/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2007-2009 Øyvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2008, Duane Ellis * * openocd@duaneeellis.com * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by Rick Altherr * * kc8apf@kc8apf.net> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "target.h" #include "target_type.h" #include "target_request.h" #include "breakpoints.h" #include "time_support.h" #include "register.h" #include "trace.h" #include "image.h" #include "jtag.h" static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv); static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv); static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv); /* targets */ extern struct target_type arm7tdmi_target; extern struct target_type arm720t_target; extern struct target_type arm9tdmi_target; extern struct target_type arm920t_target; extern struct target_type arm966e_target; extern struct target_type arm926ejs_target; extern struct target_type fa526_target; extern struct target_type feroceon_target; extern struct target_type dragonite_target; extern struct target_type xscale_target; extern struct target_type cortexm3_target; extern struct target_type cortexa8_target; extern struct target_type arm11_target; extern struct target_type mips_m4k_target; extern struct target_type avr_target; struct target_type *target_types[] = { &arm7tdmi_target, &arm9tdmi_target, &arm920t_target, &arm720t_target, &arm966e_target, &arm926ejs_target, &fa526_target, &feroceon_target, &dragonite_target, &xscale_target, &cortexm3_target, &cortexa8_target, &arm11_target, &mips_m4k_target, &avr_target, NULL, }; struct target *all_targets = NULL; struct target_event_callback *target_event_callbacks = NULL; struct target_timer_callback *target_timer_callbacks = NULL; const Jim_Nvp nvp_assert[] = { { .name = "assert", NVP_ASSERT }, { .name = "deassert", NVP_DEASSERT }, { .name = "T", NVP_ASSERT }, { .name = "F", NVP_DEASSERT }, { .name = "t", NVP_ASSERT }, { .name = "f", NVP_DEASSERT }, { .name = NULL, .value = -1 } }; const Jim_Nvp nvp_error_target[] = { { .value = ERROR_TARGET_INVALID, .name = "err-invalid" }, { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" }, { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" }, { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" }, { .value = ERROR_TARGET_FAILURE, .name = "err-failure" }, { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" }, { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" }, { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" }, { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" }, { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" }, { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" }, { .value = -1, .name = NULL } }; const char *target_strerror_safe(int err) { const Jim_Nvp *n; n = Jim_Nvp_value2name_simple(nvp_error_target, err); if (n->name == NULL) { return "unknown"; } else { return n->name; } } static const Jim_Nvp nvp_target_event[] = { { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" }, { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" }, { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" }, { .value = TARGET_EVENT_HALTED, .name = "halted" }, { .value = TARGET_EVENT_RESUMED, .name = "resumed" }, { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" }, { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" }, { .name = "gdb-start", .value = TARGET_EVENT_GDB_START }, { .name = "gdb-end", .value = TARGET_EVENT_GDB_END }, /* historical name */ { .value = TARGET_EVENT_RESET_START, .name = "reset-start" }, { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" }, { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" }, { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" }, { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" }, { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" }, { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" }, { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" }, { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" }, { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" }, { .value = TARGET_EVENT_RESET_END, .name = "reset-end" }, { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" }, { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" }, { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" }, { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" }, { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" }, { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" }, { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" }, { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" }, { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" }, { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" }, { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" }, { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" }, { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" }, { .name = NULL, .value = -1 } }; const Jim_Nvp nvp_target_state[] = { { .name = "unknown", .value = TARGET_UNKNOWN }, { .name = "running", .value = TARGET_RUNNING }, { .name = "halted", .value = TARGET_HALTED }, { .name = "reset", .value = TARGET_RESET }, { .name = "debug-running", .value = TARGET_DEBUG_RUNNING }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_target_debug_reason [] = { { .name = "debug-request" , .value = DBG_REASON_DBGRQ }, { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT }, { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT }, { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT }, { .name = "single-step" , .value = DBG_REASON_SINGLESTEP }, { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED }, { .name = "undefined" , .value = DBG_REASON_UNDEFINED }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_target_endian[] = { { .name = "big", .value = TARGET_BIG_ENDIAN }, { .name = "little", .value = TARGET_LITTLE_ENDIAN }, { .name = "be", .value = TARGET_BIG_ENDIAN }, { .name = "le", .value = TARGET_LITTLE_ENDIAN }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_reset_modes[] = { { .name = "unknown", .value = RESET_UNKNOWN }, { .name = "run" , .value = RESET_RUN }, { .name = "halt" , .value = RESET_HALT }, { .name = "init" , .value = RESET_INIT }, { .name = NULL , .value = -1 }, }; const char * target_state_name( struct target *t ) { const char *cp; cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name; if( !cp ){ LOG_ERROR("Invalid target state: %d", (int)(t->state)); cp = "(*BUG*unknown*BUG*)"; } return cp; } /* determine the number of the new target */ static int new_target_number(void) { struct target *t; int x; /* number is 0 based */ x = -1; t = all_targets; while (t) { if (x < t->target_number) { x = t->target_number; } t = t->next; } return x + 1; } /* read a uint32_t from a buffer in target memory endianness */ uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u32(buffer); else return be_to_h_u32(buffer); } /* read a uint16_t from a buffer in target memory endianness */ uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u16(buffer); else return be_to_h_u16(buffer); } /* read a uint8_t from a buffer in target memory endianness */ uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer) { return *buffer & 0x0ff; } /* write a uint32_t to a buffer in target memory endianness */ void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u32_to_le(buffer, value); else h_u32_to_be(buffer, value); } /* write a uint16_t to a buffer in target memory endianness */ void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u16_to_le(buffer, value); else h_u16_to_be(buffer, value); } /* write a uint8_t to a buffer in target memory endianness */ void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value) { *buffer = value; } /* return a pointer to a configured target; id is name or number */ struct target *get_target(const char *id) { struct target *target; /* try as tcltarget name */ for (target = all_targets; target; target = target->next) { if (target->cmd_name == NULL) continue; if (strcmp(id, target->cmd_name) == 0) return target; } /* It's OK to remove this fallback sometime after August 2010 or so */ /* no match, try as number */ unsigned num; if (parse_uint(id, &num) != ERROR_OK) return NULL; for (target = all_targets; target; target = target->next) { if (target->target_number == (int)num) { LOG_WARNING("use '%s' as target identifier, not '%u'", target->cmd_name, num); return target; } } return NULL; } /* returns a pointer to the n-th configured target */ static struct target *get_target_by_num(int num) { struct target *target = all_targets; while (target) { if (target->target_number == num) { return target; } target = target->next; } return NULL; } struct target* get_current_target(struct command_context *cmd_ctx) { struct target *target = get_target_by_num(cmd_ctx->current_target); if (target == NULL) { LOG_ERROR("BUG: current_target out of bounds"); exit(-1); } return target; } int target_poll(struct target *target) { int retval; /* We can't poll until after examine */ if (!target_was_examined(target)) { /* Fail silently lest we pollute the log */ return ERROR_FAIL; } retval = target->type->poll(target); if (retval != ERROR_OK) return retval; if (target->halt_issued) { if (target->state == TARGET_HALTED) { target->halt_issued = false; } else { long long t = timeval_ms() - target->halt_issued_time; if (t>1000) { target->halt_issued = false; LOG_INFO("Halt timed out, wake up GDB."); target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT); } } } return ERROR_OK; } int target_halt(struct target *target) { int retval; /* We can't poll until after examine */ if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } retval = target->type->halt(target); if (retval != ERROR_OK) return retval; target->halt_issued = true; target->halt_issued_time = timeval_ms(); return ERROR_OK; } int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution) { int retval; /* We can't poll until after examine */ if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?) * the application. */ if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK) return retval; return retval; } int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode) { char buf[100]; int retval; Jim_Nvp *n; n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode); if (n->name == NULL) { LOG_ERROR("invalid reset mode"); return ERROR_FAIL; } /* disable polling during reset to make reset event scripts * more predictable, i.e. dr/irscan & pathmove in events will * not have JTAG operations injected into the middle of a sequence. */ bool save_poll = jtag_poll_get_enabled(); jtag_poll_set_enabled(false); sprintf(buf, "ocd_process_reset %s", n->name); retval = Jim_Eval(interp, buf); jtag_poll_set_enabled(save_poll); if (retval != JIM_OK) { Jim_PrintErrorMessage(interp); return ERROR_FAIL; } /* We want any events to be processed before the prompt */ retval = target_call_timer_callbacks_now(); return retval; } static int identity_virt2phys(struct target *target, uint32_t virtual, uint32_t *physical) { *physical = virtual; return ERROR_OK; } static int no_mmu(struct target *target, int *enabled) { *enabled = 0; return ERROR_OK; } static int default_examine(struct target *target) { target_set_examined(target); return ERROR_OK; } int target_examine_one(struct target *target) { return target->type->examine(target); } static int jtag_enable_callback(enum jtag_event event, void *priv) { struct target *target = priv; if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled) return ERROR_OK; jtag_unregister_event_callback(jtag_enable_callback, target); return target_examine_one(target); } /* Targets that correctly implement init + examine, i.e. * no communication with target during init: * * XScale */ int target_examine(void) { int retval = ERROR_OK; struct target *target; for (target = all_targets; target; target = target->next) { /* defer examination, but don't skip it */ if (!target->tap->enabled) { jtag_register_event_callback(jtag_enable_callback, target); continue; } if ((retval = target_examine_one(target)) != ERROR_OK) return retval; } return retval; } const char *target_get_name(struct target *target) { return target->type->name; } static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->write_memory_imp(target, address, size, count, buffer); } static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->read_memory_imp(target, address, size, count, buffer); } static int target_soft_reset_halt_imp(struct target *target) { if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (!target->type->soft_reset_halt_imp) { LOG_ERROR("Target %s does not support soft_reset_halt", target->cmd_name); return ERROR_FAIL; } return target->type->soft_reset_halt_imp(target); } static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info) { if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info); } int target_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { return target->type->read_memory(target, address, size, count, buffer); } int target_read_phys_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { return target->type->read_phys_memory(target, address, size, count, buffer); } int target_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { return target->type->write_memory(target, address, size, count, buffer); } int target_write_phys_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { return target->type->write_phys_memory(target, address, size, count, buffer); } int target_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer) { return target->type->bulk_write_memory(target, address, count, buffer); } int target_add_breakpoint(struct target *target, struct breakpoint *breakpoint) { return target->type->add_breakpoint(target, breakpoint); } int target_remove_breakpoint(struct target *target, struct breakpoint *breakpoint) { return target->type->remove_breakpoint(target, breakpoint); } int target_add_watchpoint(struct target *target, struct watchpoint *watchpoint) { return target->type->add_watchpoint(target, watchpoint); } int target_remove_watchpoint(struct target *target, struct watchpoint *watchpoint) { return target->type->remove_watchpoint(target, watchpoint); } int target_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size) { return target->type->get_gdb_reg_list(target, reg_list, reg_list_size); } int target_step(struct target *target, int current, uint32_t address, int handle_breakpoints) { return target->type->step(target, current, address, handle_breakpoints); } int target_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info) { return target->type->run_algorithm(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info); } /** * Reset the @c examined flag for the given target. * Pure paranoia -- targets are zeroed on allocation. */ static void target_reset_examined(struct target *target) { target->examined = false; } static int default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value) { LOG_ERROR("Not implemented: %s", __func__); return ERROR_FAIL; } static int default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value) { LOG_ERROR("Not implemented: %s", __func__); return ERROR_FAIL; } static int arm_cp_check(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm) { /* basic check */ if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if ((cpnum <0) || (cpnum > 15)) { LOG_ERROR("Illegal co-processor %d", cpnum); return ERROR_FAIL; } if (op1 > 7) { LOG_ERROR("Illegal op1"); return ERROR_FAIL; } if (op2 > 7) { LOG_ERROR("Illegal op2"); return ERROR_FAIL; } if (CRn > 15) { LOG_ERROR("Illegal CRn"); return ERROR_FAIL; } if (CRm > 15) { LOG_ERROR("Illegal CRm"); return ERROR_FAIL; } return ERROR_OK; } int target_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value) { int retval; retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm); if (retval != ERROR_OK) return retval; return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value); } int target_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value) { int retval; retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm); if (retval != ERROR_OK) return retval; return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value); } static int err_read_phys_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { LOG_ERROR("Not implemented: %s", __func__); return ERROR_FAIL; } static int err_write_phys_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { LOG_ERROR("Not implemented: %s", __func__); return ERROR_FAIL; } int target_init(struct command_context *cmd_ctx) { struct target *target; int retval; for (target = all_targets; target; target = target->next) { struct target_type *type = target->type; target_reset_examined(target); if (target->type->examine == NULL) { target->type->examine = default_examine; } if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK) { LOG_ERROR("target '%s' init failed", target_get_name(target)); return retval; } /** * @todo MCR/MRC are ARM-specific; don't require them in * all targets, or for ARMs without coprocessors. */ if (target->type->mcr == NULL) { target->type->mcr = default_mcr; } else { /* FIX! multiple targets will generally register global commands * multiple times. Only register this one if *one* of the * targets need the command. Hmm... make it a command on the * Jim Tcl target object? */ register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>"); } if (target->type->mrc == NULL) { target->type->mrc = default_mrc; } else { register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>"); } /** * @todo get rid of those *memory_imp() methods, now that all * callers are using target_*_memory() accessors ... and make * sure the "physical" paths handle the same issues. */ /* a non-invasive way(in terms of patches) to add some code that * runs before the type->write/read_memory implementation */ target->type->write_memory_imp = target->type->write_memory; target->type->write_memory = target_write_memory_imp; target->type->read_memory_imp = target->type->read_memory; target->type->read_memory = target_read_memory_imp; target->type->soft_reset_halt_imp = target->type->soft_reset_halt; target->type->soft_reset_halt = target_soft_reset_halt_imp; target->type->run_algorithm_imp = target->type->run_algorithm; target->type->run_algorithm = target_run_algorithm_imp; /* Sanity-check MMU support ... stub in what we must, to help * implement it in stages, but warn if we need to do so. */ if (type->mmu) { if (type->write_phys_memory == NULL) { LOG_ERROR("type '%s' is missing %s", type->name, "write_phys_memory"); type->write_phys_memory = err_write_phys_memory; } if (type->read_phys_memory == NULL) { LOG_ERROR("type '%s' is missing %s", type->name, "read_phys_memory"); type->read_phys_memory = err_read_phys_memory; } if (type->virt2phys == NULL) { LOG_ERROR("type '%s' is missing %s", type->name, "virt2phys"); type->virt2phys = identity_virt2phys; } /* Make sure no-MMU targets all behave the same: make no * distinction between physical and virtual addresses, and * ensure that virt2phys() is always an identity mapping. */ } else { if (type->write_phys_memory || type->read_phys_memory || type->virt2phys) LOG_WARNING("type '%s' has broken MMU hooks", type->name); type->mmu = no_mmu; type->write_phys_memory = type->write_memory; type->read_phys_memory = type->read_memory; type->virt2phys = identity_virt2phys; } } if (all_targets) { if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK) return retval; if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK) return retval; } return ERROR_OK; } int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv) { struct target_event_callback **callbacks_p = &target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(struct target_event_callback)); (*callbacks_p)->callback = callback; (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv) { struct target_timer_callback **callbacks_p = &target_timer_callbacks; struct timeval now; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(struct target_timer_callback)); (*callbacks_p)->callback = callback; (*callbacks_p)->periodic = periodic; (*callbacks_p)->time_ms = time_ms; gettimeofday(&now, NULL); (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000); if ((*callbacks_p)->when.tv_usec > 1000000) { (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000; (*callbacks_p)->when.tv_sec += 1; } (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv) { struct target_event_callback **p = &target_event_callbacks; struct target_event_callback *c = target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { struct target_event_callback *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_unregister_timer_callback(int (*callback)(void *priv), void *priv) { struct target_timer_callback **p = &target_timer_callbacks; struct target_timer_callback *c = target_timer_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { struct target_timer_callback *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_call_event_callbacks(struct target *target, enum target_event event) { struct target_event_callback *callback = target_event_callbacks; struct target_event_callback *next_callback; if (event == TARGET_EVENT_HALTED) { /* execute early halted first */ target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT); } LOG_DEBUG("target event %i (%s)", event, Jim_Nvp_value2name_simple(nvp_target_event, event)->name); target_handle_event(target, event); while (callback) { next_callback = callback->next; callback->callback(target, event, callback->priv); callback = next_callback; } return ERROR_OK; } static int target_timer_callback_periodic_restart( struct target_timer_callback *cb, struct timeval *now) { int time_ms = cb->time_ms; cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); cb->when.tv_sec = now->tv_sec + time_ms / 1000; if (cb->when.tv_usec > 1000000) { cb->when.tv_usec = cb->when.tv_usec - 1000000; cb->when.tv_sec += 1; } return ERROR_OK; } static int target_call_timer_callback(struct target_timer_callback *cb, struct timeval *now) { cb->callback(cb->priv); if (cb->periodic) return target_timer_callback_periodic_restart(cb, now); return target_unregister_timer_callback(cb->callback, cb->priv); } static int target_call_timer_callbacks_check_time(int checktime) { keep_alive(); struct timeval now; gettimeofday(&now, NULL); struct target_timer_callback *callback = target_timer_callbacks; while (callback) { // cleaning up may unregister and free this callback struct target_timer_callback *next_callback = callback->next; bool call_it = callback->callback && ((!checktime && callback->periodic) || now.tv_sec > callback->when.tv_sec || (now.tv_sec == callback->when.tv_sec && now.tv_usec >= callback->when.tv_usec)); if (call_it) { int retval = target_call_timer_callback(callback, &now); if (retval != ERROR_OK) return retval; } callback = next_callback; } return ERROR_OK; } int target_call_timer_callbacks(void) { return target_call_timer_callbacks_check_time(1); } /* invoke periodic callbacks immediately */ int target_call_timer_callbacks_now(void) { return target_call_timer_callbacks_check_time(0); } int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area) { struct working_area *c = target->working_areas; struct working_area *new_wa = NULL; /* Reevaluate working area address based on MMU state*/ if (target->working_areas == NULL) { int retval; int enabled; retval = target->type->mmu(target, &enabled); if (retval != ERROR_OK) { return retval; } if (!enabled) { if (target->working_area_phys_spec) { LOG_DEBUG("MMU disabled, using physical " "address for working memory 0x%08x", (unsigned)target->working_area_phys); target->working_area = target->working_area_phys; } else { LOG_ERROR("No working memory available. " "Specify -work-area-phys to target."); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } else { if (target->working_area_virt_spec) { LOG_DEBUG("MMU enabled, using virtual " "address for working memory 0x%08x", (unsigned)target->working_area_virt); target->working_area = target->working_area_virt; } else { LOG_ERROR("No working memory available. " "Specify -work-area-virt to target."); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } } /* only allocate multiples of 4 byte */ if (size % 4) { LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size))); size = (size + 3) & (~3); } /* see if there's already a matching working area */ while (c) { if ((c->free) && (c->size == size)) { new_wa = c; break; } c = c->next; } /* if not, allocate a new one */ if (!new_wa) { struct working_area **p = &target->working_areas; uint32_t first_free = target->working_area; uint32_t free_size = target->working_area_size; c = target->working_areas; while (c) { first_free += c->size; free_size -= c->size; p = &c->next; c = c->next; } if (free_size < size) { LOG_WARNING("not enough working area available(requested %u, free %u)", (unsigned)(size), (unsigned)(free_size)); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free); new_wa = malloc(sizeof(struct working_area)); new_wa->next = NULL; new_wa->size = size; new_wa->address = first_free; if (target->backup_working_area) { int retval; new_wa->backup = malloc(new_wa->size); if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK) { free(new_wa->backup); free(new_wa); return retval; } } else { new_wa->backup = NULL; } /* put new entry in list */ *p = new_wa; } /* mark as used, and return the new (reused) area */ new_wa->free = 0; *area = new_wa; /* user pointer */ new_wa->user = area; return ERROR_OK; } int target_free_working_area_restore(struct target *target, struct working_area *area, int restore) { if (area->free) return ERROR_OK; if (restore && target->backup_working_area) { int retval; if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK) return retval; } area->free = 1; /* mark user pointer invalid */ *area->user = NULL; area->user = NULL; return ERROR_OK; } int target_free_working_area(struct target *target, struct working_area *area) { return target_free_working_area_restore(target, area, 1); } /* free resources and restore memory, if restoring memory fails, * free up resources anyway */ void target_free_all_working_areas_restore(struct target *target, int restore) { struct working_area *c = target->working_areas; while (c) { struct working_area *next = c->next; target_free_working_area_restore(target, c, restore); if (c->backup) free(c->backup); free(c); c = next; } target->working_areas = NULL; } void target_free_all_working_areas(struct target *target) { target_free_all_working_areas_restore(target, 1); } int target_arch_state(struct target *target) { int retval; if (target == NULL) { LOG_USER("No target has been configured"); return ERROR_OK; } LOG_USER("target state: %s", target_state_name( target )); if (target->state != TARGET_HALTED) return ERROR_OK; retval = target->type->arch_state(target); return retval; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer) { int retval; LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", (int)size, (unsigned)address); if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (size == 0) { return ERROR_OK; } if ((address + size - 1) < address) { /* GDB can request this when e.g. PC is 0xfffffffc*/ LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)", (unsigned)address, (unsigned)size); return ERROR_FAIL; } if (((address % 2) == 0) && (size == 2)) { return target_write_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { uint32_t unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); /* use bulk writes above a certain limit. This may have to be changed */ if (aligned > 128) { if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK) return retval; } else { if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; } buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer) { int retval; LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", (int)size, (unsigned)address); if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (size == 0) { return ERROR_OK; } if ((address + size - 1) < address) { /* GDB can request this when e.g. PC is 0xfffffffc*/ LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")", address, size); return ERROR_FAIL; } if (((address % 2) == 0) && (size == 2)) { return target_read_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { uint32_t unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; buffer += aligned; address += aligned; size -= aligned; } /*prevent byte access when possible (avoid AHB access limitations in some cases)*/ if(size >=2) { int aligned = size - (size%2); retval = target_read_memory(target, address, 2, aligned / 2, buffer); if (retval != ERROR_OK) return retval; buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc) { uint8_t *buffer; int retval; uint32_t i; uint32_t checksum = 0; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if ((retval = target->type->checksum_memory(target, address, size, &checksum)) != ERROR_OK) { buffer = malloc(size); if (buffer == NULL) { LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size); return ERROR_INVALID_ARGUMENTS; } retval = target_read_buffer(target, address, size, buffer); if (retval != ERROR_OK) { free(buffer); return retval; } /* convert to target endianess */ for (i = 0; i < (size/sizeof(uint32_t)); i++) { uint32_t target_data; target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]); target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data); } retval = image_calculate_checksum(buffer, size, &checksum); free(buffer); } *crc = checksum; return retval; } int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank) { int retval; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (target->type->blank_check_memory == 0) return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; retval = target->type->blank_check_memory(target, address, size, blank); return retval; } int target_read_u32(struct target *target, uint32_t address, uint32_t *value) { uint8_t value_buf[4]; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } int retval = target_read_memory(target, address, 4, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u32(target, value_buf); LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8" PRIx32 " failed", address); } return retval; } int target_read_u16(struct target *target, uint32_t address, uint16_t *value) { uint8_t value_buf[2]; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } int retval = target_read_memory(target, address, 2, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u16(target, value_buf); LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8" PRIx32 " failed", address); } return retval; } int target_read_u8(struct target *target, uint32_t address, uint8_t *value) { int retval = target_read_memory(target, address, 1, 1, value); if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (retval == ERROR_OK) { LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8" PRIx32 " failed", address); } return retval; } int target_write_u32(struct target *target, uint32_t address, uint32_t value) { int retval; uint8_t value_buf[4]; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "", address, value); target_buffer_set_u32(target, value_buf, value); if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_write_u16(struct target *target, uint32_t address, uint16_t value) { int retval; uint8_t value_buf[2]; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x", address, value); target_buffer_set_u16(target, value_buf, value); if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_write_u8(struct target *target, uint32_t address, uint8_t value) { int retval; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x", address, value); if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } COMMAND_HANDLER(handle_targets_command) { struct target *target = all_targets; if (CMD_ARGC == 1) { target = get_target(CMD_ARGV[0]); if (target == NULL) { command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]); goto DumpTargets; } if (!target->tap->enabled) { command_print(CMD_CTX,"Target: TAP %s is disabled, " "can't be the current target\n", target->tap->dotted_name); return ERROR_FAIL; } CMD_CTX->current_target = target->target_number; return ERROR_OK; } DumpTargets: target = all_targets; command_print(CMD_CTX, " TargetName Type Endian TapName State "); command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------"); while (target) { const char *state; char marker = ' '; if (target->tap->enabled) state = target_state_name( target ); else state = "tap-disabled"; if (CMD_CTX->current_target == target->target_number) marker = '*'; /* keep columns lined up to match the headers above */ command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s", target->target_number, marker, target->cmd_name, target_get_name(target), Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness)->name, target->tap->dotted_name, state); target = target->next; } return ERROR_OK; } /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */ static int powerDropout; static int srstAsserted; static int runPowerRestore; static int runPowerDropout; static int runSrstAsserted; static int runSrstDeasserted; static int sense_handler(void) { static int prevSrstAsserted = 0; static int prevPowerdropout = 0; int retval; if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK) return retval; int powerRestored; powerRestored = prevPowerdropout && !powerDropout; if (powerRestored) { runPowerRestore = 1; } long long current = timeval_ms(); static long long lastPower = 0; int waitMore = lastPower + 2000 > current; if (powerDropout && !waitMore) { runPowerDropout = 1; lastPower = current; } if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK) return retval; int srstDeasserted; srstDeasserted = prevSrstAsserted && !srstAsserted; static long long lastSrst = 0; waitMore = lastSrst + 2000 > current; if (srstDeasserted && !waitMore) { runSrstDeasserted = 1; lastSrst = current; } if (!prevSrstAsserted && srstAsserted) { runSrstAsserted = 1; } prevSrstAsserted = srstAsserted; prevPowerdropout = powerDropout; if (srstDeasserted || powerRestored) { /* Other than logging the event we can't do anything here. * Issuing a reset is a particularly bad idea as we might * be inside a reset already. */ } return ERROR_OK; } static void target_call_event_callbacks_all(enum target_event e) { struct target *target; target = all_targets; while (target) { target_call_event_callbacks(target, e); target = target->next; } } /* process target state changes */ int handle_target(void *priv) { int retval = ERROR_OK; /* we do not want to recurse here... */ static int recursive = 0; if (! recursive) { recursive = 1; sense_handler(); /* danger! running these procedures can trigger srst assertions and power dropouts. * We need to avoid an infinite loop/recursion here and we do that by * clearing the flags after running these events. */ int did_something = 0; if (runSrstAsserted) { target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT); Jim_Eval(interp, "srst_asserted"); did_something = 1; } if (runSrstDeasserted) { Jim_Eval(interp, "srst_deasserted"); did_something = 1; } if (runPowerDropout) { target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT); Jim_Eval(interp, "power_dropout"); did_something = 1; } if (runPowerRestore) { Jim_Eval(interp, "power_restore"); did_something = 1; } if (did_something) { /* clear detect flags */ sense_handler(); } /* clear action flags */ runSrstAsserted = 0; runSrstDeasserted = 0; runPowerRestore = 0; runPowerDropout = 0; recursive = 0; } /* Poll targets for state changes unless that's globally disabled. * Skip targets that are currently disabled. */ for (struct target *target = all_targets; is_jtag_poll_safe() && target; target = target->next) { if (!target->tap->enabled) continue; /* only poll target if we've got power and srst isn't asserted */ if (!powerDropout && !srstAsserted) { /* polling may fail silently until the target has been examined */ if ((retval = target_poll(target)) != ERROR_OK) { target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT); return retval; } } } return retval; } COMMAND_HANDLER(handle_reg_command) { struct target *target; struct reg *reg = NULL; unsigned count = 0; char *value; LOG_DEBUG("-"); target = get_current_target(CMD_CTX); /* list all available registers for the current target */ if (CMD_ARGC == 0) { struct reg_cache *cache = target->reg_cache; count = 0; while (cache) { unsigned i; command_print(CMD_CTX, "===== %s", cache->name); for (i = 0, reg = cache->reg_list; i < cache->num_regs; i++, reg++, count++) { /* only print cached values if they are valid */ if (reg->valid) { value = buf_to_str(reg->value, reg->size, 16); command_print(CMD_CTX, "(%i) %s (/%" PRIu32 "): 0x%s%s", count, reg->name, reg->size, value, reg->dirty ? " (dirty)" : ""); free(value); } else { command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")", count, reg->name, reg->size) ; } } cache = cache->next; } return ERROR_OK; } /* access a single register by its ordinal number */ if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) { unsigned num; COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num); struct reg_cache *cache = target->reg_cache; count = 0; while (cache) { unsigned i; for (i = 0; i < cache->num_regs; i++) { if (count++ == num) { reg = &cache->reg_list[i]; break; } } if (reg) break; cache = cache->next; } if (!reg) { command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1); return ERROR_OK; } } else /* access a single register by its name */ { reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1); if (!reg) { command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]); return ERROR_OK; } } /* display a register */ if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9')))) { if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0)) reg->valid = 0; if (reg->valid == 0) { reg->type->get(reg); } value = buf_to_str(reg->value, reg->size, 16); command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value); free(value); return ERROR_OK; } /* set register value */ if (CMD_ARGC == 2) { uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8)); str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0); reg->type->set(reg, buf); value = buf_to_str(reg->value, reg->size, 16); command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value); free(value); free(buf); return ERROR_OK; } command_print(CMD_CTX, "usage: reg <#|name> [value]"); return ERROR_OK; } COMMAND_HANDLER(handle_poll_command) { int retval = ERROR_OK; struct target *target = get_current_target(CMD_CTX); if (CMD_ARGC == 0) { command_print(CMD_CTX, "background polling: %s", jtag_poll_get_enabled() ? "on" : "off"); command_print(CMD_CTX, "TAP: %s (%s)", target->tap->dotted_name, target->tap->enabled ? "enabled" : "disabled"); if (!target->tap->enabled) return ERROR_OK; if ((retval = target_poll(target)) != ERROR_OK) return retval; if ((retval = target_arch_state(target)) != ERROR_OK) return retval; } else if (CMD_ARGC == 1) { bool enable; COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable); jtag_poll_set_enabled(enable); } else { return ERROR_COMMAND_SYNTAX_ERROR; } return retval; } COMMAND_HANDLER(handle_wait_halt_command) { if (CMD_ARGC > 1) return ERROR_COMMAND_SYNTAX_ERROR; unsigned ms = 5000; if (1 == CMD_ARGC) { int retval = parse_uint(CMD_ARGV[0], &ms); if (ERROR_OK != retval) { command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME); return ERROR_COMMAND_SYNTAX_ERROR; } // convert seconds (given) to milliseconds (needed) ms *= 1000; } struct target *target = get_current_target(CMD_CTX); return target_wait_state(target, TARGET_HALTED, ms); } /* wait for target state to change. The trick here is to have a low * latency for short waits and not to suck up all the CPU time * on longer waits. * * After 500ms, keep_alive() is invoked */ int target_wait_state(struct target *target, enum target_state state, int ms) { int retval; long long then = 0, cur; int once = 1; for (;;) { if ((retval = target_poll(target)) != ERROR_OK) return retval; if (target->state == state) { break; } cur = timeval_ms(); if (once) { once = 0; then = timeval_ms(); LOG_DEBUG("waiting for target %s...", Jim_Nvp_value2name_simple(nvp_target_state,state)->name); } if (cur-then > 500) { keep_alive(); } if ((cur-then) > ms) { LOG_ERROR("timed out while waiting for target %s", Jim_Nvp_value2name_simple(nvp_target_state,state)->name); return ERROR_FAIL; } } return ERROR_OK; } COMMAND_HANDLER(handle_halt_command) { LOG_DEBUG("-"); struct target *target = get_current_target(CMD_CTX); int retval = target_halt(target); if (ERROR_OK != retval) return retval; if (CMD_ARGC == 1) { unsigned wait; retval = parse_uint(CMD_ARGV[0], &wait); if (ERROR_OK != retval) return ERROR_COMMAND_SYNTAX_ERROR; if (!wait) return ERROR_OK; } return CALL_COMMAND_HANDLER(handle_wait_halt_command); } COMMAND_HANDLER(handle_soft_reset_halt_command) { struct target *target = get_current_target(CMD_CTX); LOG_USER("requesting target halt and executing a soft reset"); target->type->soft_reset_halt(target); return ERROR_OK; } COMMAND_HANDLER(handle_reset_command) { if (CMD_ARGC > 1) return ERROR_COMMAND_SYNTAX_ERROR; enum target_reset_mode reset_mode = RESET_RUN; if (CMD_ARGC == 1) { const Jim_Nvp *n; n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]); if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) { return ERROR_COMMAND_SYNTAX_ERROR; } reset_mode = n->value; } /* reset *all* targets */ return target_process_reset(CMD_CTX, reset_mode); } COMMAND_HANDLER(handle_resume_command) { int current = 1; if (CMD_ARGC > 1) return ERROR_COMMAND_SYNTAX_ERROR; struct target *target = get_current_target(CMD_CTX); target_handle_event(target, TARGET_EVENT_OLD_pre_resume); /* with no CMD_ARGV, resume from current pc, addr = 0, * with one arguments, addr = CMD_ARGV[0], * handle breakpoints, not debugging */ uint32_t addr = 0; if (CMD_ARGC == 1) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr); current = 0; } return target_resume(target, current, addr, 1, 0); } COMMAND_HANDLER(handle_step_command) { if (CMD_ARGC > 1) return ERROR_COMMAND_SYNTAX_ERROR; LOG_DEBUG("-"); /* with no CMD_ARGV, step from current pc, addr = 0, * with one argument addr = CMD_ARGV[0], * handle breakpoints, debugging */ uint32_t addr = 0; int current_pc = 1; if (CMD_ARGC == 1) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr); current_pc = 0; } struct target *target = get_current_target(CMD_CTX); return target->type->step(target, current_pc, addr, 1); } static void handle_md_output(struct command_context *cmd_ctx, struct target *target, uint32_t address, unsigned size, unsigned count, const uint8_t *buffer) { const unsigned line_bytecnt = 32; unsigned line_modulo = line_bytecnt / size; char output[line_bytecnt * 4 + 1]; unsigned output_len = 0; const char *value_fmt; switch (size) { case 4: value_fmt = "%8.8x "; break; case 2: value_fmt = "%4.2x "; break; case 1: value_fmt = "%2.2x "; break; default: LOG_ERROR("invalid memory read size: %u", size); exit(-1); } for (unsigned i = 0; i < count; i++) { if (i % line_modulo == 0) { output_len += snprintf(output + output_len, sizeof(output) - output_len, "0x%8.8x: ", (unsigned)(address + (i*size))); } uint32_t value = 0; const uint8_t *value_ptr = buffer + i * size; switch (size) { case 4: value = target_buffer_get_u32(target, value_ptr); break; case 2: value = target_buffer_get_u16(target, value_ptr); break; case 1: value = *value_ptr; } output_len += snprintf(output + output_len, sizeof(output) - output_len, value_fmt, value); if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) { command_print(cmd_ctx, "%s", output); output_len = 0; } } } COMMAND_HANDLER(handle_md_command) { if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; unsigned size = 0; switch (CMD_NAME[2]) { case 'w': size = 4; break; case 'h': size = 2; break; case 'b': size = 1; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } bool physical=strcmp(CMD_ARGV[0], "phys")==0; int (*fn)(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer); if (physical) { CMD_ARGC--; CMD_ARGV++; fn=target_read_phys_memory; } else { fn=target_read_memory; } if ((CMD_ARGC < 1) || (CMD_ARGC > 2)) { return ERROR_COMMAND_SYNTAX_ERROR; } uint32_t address; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address); unsigned count = 1; if (CMD_ARGC == 2) COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count); uint8_t *buffer = calloc(count, size); struct target *target = get_current_target(CMD_CTX); int retval = fn(target, address, size, count, buffer); if (ERROR_OK == retval) handle_md_output(CMD_CTX, target, address, size, count, buffer); free(buffer); return retval; } COMMAND_HANDLER(handle_mw_command) { if (CMD_ARGC < 2) { return ERROR_COMMAND_SYNTAX_ERROR; } bool physical=strcmp(CMD_ARGV[0], "phys")==0; int (*fn)(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer); if (physical) { CMD_ARGC--; CMD_ARGV++; fn=target_write_phys_memory; } else { fn=target_write_memory; } if ((CMD_ARGC < 2) || (CMD_ARGC > 3)) return ERROR_COMMAND_SYNTAX_ERROR; uint32_t address; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address); uint32_t value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); unsigned count = 1; if (CMD_ARGC == 3) COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count); struct target *target = get_current_target(CMD_CTX); unsigned wordsize; uint8_t value_buf[4]; switch (CMD_NAME[2]) { case 'w': wordsize = 4; target_buffer_set_u32(target, value_buf, value); break; case 'h': wordsize = 2; target_buffer_set_u16(target, value_buf, value); break; case 'b': wordsize = 1; value_buf[0] = value; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } for (unsigned i = 0; i < count; i++) { int retval = fn(target, address + i * wordsize, wordsize, 1, value_buf); if (ERROR_OK != retval) return retval; keep_alive(); } return ERROR_OK; } static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image, uint32_t *min_address, uint32_t *max_address) { if (CMD_ARGC < 1 || CMD_ARGC > 5) return ERROR_COMMAND_SYNTAX_ERROR; /* a base address isn't always necessary, * default to 0x0 (i.e. don't relocate) */ if (CMD_ARGC >= 2) { uint32_t addr; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr); image->base_address = addr; image->base_address_set = 1; } else image->base_address_set = 0; image->start_address_set = 0; if (CMD_ARGC >= 4) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address); } if (CMD_ARGC == 5) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address); // use size (given) to find max (required) *max_address += *min_address; } if (*min_address > *max_address) return ERROR_COMMAND_SYNTAX_ERROR; return ERROR_OK; } COMMAND_HANDLER(handle_load_image_command) { uint8_t *buffer; size_t buf_cnt; uint32_t image_size; uint32_t min_address = 0; uint32_t max_address = 0xffffffff; int i; struct image image; int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV, &image, &min_address, &max_address); if (ERROR_OK != retval) return retval; struct target *target = get_current_target(CMD_CTX); struct duration bench; duration_start(&bench); if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK) { return ERROR_OK; } image_size = 0x0; retval = ERROR_OK; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(CMD_CTX, "error allocating buffer for section (%d bytes)", (int)(image.sections[i].size)); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } uint32_t offset = 0; uint32_t length = buf_cnt; /* DANGER!!! beware of unsigned comparision here!!! */ if ((image.sections[i].base_address + buf_cnt >= min_address)&& (image.sections[i].base_address < max_address)) { if (image.sections[i].base_address < min_address) { /* clip addresses below */ offset += min_address-image.sections[i].base_address; length -= offset; } if (image.sections[i].base_address + buf_cnt > max_address) { length -= (image.sections[i].base_address + buf_cnt)-max_address; } if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK) { free(buffer); break; } image_size += length; command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "", (unsigned int)length, image.sections[i].base_address + offset); } free(buffer); } if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) { command_print(CMD_CTX, "downloaded %" PRIu32 " bytes " "in %fs (%0.3f kb/s)", image_size, duration_elapsed(&bench), duration_kbps(&bench, image_size)); } image_close(&image); return retval; } COMMAND_HANDLER(handle_dump_image_command) { struct fileio fileio; uint8_t buffer[560]; int retvaltemp; struct target *target = get_current_target(CMD_CTX); if (CMD_ARGC != 3) { command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>"); return ERROR_OK; } uint32_t address; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address); uint32_t size; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size); if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK) { return ERROR_OK; } struct duration bench; duration_start(&bench); int retval = ERROR_OK; while (size > 0) { size_t size_written; uint32_t this_run_size = (size > 560) ? 560 : size; retval = target_read_buffer(target, address, this_run_size, buffer); if (retval != ERROR_OK) { break; } retval = fileio_write(&fileio, this_run_size, buffer, &size_written); if (retval != ERROR_OK) { break; } size -= this_run_size; address += this_run_size; } if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK) return retvaltemp; if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) { command_print(CMD_CTX, "dumped %zu bytes in %fs (%0.3f kb/s)", fileio.size, duration_elapsed(&bench), duration_kbps(&bench, fileio.size)); } return retval; } static COMMAND_HELPER(handle_verify_image_command_internal, int verify) { uint8_t *buffer; size_t buf_cnt; uint32_t image_size; int i; int retval; uint32_t checksum = 0; uint32_t mem_checksum = 0; struct image image; struct target *target = get_current_target(CMD_CTX); if (CMD_ARGC < 1) { return ERROR_COMMAND_SYNTAX_ERROR; } if (!target) { LOG_ERROR("no target selected"); return ERROR_FAIL; } struct duration bench; duration_start(&bench); if (CMD_ARGC >= 2) { uint32_t addr; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr); image.base_address = addr; image.base_address_set = 1; } else { image.base_address_set = 0; image.base_address = 0x0; } image.start_address_set = 0; if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK) { return retval; } image_size = 0x0; retval = ERROR_OK; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(CMD_CTX, "error allocating buffer for section (%d bytes)", (int)(image.sections[i].size)); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } if (verify) { /* calculate checksum of image */ image_calculate_checksum(buffer, buf_cnt, &checksum); retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum); if (retval != ERROR_OK) { free(buffer); break; } if (checksum != mem_checksum) { /* failed crc checksum, fall back to a binary compare */ uint8_t *data; command_print(CMD_CTX, "checksum mismatch - attempting binary compare"); data = (uint8_t*)malloc(buf_cnt); /* Can we use 32bit word accesses? */ int size = 1; int count = buf_cnt; if ((count % 4) == 0) { size *= 4; count /= 4; } retval = target_read_memory(target, image.sections[i].base_address, size, count, data); if (retval == ERROR_OK) { uint32_t t; for (t = 0; t < buf_cnt; t++) { if (data[t] != buffer[t]) { command_print(CMD_CTX, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", (unsigned)(t + image.sections[i].base_address), data[t], buffer[t]); free(data); free(buffer); retval = ERROR_FAIL; goto done; } if ((t%16384) == 0) { keep_alive(); } } } free(data); } } else { command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx", image.sections[i].base_address, buf_cnt); } free(buffer); image_size += buf_cnt; } done: if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) { command_print(CMD_CTX, "verified %" PRIu32 " bytes " "in %fs (%0.3f kb/s)", image_size, duration_elapsed(&bench), duration_kbps(&bench, image_size)); } image_close(&image); return retval; } COMMAND_HANDLER(handle_verify_image_command) { return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1); } COMMAND_HANDLER(handle_test_image_command) { return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0); } static int handle_bp_command_list(struct command_context *cmd_ctx) { struct target *target = get_current_target(cmd_ctx); struct breakpoint *breakpoint = target->breakpoints; while (breakpoint) { if (breakpoint->type == BKPT_SOFT) { char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16); command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf); free(buf); } else { command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set); } breakpoint = breakpoint->next; } return ERROR_OK; } static int handle_bp_command_set(struct command_context *cmd_ctx, uint32_t addr, uint32_t length, int hw) { struct target *target = get_current_target(cmd_ctx); int retval = breakpoint_add(target, addr, length, hw); if (ERROR_OK == retval) command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr); else LOG_ERROR("Failure setting breakpoint"); return retval; } COMMAND_HANDLER(handle_bp_command) { if (CMD_ARGC == 0) return handle_bp_command_list(CMD_CTX); if (CMD_ARGC < 2 || CMD_ARGC > 3) { command_print(CMD_CTX, "usage: bp <address> <length> ['hw']"); return ERROR_COMMAND_SYNTAX_ERROR; } uint32_t addr; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr); uint32_t length; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length); int hw = BKPT_SOFT; if (CMD_ARGC == 3) { if (strcmp(CMD_ARGV[2], "hw") == 0) hw = BKPT_HARD; else return ERROR_COMMAND_SYNTAX_ERROR; } return handle_bp_command_set(CMD_CTX, addr, length, hw); } COMMAND_HANDLER(handle_rbp_command) { if (CMD_ARGC != 1) return ERROR_COMMAND_SYNTAX_ERROR; uint32_t addr; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr); struct target *target = get_current_target(CMD_CTX); breakpoint_remove(target, addr); return ERROR_OK; } COMMAND_HANDLER(handle_wp_command) { struct target *target = get_current_target(CMD_CTX); if (CMD_ARGC == 0) { struct watchpoint *watchpoint = target->watchpoints; while (watchpoint) { command_print(CMD_CTX, "address: 0x%8.8" PRIx32 ", len: 0x%8.8" PRIx32 ", r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32, watchpoint->address, watchpoint->length, (int)watchpoint->rw, watchpoint->value, watchpoint->mask); watchpoint = watchpoint->next; } return ERROR_OK; } enum watchpoint_rw type = WPT_ACCESS; uint32_t addr = 0; uint32_t length = 0; uint32_t data_value = 0x0; uint32_t data_mask = 0xffffffff; switch (CMD_ARGC) { case 5: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask); // fall through case 4: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value); // fall through case 3: switch (CMD_ARGV[2][0]) { case 'r': type = WPT_READ; break; case 'w': type = WPT_WRITE; break; case 'a': type = WPT_ACCESS; break; default: LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]); return ERROR_COMMAND_SYNTAX_ERROR; } // fall through case 2: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr); break; default: command_print(CMD_CTX, "usage: wp [address length " "[(r|w|a) [value [mask]]]]"); return ERROR_COMMAND_SYNTAX_ERROR; } int retval = watchpoint_add(target, addr, length, type, data_value, data_mask); if (ERROR_OK != retval) LOG_ERROR("Failure setting watchpoints"); return retval; } COMMAND_HANDLER(handle_rwp_command) { if (CMD_ARGC != 1) return ERROR_COMMAND_SYNTAX_ERROR; uint32_t addr; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr); struct target *target = get_current_target(CMD_CTX); watchpoint_remove(target, addr); return ERROR_OK; } /** * Translate a virtual address to a physical address. * * The low-level target implementation must have logged a detailed error * which is forwarded to telnet/GDB session. */ COMMAND_HANDLER(handle_virt2phys_command) { if (CMD_ARGC != 1) return ERROR_COMMAND_SYNTAX_ERROR; uint32_t va; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va); uint32_t pa; struct target *target = get_current_target(CMD_CTX); int retval = target->type->virt2phys(target, va, &pa); if (retval == ERROR_OK) command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa); return retval; } static void writeData(FILE *f, const void *data, size_t len) { size_t written = fwrite(data, 1, len, f); if (written != len) LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno)); } static void writeLong(FILE *f, int l) { int i; for (i = 0; i < 4; i++) { char c = (l >> (i*8))&0xff; writeData(f, &c, 1); } } static void writeString(FILE *f, char *s) { writeData(f, s, strlen(s)); } /* Dump a gmon.out histogram file. */ static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename) { uint32_t i; FILE *f = fopen(filename, "w"); if (f == NULL) return; writeString(f, "gmon"); writeLong(f, 0x00000001); /* Version */ writeLong(f, 0); /* padding */ writeLong(f, 0); /* padding */ writeLong(f, 0); /* padding */ uint8_t zero = 0; /* GMON_TAG_TIME_HIST */ writeData(f, &zero, 1); /* figure out bucket size */ uint32_t min = samples[0]; uint32_t max = samples[0]; for (i = 0; i < sampleNum; i++) { if (min > samples[i]) { min = samples[i]; } if (max < samples[i]) { max = samples[i]; } } int addressSpace = (max-min + 1); static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */ uint32_t length = addressSpace; if (length > maxBuckets) { length = maxBuckets; } int *buckets = malloc(sizeof(int)*length); if (buckets == NULL) { fclose(f); return; } memset(buckets, 0, sizeof(int)*length); for (i = 0; i < sampleNum;i++) { uint32_t address = samples[i]; long long a = address-min; long long b = length-1; long long c = addressSpace-1; int index = (a*b)/c; /* danger!!!! int32 overflows */ buckets[index]++; } /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */ writeLong(f, min); /* low_pc */ writeLong(f, max); /* high_pc */ writeLong(f, length); /* # of samples */ writeLong(f, 64000000); /* 64MHz */ writeString(f, "seconds"); for (i = 0; i < (15-strlen("seconds")); i++) writeData(f, &zero, 1); writeString(f, "s"); /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */ char *data = malloc(2*length); if (data != NULL) { for (i = 0; i < length;i++) { int val; val = buckets[i]; if (val > 65535) { val = 65535; } data[i*2]=val&0xff; data[i*2 + 1]=(val >> 8)&0xff; } free(buckets); writeData(f, data, length * 2); free(data); } else { free(buckets); } fclose(f); } /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */ COMMAND_HANDLER(handle_profile_command) { struct target *target = get_current_target(CMD_CTX); struct timeval timeout, now; gettimeofday(&timeout, NULL); if (CMD_ARGC != 2) { return ERROR_COMMAND_SYNTAX_ERROR; } unsigned offset; COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset); timeval_add_time(&timeout, offset, 0); command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can..."); static const int maxSample = 10000; uint32_t *samples = malloc(sizeof(uint32_t)*maxSample); if (samples == NULL) return ERROR_OK; int numSamples = 0; /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */ struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1); for (;;) { int retval; target_poll(target); if (target->state == TARGET_HALTED) { uint32_t t=*((uint32_t *)reg->value); samples[numSamples++]=t; retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */ target_poll(target); alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */ } else if (target->state == TARGET_RUNNING) { /* We want to quickly sample the PC. */ if ((retval = target_halt(target)) != ERROR_OK) { free(samples); return retval; } } else { command_print(CMD_CTX, "Target not halted or running"); retval = ERROR_OK; break; } if (retval != ERROR_OK) { break; } gettimeofday(&now, NULL); if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) { command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples); if ((retval = target_poll(target)) != ERROR_OK) { free(samples); return retval; } if (target->state == TARGET_HALTED) { target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */ } if ((retval = target_poll(target)) != ERROR_OK) { free(samples); return retval; } writeGmon(samples, numSamples, CMD_ARGV[1]); command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]); break; } } free(samples); return ERROR_OK; } static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val) { char *namebuf; Jim_Obj *nameObjPtr, *valObjPtr; int result; namebuf = alloc_printf("%s(%d)", varname, idx); if (!namebuf) return JIM_ERR; nameObjPtr = Jim_NewStringObj(interp, namebuf, -1); valObjPtr = Jim_NewIntObj(interp, val); if (!nameObjPtr || !valObjPtr) { free(namebuf); return JIM_ERR; } Jim_IncrRefCount(nameObjPtr); Jim_IncrRefCount(valObjPtr); result = Jim_SetVariable(interp, nameObjPtr, valObjPtr); Jim_DecrRefCount(interp, nameObjPtr); Jim_DecrRefCount(interp, valObjPtr); free(namebuf); /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */ return result; } static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { struct command_context *context; struct target *target; context = Jim_GetAssocData(interp, "context"); if (context == NULL) { LOG_ERROR("mem2array: no command context"); return JIM_ERR; } target = get_current_target(context); if (target == NULL) { LOG_ERROR("mem2array: no current target"); return JIM_ERR; } return target_mem2array(interp, target, argc-1, argv + 1); } static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv) { long l; uint32_t width; int len; uint32_t addr; uint32_t count; uint32_t v; const char *varname; int n, e, retval; uint32_t i; /* argv[1] = name of array to receive the data * argv[2] = desired width * argv[3] = memory address * argv[4] = count of times to read */ if (argc != 4) { Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems"); return JIM_ERR; } varname = Jim_GetString(argv[0], &len); /* given "foo" get space for worse case "foo(%d)" .. add 20 */ e = Jim_GetLong(interp, argv[1], &l); width = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[2], &l); addr = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[3], &l); len = l; if (e != JIM_OK) { return e; } switch (width) { case 8: width = 1; break; case 16: width = 2; break; case 32: width = 4; break; default: Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL); return JIM_ERR; } if (len == 0) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL); return JIM_ERR; } if ((addr + (len * width)) < addr) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL); return JIM_ERR; } /* absurd transfer size? */ if (len > 65536) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL); return JIM_ERR; } if ((width == 1) || ((width == 2) && ((addr & 1) == 0)) || ((width == 4) && ((addr & 3) == 0))) { /* all is well */ } else { char buf[100]; Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads", addr, width); Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL); return JIM_ERR; } /* Transfer loop */ /* index counter */ n = 0; size_t buffersize = 4096; uint8_t *buffer = malloc(buffersize); if (buffer == NULL) return JIM_ERR; /* assume ok */ e = JIM_OK; while (len) { /* Slurp... in buffer size chunks */ count = len; /* in objects.. */ if (count > (buffersize/width)) { count = (buffersize/width); } retval = target_read_memory(target, addr, width, count, buffer); if (retval != ERROR_OK) { /* BOO !*/ LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", (unsigned int)addr, (int)width, (int)count); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL); e = JIM_ERR; len = 0; } else { v = 0; /* shut up gcc */ for (i = 0 ;i < count ;i++, n++) { switch (width) { case 4: v = target_buffer_get_u32(target, &buffer[i*width]); break; case 2: v = target_buffer_get_u16(target, &buffer[i*width]); break; case 1: v = buffer[i] & 0x0ff; break; } new_int_array_element(interp, varname, n, v); } len -= count; } } free(buffer); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); return JIM_OK; } static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val) { char *namebuf; Jim_Obj *nameObjPtr, *valObjPtr; int result; long l; namebuf = alloc_printf("%s(%d)", varname, idx); if (!namebuf) return JIM_ERR; nameObjPtr = Jim_NewStringObj(interp, namebuf, -1); if (!nameObjPtr) { free(namebuf); return JIM_ERR; } Jim_IncrRefCount(nameObjPtr); valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG); Jim_DecrRefCount(interp, nameObjPtr); free(namebuf); if (valObjPtr == NULL) return JIM_ERR; result = Jim_GetLong(interp, valObjPtr, &l); /* printf("%s(%d) => 0%08x\n", varname, idx, val); */ *val = l; return result; } static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { struct command_context *context; struct target *target; context = Jim_GetAssocData(interp, "context"); if (context == NULL) { LOG_ERROR("array2mem: no command context"); return JIM_ERR; } target = get_current_target(context); if (target == NULL) { LOG_ERROR("array2mem: no current target"); return JIM_ERR; } return target_array2mem(interp,target, argc-1, argv + 1); } static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv) { long l; uint32_t width; int len; uint32_t addr; uint32_t count; uint32_t v; const char *varname; int n, e, retval; uint32_t i; /* argv[1] = name of array to get the data * argv[2] = desired width * argv[3] = memory address * argv[4] = count to write */ if (argc != 4) { Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems"); return JIM_ERR; } varname = Jim_GetString(argv[0], &len); /* given "foo" get space for worse case "foo(%d)" .. add 20 */ e = Jim_GetLong(interp, argv[1], &l); width = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[2], &l); addr = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[3], &l); len = l; if (e != JIM_OK) { return e; } switch (width) { case 8: width = 1; break; case 16: width = 2; break; case 32: width = 4; break; default: Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL); return JIM_ERR; } if (len == 0) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL); return JIM_ERR; } if ((addr + (len * width)) < addr) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL); return JIM_ERR; } /* absurd transfer size? */ if (len > 65536) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL); return JIM_ERR; } if ((width == 1) || ((width == 2) && ((addr & 1) == 0)) || ((width == 4) && ((addr & 3) == 0))) { /* all is well */ } else { char buf[100]; Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", (unsigned int)addr, (int)width); Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL); return JIM_ERR; } /* Transfer loop */ /* index counter */ n = 0; /* assume ok */ e = JIM_OK; size_t buffersize = 4096; uint8_t *buffer = malloc(buffersize); if (buffer == NULL) return JIM_ERR; while (len) { /* Slurp... in buffer size chunks */ count = len; /* in objects.. */ if (count > (buffersize/width)) { count = (buffersize/width); } v = 0; /* shut up gcc */ for (i = 0 ;i < count ;i++, n++) { get_int_array_element(interp, varname, n, &v); switch (width) { case 4: target_buffer_set_u32(target, &buffer[i*width], v); break; case 2: target_buffer_set_u16(target, &buffer[i*width], v); break; case 1: buffer[i] = v & 0x0ff; break; } } len -= count; retval = target_write_memory(target, addr, width, count, buffer); if (retval != ERROR_OK) { /* BOO !*/ LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", (unsigned int)addr, (int)width, (int)count); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL); e = JIM_ERR; len = 0; } } free(buffer); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); return JIM_OK; } void target_all_handle_event(enum target_event e) { struct target *target; LOG_DEBUG("**all*targets: event: %d, %s", (int)e, Jim_Nvp_value2name_simple(nvp_target_event, e)->name); target = all_targets; while (target) { target_handle_event(target, e); target = target->next; } } /* FIX? should we propagate errors here rather than printing them * and continuing? */ void target_handle_event(struct target *target, enum target_event e) { struct target_event_action *teap; for (teap = target->event_action; teap != NULL; teap = teap->next) { if (teap->event == e) { LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s", target->target_number, target->cmd_name, target_get_name(target), e, Jim_Nvp_value2name_simple(nvp_target_event, e)->name, Jim_GetString(teap->body, NULL)); if (Jim_EvalObj(interp, teap->body) != JIM_OK) { Jim_PrintErrorMessage(interp); } } } } enum target_cfg_param { TCFG_TYPE, TCFG_EVENT, TCFG_WORK_AREA_VIRT, TCFG_WORK_AREA_PHYS, TCFG_WORK_AREA_SIZE, TCFG_WORK_AREA_BACKUP, TCFG_ENDIAN, TCFG_VARIANT, TCFG_CHAIN_POSITION, }; static Jim_Nvp nvp_config_opts[] = { { .name = "-type", .value = TCFG_TYPE }, { .name = "-event", .value = TCFG_EVENT }, { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT }, { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS }, { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE }, { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP }, { .name = "-endian" , .value = TCFG_ENDIAN }, { .name = "-variant", .value = TCFG_VARIANT }, { .name = "-chain-position", .value = TCFG_CHAIN_POSITION }, { .name = NULL, .value = -1 } }; static int target_configure(Jim_GetOptInfo *goi, struct target *target) { Jim_Nvp *n; Jim_Obj *o; jim_wide w; char *cp; int e; /* parse config or cget options ... */ while (goi->argc > 0) { Jim_SetEmptyResult(goi->interp); /* Jim_GetOpt_Debug(goi); */ if (target->type->target_jim_configure) { /* target defines a configure function */ /* target gets first dibs on parameters */ e = (*(target->type->target_jim_configure))(target, goi); if (e == JIM_OK) { /* more? */ continue; } if (e == JIM_ERR) { /* An error */ return e; } /* otherwise we 'continue' below */ } e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0); return e; } switch (n->value) { case TCFG_TYPE: /* not setable */ if (goi->isconfigure) { Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name); return JIM_ERR; } else { no_params: if (goi->argc != 0) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS"); return JIM_ERR; } } Jim_SetResultString(goi->interp, target_get_name(target), -1); /* loop for more */ break; case TCFG_EVENT: if (goi->argc == 0) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ..."); return JIM_ERR; } e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1); return e; } if (goi->isconfigure) { if (goi->argc != 1) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?"); return JIM_ERR; } } else { if (goi->argc != 0) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?"); return JIM_ERR; } } { struct target_event_action *teap; teap = target->event_action; /* replace existing? */ while (teap) { if (teap->event == (enum target_event)n->value) { break; } teap = teap->next; } if (goi->isconfigure) { bool replace = true; if (teap == NULL) { /* create new */ teap = calloc(1, sizeof(*teap)); replace = false; } teap->event = n->value; Jim_GetOpt_Obj(goi, &o); if (teap->body) { Jim_DecrRefCount(interp, teap->body); } teap->body = Jim_DuplicateObj(goi->interp, o); /* * FIXME: * Tcl/TK - "tk events" have a nice feature. * See the "BIND" command. * We should support that here. * You can specify %X and %Y in the event code. * The idea is: %T - target name. * The idea is: %N - target number * The idea is: %E - event name. */ Jim_IncrRefCount(teap->body); if (!replace) { /* add to head of event list */ teap->next = target->event_action; target->event_action = teap; } Jim_SetEmptyResult(goi->interp); } else { /* get */ if (teap == NULL) { Jim_SetEmptyResult(goi->interp); } else { Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body)); } } } /* loop for more */ break; case TCFG_WORK_AREA_VIRT: if (goi->isconfigure) { target_free_all_working_areas(target); e = Jim_GetOpt_Wide(goi, &w); if (e != JIM_OK) { return e; } target->working_area_virt = w; target->working_area_virt_spec = true; } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt)); /* loop for more */ break; case TCFG_WORK_AREA_PHYS: if (goi->isconfigure) { target_free_all_working_areas(target); e = Jim_GetOpt_Wide(goi, &w); if (e != JIM_OK) { return e; } target->working_area_phys = w; target->working_area_phys_spec = true; } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys)); /* loop for more */ break; case TCFG_WORK_AREA_SIZE: if (goi->isconfigure) { target_free_all_working_areas(target); e = Jim_GetOpt_Wide(goi, &w); if (e != JIM_OK) { return e; } target->working_area_size = w; } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size)); /* loop for more */ break; case TCFG_WORK_AREA_BACKUP: if (goi->isconfigure) { target_free_all_working_areas(target); e = Jim_GetOpt_Wide(goi, &w); if (e != JIM_OK) { return e; } /* make this exactly 1 or 0 */ target->backup_working_area = (!!w); } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area)); /* loop for more e*/ break; case TCFG_ENDIAN: if (goi->isconfigure) { e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1); return e; } target->endianness = n->value; } else { if (goi->argc != 0) { goto no_params; } } n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness); if (n->name == NULL) { target->endianness = TARGET_LITTLE_ENDIAN; n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness); } Jim_SetResultString(goi->interp, n->name, -1); /* loop for more */ break; case TCFG_VARIANT: if (goi->isconfigure) { if (goi->argc < 1) { Jim_SetResult_sprintf(goi->interp, "%s ?STRING?", n->name); return JIM_ERR; } if (target->variant) { free((void *)(target->variant)); } e = Jim_GetOpt_String(goi, &cp, NULL); target->variant = strdup(cp); } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResultString(goi->interp, target->variant,-1); /* loop for more */ break; case TCFG_CHAIN_POSITION: if (goi->isconfigure) { Jim_Obj *o; struct jtag_tap *tap; target_free_all_working_areas(target); e = Jim_GetOpt_Obj(goi, &o); if (e != JIM_OK) { return e; } tap = jtag_tap_by_jim_obj(goi->interp, o); if (tap == NULL) { return JIM_ERR; } /* make this exactly 1 or 0 */ target->tap = tap; } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResultString(interp, target->tap->dotted_name, -1); /* loop for more e*/ break; } } /* while (goi->argc) */ /* done - we return */ return JIM_OK; } /** this is the 'tcl' handler for the target specific command */ static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_GetOptInfo goi; jim_wide a,b,c; int x,y,z; uint8_t target_buf[32]; Jim_Nvp *n; struct target *target; struct command_context *cmd_ctx; int e; enum { TS_CMD_CONFIGURE, TS_CMD_CGET, TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB, TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB, TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB, TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM, TS_CMD_EXAMINE, TS_CMD_POLL, TS_CMD_RESET, TS_CMD_HALT, TS_CMD_WAITSTATE, TS_CMD_EVENTLIST, TS_CMD_CURSTATE, TS_CMD_INVOKE_EVENT, }; static const Jim_Nvp target_options[] = { { .name = "configure", .value = TS_CMD_CONFIGURE }, { .name = "cget", .value = TS_CMD_CGET }, { .name = "mww", .value = TS_CMD_MWW }, { .name = "mwh", .value = TS_CMD_MWH }, { .name = "mwb", .value = TS_CMD_MWB }, { .name = "mdw", .value = TS_CMD_MDW }, { .name = "mdh", .value = TS_CMD_MDH }, { .name = "mdb", .value = TS_CMD_MDB }, { .name = "mem2array", .value = TS_CMD_MEM2ARRAY }, { .name = "array2mem", .value = TS_CMD_ARRAY2MEM }, { .name = "eventlist", .value = TS_CMD_EVENTLIST }, { .name = "curstate", .value = TS_CMD_CURSTATE }, { .name = "arp_examine", .value = TS_CMD_EXAMINE }, { .name = "arp_poll", .value = TS_CMD_POLL }, { .name = "arp_reset", .value = TS_CMD_RESET }, { .name = "arp_halt", .value = TS_CMD_HALT }, { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE }, { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT }, { .name = NULL, .value = -1 }, }; /* go past the "command" */ Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1); target = Jim_CmdPrivData(goi.interp); cmd_ctx = Jim_GetAssocData(goi.interp, "context"); /* commands here are in an NVP table */ e = Jim_GetOpt_Nvp(&goi, target_options, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(&goi, target_options, 0); return e; } /* Assume blank result */ Jim_SetEmptyResult(goi.interp); switch (n->value) { case TS_CMD_CONFIGURE: if (goi.argc < 2) { Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ..."); return JIM_ERR; } goi.isconfigure = 1; return target_configure(&goi, target); case TS_CMD_CGET: // some things take params if (goi.argc < 1) { Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?"); return JIM_ERR; } goi.isconfigure = 0; return target_configure(&goi, target); break; case TS_CMD_MWW: case TS_CMD_MWH: case TS_CMD_MWB: /* argv[0] = cmd * argv[1] = address * argv[2] = data * argv[3] = optional count. */ if ((goi.argc == 2) || (goi.argc == 3)) { /* all is well */ } else { mwx_error: Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name); return JIM_ERR; } e = Jim_GetOpt_Wide(&goi, &a); if (e != JIM_OK) { goto mwx_error; } e = Jim_GetOpt_Wide(&goi, &b); if (e != JIM_OK) { goto mwx_error; } if (goi.argc == 3) { e = Jim_GetOpt_Wide(&goi, &c); if (e != JIM_OK) { goto mwx_error; } } else { c = 1; } switch (n->value) { case TS_CMD_MWW: target_buffer_set_u32(target, target_buf, b); b = 4; break; case TS_CMD_MWH: target_buffer_set_u16(target, target_buf, b); b = 2; break; case TS_CMD_MWB: target_buffer_set_u8(target, target_buf, b); b = 1; break; } for (x = 0 ; x < c ; x++) { e = target_write_memory(target, a, b, 1, target_buf); if (e != ERROR_OK) { Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e); return JIM_ERR; } /* b = width */ a = a + b; } return JIM_OK; break; /* display */ case TS_CMD_MDW: case TS_CMD_MDH: case TS_CMD_MDB: /* argv[0] = command * argv[1] = address * argv[2] = optional count */ if ((goi.argc == 2) || (goi.argc == 3)) { Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name); return JIM_ERR; } e = Jim_GetOpt_Wide(&goi, &a); if (e != JIM_OK) { return JIM_ERR; } if (goi.argc) { e = Jim_GetOpt_Wide(&goi, &c); if (e != JIM_OK) { return JIM_ERR; } } else { c = 1; } b = 1; /* shut up gcc */ switch (n->value) { case TS_CMD_MDW: b = 4; break; case TS_CMD_MDH: b = 2; break; case TS_CMD_MDB: b = 1; break; } /* convert to "bytes" */ c = c * b; /* count is now in 'BYTES' */ while (c > 0) { y = c; if (y > 16) { y = 16; } e = target_read_memory(target, a, b, y / b, target_buf); if (e != ERROR_OK) { Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a)); return JIM_ERR; } Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a)); switch (b) { case 4: for (x = 0 ; (x < 16) && (x < y) ; x += 4) { z = target_buffer_get_u32(target, &(target_buf[ x * 4 ])); Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z)); } for (; (x < 16) ; x += 4) { Jim_fprintf(interp, interp->cookie_stdout, " "); } break; case 2: for (x = 0 ; (x < 16) && (x < y) ; x += 2) { z = target_buffer_get_u16(target, &(target_buf[ x * 2 ])); Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z)); } for (; (x < 16) ; x += 2) { Jim_fprintf(interp, interp->cookie_stdout, " "); } break; case 1: default: for (x = 0 ; (x < 16) && (x < y) ; x += 1) { z = target_buffer_get_u8(target, &(target_buf[ x * 4 ])); Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z)); } for (; (x < 16) ; x += 1) { Jim_fprintf(interp, interp->cookie_stdout, " "); } break; } /* ascii-ify the bytes */ for (x = 0 ; x < y ; x++) { if ((target_buf[x] >= 0x20) && (target_buf[x] <= 0x7e)) { /* good */ } else { /* smack it */ target_buf[x] = '.'; } } /* space pad */ while (x < 16) { target_buf[x] = ' '; x++; } /* terminate */ target_buf[16] = 0; /* print - with a newline */ Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf); /* NEXT... */ c -= 16; a += 16; } return JIM_OK; case TS_CMD_MEM2ARRAY: return target_mem2array(goi.interp, target, goi.argc, goi.argv); break; case TS_CMD_ARRAY2MEM: return target_array2mem(goi.interp, target, goi.argc, goi.argv); break; case TS_CMD_EXAMINE: if (goi.argc) { Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]"); return JIM_ERR; } if (!target->tap->enabled) goto err_tap_disabled; e = target->type->examine(target); if (e != ERROR_OK) { Jim_SetResult_sprintf(interp, "examine-fails: %d", e); return JIM_ERR; } return JIM_OK; case TS_CMD_POLL: if (goi.argc) { Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]"); return JIM_ERR; } if (!target->tap->enabled) goto err_tap_disabled; if (!(target_was_examined(target))) { e = ERROR_TARGET_NOT_EXAMINED; } else { e = target->type->poll(target); } if (e != ERROR_OK) { Jim_SetResult_sprintf(interp, "poll-fails: %d", e); return JIM_ERR; } else { return JIM_OK; } break; case TS_CMD_RESET: if (goi.argc != 2) { Jim_WrongNumArgs(interp, 2, argv, "([tT]|[fF]|assert|deassert) BOOL"); return JIM_ERR; } e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1); return e; } /* the halt or not param */ e = Jim_GetOpt_Wide(&goi, &a); if (e != JIM_OK) { return e; } if (!target->tap->enabled) goto err_tap_disabled; if (!target->type->assert_reset || !target->type->deassert_reset) { Jim_SetResult_sprintf(interp, "No target-specific reset for %s", target->cmd_name); return JIM_ERR; } /* determine if we should halt or not. */ target->reset_halt = !!a; /* When this happens - all workareas are invalid. */ target_free_all_working_areas_restore(target, 0); /* do the assert */ if (n->value == NVP_ASSERT) { e = target->type->assert_reset(target); } else { e = target->type->deassert_reset(target); } return (e == ERROR_OK) ? JIM_OK : JIM_ERR; case TS_CMD_HALT: if (goi.argc) { Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]"); return JIM_ERR; } if (!target->tap->enabled) goto err_tap_disabled; e = target->type->halt(target); return (e == ERROR_OK) ? JIM_OK : JIM_ERR; case TS_CMD_WAITSTATE: /* params: <name> statename timeoutmsecs */ if (goi.argc != 2) { Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name); return JIM_ERR; } e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1); return e; } e = Jim_GetOpt_Wide(&goi, &a); if (e != JIM_OK) { return e; } if (!target->tap->enabled) goto err_tap_disabled; e = target_wait_state(target, n->value, a); if (e != ERROR_OK) { Jim_SetResult_sprintf(goi.interp, "target: %s wait %s fails (%d) %s", target->cmd_name, n->name, e, target_strerror_safe(e)); return JIM_ERR; } else { return JIM_OK; } case TS_CMD_EVENTLIST: /* List for human, Events defined for this target. * scripts/programs should use 'name cget -event NAME' */ { struct target_event_action *teap; teap = target->event_action; command_print(cmd_ctx, "Event actions for target (%d) %s\n", target->target_number, target->cmd_name); command_print(cmd_ctx, "%-25s | Body", "Event"); command_print(cmd_ctx, "------------------------- | ----------------------------------------"); while (teap) { command_print(cmd_ctx, "%-25s | %s", Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name, Jim_GetString(teap->body, NULL)); teap = teap->next; } command_print(cmd_ctx, "***END***"); return JIM_OK; } case TS_CMD_CURSTATE: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]"); return JIM_ERR; } Jim_SetResultString(goi.interp, target_state_name( target ), -1); return JIM_OK; case TS_CMD_INVOKE_EVENT: if (goi.argc != 1) { Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name); return JIM_ERR; } e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1); return e; } target_handle_event(target, n->value); return JIM_OK; } return JIM_ERR; err_tap_disabled: Jim_SetResult_sprintf(interp, "[TAP is disabled]"); return JIM_ERR; } static int target_create(Jim_GetOptInfo *goi) { Jim_Obj *new_cmd; Jim_Cmd *cmd; const char *cp; char *cp2; int e; int x; struct target *target; struct command_context *cmd_ctx; cmd_ctx = Jim_GetAssocData(goi->interp, "context"); if (goi->argc < 3) { Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options..."); return JIM_ERR; } /* COMMAND */ Jim_GetOpt_Obj(goi, &new_cmd); /* does this command exist? */ cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG); if (cmd) { cp = Jim_GetString(new_cmd, NULL); Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp); return JIM_ERR; } /* TYPE */ e = Jim_GetOpt_String(goi, &cp2, NULL); cp = cp2; /* now does target type exist */ for (x = 0 ; target_types[x] ; x++) { if (0 == strcmp(cp, target_types[x]->name)) { /* found */ break; } } if (target_types[x] == NULL) { Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp); for (x = 0 ; target_types[x] ; x++) { if (target_types[x + 1]) { Jim_AppendStrings(goi->interp, Jim_GetResult(goi->interp), target_types[x]->name, ", ", NULL); } else { Jim_AppendStrings(goi->interp, Jim_GetResult(goi->interp), " or ", target_types[x]->name,NULL); } } return JIM_ERR; } /* Create it */ target = calloc(1,sizeof(struct target)); /* set target number */ target->target_number = new_target_number(); /* allocate memory for each unique target type */ target->type = (struct target_type*)calloc(1,sizeof(struct target_type)); memcpy(target->type, target_types[x], sizeof(struct target_type)); /* will be set by "-endian" */ target->endianness = TARGET_ENDIAN_UNKNOWN; target->working_area = 0x0; target->working_area_size = 0x0; target->working_areas = NULL; target->backup_working_area = 0; target->state = TARGET_UNKNOWN; target->debug_reason = DBG_REASON_UNDEFINED; target->reg_cache = NULL; target->breakpoints = NULL; target->watchpoints = NULL; target->next = NULL; target->arch_info = NULL; target->display = 1; target->halt_issued = false; /* initialize trace information */ target->trace_info = malloc(sizeof(struct trace)); target->trace_info->num_trace_points = 0; target->trace_info->trace_points_size = 0; target->trace_info->trace_points = NULL; target->trace_info->trace_history_size = 0; target->trace_info->trace_history = NULL; target->trace_info->trace_history_pos = 0; target->trace_info->trace_history_overflowed = 0; target->dbgmsg = NULL; target->dbg_msg_enabled = 0; target->endianness = TARGET_ENDIAN_UNKNOWN; /* Do the rest as "configure" options */ goi->isconfigure = 1; e = target_configure(goi, target); if (target->tap == NULL) { Jim_SetResultString(interp, "-chain-position required when creating target", -1); e = JIM_ERR; } if (e != JIM_OK) { free(target->type); free(target); return e; } if (target->endianness == TARGET_ENDIAN_UNKNOWN) { /* default endian to little if not specified */ target->endianness = TARGET_LITTLE_ENDIAN; } /* incase variant is not set */ if (!target->variant) target->variant = strdup(""); /* create the target specific commands */ if (target->type->register_commands) { (*(target->type->register_commands))(cmd_ctx); } if (target->type->target_create) { (*(target->type->target_create))(target, goi->interp); } /* append to end of list */ { struct target **tpp; tpp = &(all_targets); while (*tpp) { tpp = &((*tpp)->next); } *tpp = target; } cp = Jim_GetString(new_cmd, NULL); target->cmd_name = strdup(cp); /* now - create the new target name command */ e = Jim_CreateCommand(goi->interp, /* name */ cp, tcl_target_func, /* C function */ target, /* private data */ NULL); /* no del proc */ return e; } static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int x,r,e; jim_wide w; struct command_context *cmd_ctx; struct target *target; Jim_GetOptInfo goi; enum tcmd { /* TG = target generic */ TG_CMD_CREATE, TG_CMD_TYPES, TG_CMD_NAMES, TG_CMD_CURRENT, TG_CMD_NUMBER, TG_CMD_COUNT, }; const char *target_cmds[] = { "create", "types", "names", "current", "number", "count", NULL /* terminate */ }; LOG_DEBUG("Target command params:"); LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv)); cmd_ctx = Jim_GetAssocData(interp, "context"); Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1); if (goi.argc == 0) { Jim_WrongNumArgs(interp, 1, argv, "missing: command ..."); return JIM_ERR; } /* Jim_GetOpt_Debug(&goi); */ r = Jim_GetOpt_Enum(&goi, target_cmds, &x); if (r != JIM_OK) { return r; } switch (x) { default: Jim_Panic(goi.interp,"Why am I here?"); return JIM_ERR; case TG_CMD_CURRENT: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters"); return JIM_ERR; } Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1); return JIM_OK; case TG_CMD_TYPES: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters"); return JIM_ERR; } Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0)); for (x = 0 ; target_types[x] ; x++) { Jim_ListAppendElement(goi.interp, Jim_GetResult(goi.interp), Jim_NewStringObj(goi.interp, target_types[x]->name, -1)); } return JIM_OK; case TG_CMD_NAMES: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters"); return JIM_ERR; } Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0)); target = all_targets; while (target) { Jim_ListAppendElement(goi.interp, Jim_GetResult(goi.interp), Jim_NewStringObj(goi.interp, target->cmd_name, -1)); target = target->next; } return JIM_OK; case TG_CMD_CREATE: if (goi.argc < 3) { Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name ... config options ..."); return JIM_ERR; } return target_create(&goi); break; case TG_CMD_NUMBER: /* It's OK to remove this mechanism sometime after August 2010 or so */ LOG_WARNING("don't use numbers as target identifiers; use names"); if (goi.argc != 1) { Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?"); return JIM_ERR; } e = Jim_GetOpt_Wide(&goi, &w); if (e != JIM_OK) { return JIM_ERR; } for (x = 0, target = all_targets; target; target = target->next, x++) { if (target->target_number == w) break; } if (target == NULL) { Jim_SetResult_sprintf(goi.interp, "Target: number %d does not exist", (int)(w)); return JIM_ERR; } Jim_SetResultString(goi.interp, target->cmd_name, -1); return JIM_OK; case TG_CMD_COUNT: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>"); return JIM_ERR; } for (x = 0, target = all_targets; target; target = target->next, x++) continue; Jim_SetResult(goi.interp, Jim_NewIntObj(goi.interp, x)); return JIM_OK; } return JIM_ERR; } struct FastLoad { uint32_t address; uint8_t *data; int length; }; static int fastload_num; static struct FastLoad *fastload; static void free_fastload(void) { if (fastload != NULL) { int i; for (i = 0; i < fastload_num; i++) { if (fastload[i].data) free(fastload[i].data); } free(fastload); fastload = NULL; } } COMMAND_HANDLER(handle_fast_load_image_command) { uint8_t *buffer; size_t buf_cnt; uint32_t image_size; uint32_t min_address = 0; uint32_t max_address = 0xffffffff; int i; struct image image; int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV, &image, &min_address, &max_address); if (ERROR_OK != retval) return retval; struct duration bench; duration_start(&bench); if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK) { return ERROR_OK; } image_size = 0x0; retval = ERROR_OK; fastload_num = image.num_sections; fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections); if (fastload == NULL) { image_close(&image); return ERROR_FAIL; } memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections); for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(CMD_CTX, "error allocating buffer for section (%d bytes)", (int)(image.sections[i].size)); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } uint32_t offset = 0; uint32_t length = buf_cnt; /* DANGER!!! beware of unsigned comparision here!!! */ if ((image.sections[i].base_address + buf_cnt >= min_address)&& (image.sections[i].base_address < max_address)) { if (image.sections[i].base_address < min_address) { /* clip addresses below */ offset += min_address-image.sections[i].base_address; length -= offset; } if (image.sections[i].base_address + buf_cnt > max_address) { length -= (image.sections[i].base_address + buf_cnt)-max_address; } fastload[i].address = image.sections[i].base_address + offset; fastload[i].data = malloc(length); if (fastload[i].data == NULL) { free(buffer); break; } memcpy(fastload[i].data, buffer + offset, length); fastload[i].length = length; image_size += length; command_print(CMD_CTX, "%u bytes written at address 0x%8.8x", (unsigned int)length, ((unsigned int)(image.sections[i].base_address + offset))); } free(buffer); } if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) { command_print(CMD_CTX, "Loaded %" PRIu32 " bytes " "in %fs (%0.3f kb/s)", image_size, duration_elapsed(&bench), duration_kbps(&bench, image_size)); command_print(CMD_CTX, "WARNING: image has not been loaded to target!" "You can issue a 'fast_load' to finish loading."); } image_close(&image); if (retval != ERROR_OK) { free_fastload(); } return retval; } COMMAND_HANDLER(handle_fast_load_command) { if (CMD_ARGC > 0) return ERROR_COMMAND_SYNTAX_ERROR; if (fastload == NULL) { LOG_ERROR("No image in memory"); return ERROR_FAIL; } int i; int ms = timeval_ms(); int size = 0; int retval = ERROR_OK; for (i = 0; i < fastload_num;i++) { struct target *target = get_current_target(CMD_CTX); command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x", (unsigned int)(fastload[i].address), (unsigned int)(fastload[i].length)); if (retval == ERROR_OK) { retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data); } size += fastload[i].length; } int after = timeval_ms(); command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0)); return retval; } static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { struct command_context *context; struct target *target; int retval; context = Jim_GetAssocData(interp, "context"); if (context == NULL) { LOG_ERROR("array2mem: no command context"); return JIM_ERR; } target = get_current_target(context); if (target == NULL) { LOG_ERROR("array2mem: no current target"); return JIM_ERR; } if ((argc < 6) || (argc > 7)) { return JIM_ERR; } int cpnum; uint32_t op1; uint32_t op2; uint32_t CRn; uint32_t CRm; uint32_t value; int e; long l; e = Jim_GetLong(interp, argv[1], &l); if (e != JIM_OK) { return e; } cpnum = l; e = Jim_GetLong(interp, argv[2], &l); if (e != JIM_OK) { return e; } op1 = l; e = Jim_GetLong(interp, argv[3], &l); if (e != JIM_OK) { return e; } CRn = l; e = Jim_GetLong(interp, argv[4], &l); if (e != JIM_OK) { return e; } CRm = l; e = Jim_GetLong(interp, argv[5], &l); if (e != JIM_OK) { return e; } op2 = l; value = 0; if (argc == 7) { e = Jim_GetLong(interp, argv[6], &l); if (e != JIM_OK) { return e; } value = l; retval = target_mcr(target, cpnum, op1, op2, CRn, CRm, value); if (retval != ERROR_OK) return JIM_ERR; } else { retval = target_mrc(target, cpnum, op1, op2, CRn, CRm, &value); if (retval != ERROR_OK) return JIM_ERR; Jim_SetResult(interp, Jim_NewIntObj(interp, value)); } return JIM_OK; } int target_register_commands(struct command_context *cmd_ctx) { register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change current command line target (one parameter) " "or list targets (no parameters)"); register_jim(cmd_ctx, "target", jim_target, "configure target"); return ERROR_OK; } int target_register_user_commands(struct command_context *cmd_ctx) { int retval = ERROR_OK; if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK) return retval; if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK) return retval; register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC"); register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing " "<ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>"); register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values " "<ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>"); register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY, "same CMD_ARGV as load_image, image stored in memory " "- mainly for profiling purposes"); register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY, "loads active fast load image to current target " "- mainly for profiling purposes"); /** @todo don't register virt2phys() unless target supports it */ register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address"); register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register"); register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state"); register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]"); register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target"); register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]"); register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run | halt | init] - default is run"); register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset"); register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]"); register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words [phys] <addr> [count]"); register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words [phys] <addr> [count]"); register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes [phys] <addr> [count]"); register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word [phys] <addr> <value> [count]"); register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word [phys] <addr> <value> [count]"); register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte [phys] <addr> <value> [count]"); register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "list or set breakpoint [<address> <length> [hw]]"); register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <address>"); register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "list or set watchpoint " "[<address> <length> <r/w/a> [value] [mask]]"); register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <address>"); register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> " "['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]"); register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>"); register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]"); register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]"); return ERROR_OK; }