OK) { unsigned s = buf_get_u32(reg->value, 0, reg->size); command_print(CMD_CTX, "etm: %s%s%s%s", /* bit(1) == progbit */ (etm->bcd_vers >= 0x12) ? ((s & (1 << 1)) ? "disabled" : "enabled") : "?", ((s & (1 << 3)) && etm->bcd_vers >= 0x31) ? " triggered" : "", ((s & (1 << 2)) && etm->bcd_vers >= 0x12) ? " start/stop" : "", ((s & (1 << 0)) && etm->bcd_vers >= 0x11) ? " untraced-overflow" : ""); } /* else ignore and try showing trace port status */ } /* Trace Port Driver status */ trace_status = etm->capture_driver->status(etm); if (trace_status == TRACE_IDLE) { command_print(CMD_CTX, "%s: idle", etm->capture_driver->name); } else { static char *completed = " completed"; static char *running = " is running"; static char *overflowed = ", overflowed"; static char *triggered = ", triggered"; command_print(CMD_CTX, "%s: trace collection%s%s%s", etm->capture_driver->name, (trace_status & TRACE_RUNNING) ? running : completed, (trace_status & TRACE_OVERFLOWED) ? overflowed : "", (trace_status & TRACE_TRIGGERED) ? triggered : ""); if (etm->trace_depth > 0) { command_print(CMD_CTX, "%i frames of trace data read", (int)(etm->trace_depth)); } } return ERROR_OK; } COMMAND_HANDLER(handle_etm_image_command) { struct target *target; struct arm *arm; struct etm_context *etm_ctx; if (CMD_ARGC < 1) { command_print(CMD_CTX, "usage: etm image <file> [base address] [type]"); return ERROR_FAIL; } target = get_current_target(CMD_CTX); arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: current target isn't an ARM"); return ERROR_FAIL; } etm_ctx = arm->etm; if (!etm_ctx) { command_print(CMD_CTX, "current target doesn't have an ETM configured"); return ERROR_FAIL; } if (etm_ctx->image) { image_close(etm_ctx->image); free(etm_ctx->image); command_print(CMD_CTX, "previously loaded image found and closed"); } etm_ctx->image = malloc(sizeof(struct image)); etm_ctx->image->base_address_set = 0; etm_ctx->image->start_address_set = 0; /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */ if (CMD_ARGC >= 2) { etm_ctx->image->base_address_set = 1; COMMAND_PARSE_NUMBER(llong, CMD_ARGV[1], etm_ctx->image->base_address); } else { etm_ctx->image->base_address_set = 0; } if (image_open(etm_ctx->image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK) { free(etm_ctx->image); etm_ctx->image = NULL; return ERROR_FAIL; } return ERROR_OK; } COMMAND_HANDLER(handle_etm_dump_command) { struct fileio file; struct target *target; struct arm *arm; struct etm_context *etm_ctx; uint32_t i; if (CMD_ARGC != 1) { command_print(CMD_CTX, "usage: etm dump <file>"); return ERROR_FAIL; } target = get_current_target(CMD_CTX); arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: current target isn't an ARM"); return ERROR_FAIL; } etm_ctx = arm->etm; if (!etm_ctx) { command_print(CMD_CTX, "current target doesn't have an ETM configured"); return ERROR_FAIL; } if (etm_ctx->capture_driver->status == TRACE_IDLE) { command_print(CMD_CTX, "trace capture wasn't enabled, no trace data captured"); return ERROR_OK; } if (etm_ctx->capture_driver->status(etm_ctx) & TRACE_RUNNING) { /* TODO: if on-the-fly capture is to be supported, this needs to be changed */ command_print(CMD_CTX, "trace capture not completed"); return ERROR_FAIL; } /* read the trace data if it wasn't read already */ if (etm_ctx->trace_depth == 0) etm_ctx->capture_driver->read_trace(etm_ctx); if (fileio_open(&file, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK) { return ERROR_FAIL; } fileio_write_u32(&file, etm_ctx->capture_status); fileio_write_u32(&file, etm_ctx->control); fileio_write_u32(&file, etm_ctx->trace_depth); for (i = 0; i < etm_ctx->trace_depth; i++) { fileio_write_u32(&file, etm_ctx->trace_data[i].pipestat); fileio_write_u32(&file, etm_ctx->trace_data[i].packet); fileio_write_u32(&file, etm_ctx->trace_data[i].flags); } fileio_close(&file); return ERROR_OK; } COMMAND_HANDLER(handle_etm_load_command) { struct fileio file; struct target *target; struct arm *arm; struct etm_context *etm_ctx; uint32_t i; if (CMD_ARGC != 1) { command_print(CMD_CTX, "usage: etm load <file>"); return ERROR_FAIL; } target = get_current_target(CMD_CTX); arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: current target isn't an ARM"); return ERROR_FAIL; } etm_ctx = arm->etm; if (!etm_ctx) { command_print(CMD_CTX, "current target doesn't have an ETM configured"); return ERROR_FAIL; } if (etm_ctx->capture_driver->status(etm_ctx) & TRACE_RUNNING) { command_print(CMD_CTX, "trace capture running, stop first"); return ERROR_FAIL; } if (fileio_open(&file, CMD_ARGV[0], FILEIO_READ, FILEIO_BINARY) != ERROR_OK) { return ERROR_FAIL; } int filesize; int retval = fileio_size(&file, &filesize); if (retval != ERROR_OK) { fileio_close(&file); return retval; } if (filesize % 4) { command_print(CMD_CTX, "size isn't a multiple of 4, no valid trace data"); fileio_close(&file); return ERROR_FAIL; } if (etm_ctx->trace_depth > 0) { free(etm_ctx->trace_data); etm_ctx->trace_data = NULL; } { uint32_t tmp; fileio_read_u32(&file, &tmp); etm_ctx->capture_status = tmp; fileio_read_u32(&file, &tmp); etm_ctx->control = tmp; fileio_read_u32(&file, &etm_ctx->trace_depth); } etm_ctx->trace_data = malloc(sizeof(struct etmv1_trace_data) * etm_ctx->trace_depth); if (etm_ctx->trace_data == NULL) { command_print(CMD_CTX, "not enough memory to perform operation"); fileio_close(&file); return ERROR_FAIL; } for (i = 0; i < etm_ctx->trace_depth; i++) { uint32_t pipestat, packet, flags; fileio_read_u32(&file, &pipestat); fileio_read_u32(&file, &packet); fileio_read_u32(&file, &flags); etm_ctx->trace_data[i].pipestat = pipestat & 0xff; etm_ctx->trace_data[i].packet = packet & 0xffff; etm_ctx->trace_data[i].flags = flags; } fileio_close(&file); return ERROR_OK; } COMMAND_HANDLER(handle_etm_start_command) { struct target *target; struct arm *arm; struct etm_context *etm_ctx; struct reg *etm_ctrl_reg; target = get_current_target(CMD_CTX); arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: current target isn't an ARM"); return ERROR_FAIL; } etm_ctx = arm->etm; if (!etm_ctx) { command_print(CMD_CTX, "current target doesn't have an ETM configured"); return ERROR_FAIL; } /* invalidate old tracing data */ etm_ctx->capture_status = TRACE_IDLE; if (etm_ctx->trace_depth > 0) { free(etm_ctx->trace_data); etm_ctx->trace_data = NULL; } etm_ctx->trace_depth = 0; etm_ctrl_reg = etm_reg_lookup(etm_ctx, ETM_CTRL); if (!etm_ctrl_reg) return ERROR_FAIL; etm_get_reg(etm_ctrl_reg); /* Clear programming bit (10), set port selection bit (11) */ buf_set_u32(etm_ctrl_reg->value, 10, 2, 0x2); etm_store_reg(etm_ctrl_reg); jtag_execute_queue(); etm_ctx->capture_driver->start_capture(etm_ctx); return ERROR_OK; } COMMAND_HANDLER(handle_etm_stop_command) { struct target *target; struct arm *arm; struct etm_context *etm_ctx; struct reg *etm_ctrl_reg; target = get_current_target(CMD_CTX); arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: current target isn't an ARM"); return ERROR_FAIL; } etm_ctx = arm->etm; if (!etm_ctx) { command_print(CMD_CTX, "current target doesn't have an ETM configured"); return ERROR_FAIL; } etm_ctrl_reg = etm_reg_lookup(etm_ctx, ETM_CTRL); if (!etm_ctrl_reg) return ERROR_FAIL; etm_get_reg(etm_ctrl_reg); /* Set programming bit (10), clear port selection bit (11) */ buf_set_u32(etm_ctrl_reg->value, 10, 2, 0x1); etm_store_reg(etm_ctrl_reg); jtag_execute_queue(); etm_ctx->capture_driver->stop_capture(etm_ctx); return ERROR_OK; } COMMAND_HANDLER(handle_etm_trigger_debug_command) { struct target *target; struct arm *arm; struct etm_context *etm; target = get_current_target(CMD_CTX); arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: %s isn't an ARM", target_name(target)); return ERROR_FAIL; } etm = arm->etm; if (!etm) { command_print(CMD_CTX, "ETM: no ETM configured for %s", target_name(target)); return ERROR_FAIL; } if (CMD_ARGC == 1) { struct reg *etm_ctrl_reg; bool dbgrq; etm_ctrl_reg = etm_reg_lookup(etm, ETM_CTRL); if (!etm_ctrl_reg) return ERROR_FAIL; COMMAND_PARSE_ENABLE(CMD_ARGV[0], dbgrq); if (dbgrq) etm->control |= ETM_CTRL_DBGRQ; else etm->control &= ~ETM_CTRL_DBGRQ; /* etm->control will be written to hardware * the next time an "etm start" is issued. */ buf_set_u32(etm_ctrl_reg->value, 0, 32, etm->control); } command_print(CMD_CTX, "ETM: %s debug halt", (etm->control & ETM_CTRL_DBGRQ) ? "triggers" : "does not trigger"); return ERROR_OK; } COMMAND_HANDLER(handle_etm_analyze_command) { struct target *target; struct arm *arm; struct etm_context *etm_ctx; int retval; target = get_current_target(CMD_CTX); arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD_CTX, "ETM: current target isn't an ARM"); return ERROR_FAIL; } etm_ctx = arm->etm; if (!etm_ctx) { command_print(CMD_CTX, "current target doesn't have an ETM configured"); return ERROR_FAIL; } if ((retval = etmv1_analyze_trace(etm_ctx, CMD_CTX)) != ERROR_OK) { switch (retval) { case ERROR_ETM_ANALYSIS_FAILED: command_print(CMD_CTX, "further analysis failed (corrupted trace data or just end of data"); break; case ERROR_TRACE_INSTRUCTION_UNAVAILABLE: command_print(CMD_CTX, "no instruction for current address available, analysis aborted"); break; case ERROR_TRACE_IMAGE_UNAVAILABLE: command_print(CMD_CTX, "no image available for trace analysis"); break; default: command_print(CMD_CTX, "unknown error: %i", retval); } } return retval; } static const struct command_registration etm_config_command_handlers[] = { { /* NOTE: with ADIv5, ETMs are accessed by DAP operations, * possibly over SWD, not JTAG scanchain 6 of 'target'. * * Also, these parameters don't match ETM v3+ modules... */ .name = "config", .handler = handle_etm_config_command, .mode = COMMAND_CONFIG, .help = "Set up ETM output port.", .usage = "target port_width port_mode clocking capture_driver", }, COMMAND_REGISTRATION_DONE }; const struct command_registration etm_command_handlers[] = { { .name = "etm", .mode = COMMAND_ANY, .help = "Emebdded Trace Macrocell command group", .chain = etm_config_command_handlers, }, COMMAND_REGISTRATION_DONE }; static const struct command_registration etm_exec_command_handlers[] = { { .name = "tracemode", .handler = handle_etm_tracemode_command, .mode = COMMAND_EXEC, .help = "configure/display trace mode", .usage = "('none'|'data'|'address'|'all') " "context_id_bits " "['enable'|'disable'] " "['enable'|'disable']", }, { .name = "info", .handler = handle_etm_info_command, .mode = COMMAND_EXEC, .help = "display info about the current target's ETM", }, { .name = "status", .handler = handle_etm_status_command, .mode = COMMAND_EXEC, .help = "display current target's ETM status", }, { .name = "start", .handler = handle_etm_start_command, .mode = COMMAND_EXEC, .help = "start ETM trace collection", }, { .name = "stop", .handler = handle_etm_stop_command, .mode = COMMAND_EXEC, .help = "stop ETM trace collection", }, { .name = "trigger_debug", .handler = handle_etm_trigger_debug_command, .mode = COMMAND_EXEC, .help = "enable/disable debug entry on trigger", .usage = "['enable'|'disable']", }, { .name = "analyze", .handler = handle_etm_analyze_command, .mode = COMMAND_EXEC, .help = "analyze collected ETM trace", }, { .name = "image", .handler = handle_etm_image_command, .mode = COMMAND_EXEC, .help = "load image from file with optional offset", .usage = "filename [offset]", }, { .name = "dump", .handler = handle_etm_dump_command, .mode = COMMAND_EXEC, .help = "dump captured trace data to file", .usage = "filename", }, { .name = "load", .handler = handle_etm_load_command, .mode = COMMAND_EXEC, .help = "load trace data for analysis <file>", }, COMMAND_REGISTRATION_DONE }; static int etm_register_user_commands(struct command_context *cmd_ctx) { struct command *etm_cmd = command_find_in_context(cmd_ctx, "etm"); return register_commands(cmd_ctx, etm_cmd, etm_exec_command_handlers); }