/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2007,2008 Øyvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2008, Duane Ellis * * openocd@duaneeellis.com * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by Rick Altherr * * kc8apf@kc8apf.net> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "target.h" #include "target_type.h" #include "target_request.h" #include "time_support.h" #include "register.h" #include "trace.h" #include "image.h" #include "jtag.h" static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc); static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv); static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv); static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv); static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv); static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv); /* targets */ extern target_type_t arm7tdmi_target; extern target_type_t arm720t_target; extern target_type_t arm9tdmi_target; extern target_type_t arm920t_target; extern target_type_t arm966e_target; extern target_type_t arm926ejs_target; extern target_type_t fa526_target; extern target_type_t feroceon_target; extern target_type_t xscale_target; extern target_type_t cortexm3_target; extern target_type_t cortexa8_target; extern target_type_t arm11_target; extern target_type_t mips_m4k_target; extern target_type_t avr_target; target_type_t *target_types[] = { &arm7tdmi_target, &arm9tdmi_target, &arm920t_target, &arm720t_target, &arm966e_target, &arm926ejs_target, &fa526_target, &feroceon_target, &xscale_target, &cortexm3_target, &cortexa8_target, &arm11_target, &mips_m4k_target, &avr_target, NULL, }; target_t *all_targets = NULL; target_event_callback_t *target_event_callbacks = NULL; target_timer_callback_t *target_timer_callbacks = NULL; const Jim_Nvp nvp_assert[] = { { .name = "assert", NVP_ASSERT }, { .name = "deassert", NVP_DEASSERT }, { .name = "T", NVP_ASSERT }, { .name = "F", NVP_DEASSERT }, { .name = "t", NVP_ASSERT }, { .name = "f", NVP_DEASSERT }, { .name = NULL, .value = -1 } }; const Jim_Nvp nvp_error_target[] = { { .value = ERROR_TARGET_INVALID, .name = "err-invalid" }, { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" }, { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" }, { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" }, { .value = ERROR_TARGET_FAILURE, .name = "err-failure" }, { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" }, { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" }, { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" }, { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" }, { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" }, { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" }, { .value = -1, .name = NULL } }; const char *target_strerror_safe(int err) { const Jim_Nvp *n; n = Jim_Nvp_value2name_simple(nvp_error_target, err); if (n->name == NULL) { return "unknown"; } else { return n->name; } } static const Jim_Nvp nvp_target_event[] = { { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" }, { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" }, { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" }, { .value = TARGET_EVENT_HALTED, .name = "halted" }, { .value = TARGET_EVENT_RESUMED, .name = "resumed" }, { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" }, { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" }, { .name = "gdb-start", .value = TARGET_EVENT_GDB_START }, { .name = "gdb-end", .value = TARGET_EVENT_GDB_END }, /* historical name */ { .value = TARGET_EVENT_RESET_START, .name = "reset-start" }, { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" }, { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" }, { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" }, { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" }, { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" }, { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" }, { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" }, { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" }, { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" }, { .value = TARGET_EVENT_RESET_END, .name = "reset-end" }, { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" }, { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" }, { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" }, { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" }, { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" }, { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" }, { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" }, { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" }, { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" }, { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" }, { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" }, { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" }, { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" }, { .name = NULL, .value = -1 } }; const Jim_Nvp nvp_target_state[] = { { .name = "unknown", .value = TARGET_UNKNOWN }, { .name = "running", .value = TARGET_RUNNING }, { .name = "halted", .value = TARGET_HALTED }, { .name = "reset", .value = TARGET_RESET }, { .name = "debug-running", .value = TARGET_DEBUG_RUNNING }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_target_debug_reason [] = { { .name = "debug-request" , .value = DBG_REASON_DBGRQ }, { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT }, { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT }, { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT }, { .name = "single-step" , .value = DBG_REASON_SINGLESTEP }, { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED }, { .name = "undefined" , .value = DBG_REASON_UNDEFINED }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_target_endian[] = { { .name = "big", .value = TARGET_BIG_ENDIAN }, { .name = "little", .value = TARGET_LITTLE_ENDIAN }, { .name = "be", .value = TARGET_BIG_ENDIAN }, { .name = "le", .value = TARGET_LITTLE_ENDIAN }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_reset_modes[] = { { .name = "unknown", .value = RESET_UNKNOWN }, { .name = "run" , .value = RESET_RUN }, { .name = "halt" , .value = RESET_HALT }, { .name = "init" , .value = RESET_INIT }, { .name = NULL , .value = -1 }, }; const char * target_state_name( target_t *t ) { const char *cp; cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name; if( !cp ){ LOG_ERROR("Invalid target state: %d", (int)(t->state)); cp = "(*BUG*unknown*BUG*)"; } return cp; } static int max_target_number(void) { target_t *t; int x; x = -1; t = all_targets; while (t) { if (x < t->target_number) { x = (t->target_number) + 1; } t = t->next; } return x; } /* determine the number of the new target */ static int new_target_number(void) { target_t *t; int x; /* number is 0 based */ x = -1; t = all_targets; while (t) { if (x < t->target_number) { x = t->target_number; } t = t->next; } return x + 1; } static int target_continuous_poll = 1; /* read a uint32_t from a buffer in target memory endianness */ uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u32(buffer); else return be_to_h_u32(buffer); } /* read a uint16_t from a buffer in target memory endianness */ uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u16(buffer); else return be_to_h_u16(buffer); } /* read a uint8_t from a buffer in target memory endianness */ uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer) { return *buffer & 0x0ff; } /* write a uint32_t to a buffer in target memory endianness */ void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u32_to_le(buffer, value); else h_u32_to_be(buffer, value); } /* write a uint16_t to a buffer in target memory endianness */ void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u16_to_le(buffer, value); else h_u16_to_be(buffer, value); } /* write a uint8_t to a buffer in target memory endianness */ void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value) { *buffer = value; } /* return a pointer to a configured target; id is name or number */ target_t *get_target(const char *id) { target_t *target; /* try as tcltarget name */ for (target = all_targets; target; target = target->next) { if (target->cmd_name == NULL) continue; if (strcmp(id, target->cmd_name) == 0) return target; } /* no match, try as number */ unsigned num; if (parse_uint(id, &num) != ERROR_OK) return NULL; for (target = all_targets; target; target = target->next) { if (target->target_number == (int)num) return target; } return NULL; } /* returns a pointer to the n-th configured target */ static target_t *get_target_by_num(int num) { target_t *target = all_targets; while (target) { if (target->target_number == num) { return target; } target = target->next; } return NULL; } int get_num_by_target(target_t *query_target) { return query_target->target_number; } target_t* get_current_target(command_context_t *cmd_ctx) { target_t *target = get_target_by_num(cmd_ctx->current_target); if (target == NULL) { LOG_ERROR("BUG: current_target out of bounds"); exit(-1); } return target; } int target_poll(struct target_s *target) { /* We can't poll until after examine */ if (!target_was_examined(target)) { /* Fail silently lest we pollute the log */ return ERROR_FAIL; } return target->type->poll(target); } int target_halt(struct target_s *target) { /* We can't poll until after examine */ if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->halt(target); } int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution) { int retval; /* We can't poll until after examine */ if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?) * the application. */ if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK) return retval; return retval; } int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode) { char buf[100]; int retval; Jim_Nvp *n; n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode); if (n->name == NULL) { LOG_ERROR("invalid reset mode"); return ERROR_FAIL; } /* disable polling during reset to make reset event scripts * more predictable, i.e. dr/irscan & pathmove in events will * not have JTAG operations injected into the middle of a sequence. */ int save_poll = target_continuous_poll; target_continuous_poll = 0; sprintf(buf, "ocd_process_reset %s", n->name); retval = Jim_Eval(interp, buf); target_continuous_poll = save_poll; if (retval != JIM_OK) { Jim_PrintErrorMessage(interp); return ERROR_FAIL; } /* We want any events to be processed before the prompt */ retval = target_call_timer_callbacks_now(); return retval; } static int default_virt2phys(struct target_s *target, uint32_t virtual, uint32_t *physical) { *physical = virtual; return ERROR_OK; } static int default_mmu(struct target_s *target, int *enabled) { *enabled = 0; return ERROR_OK; } static int default_examine(struct target_s *target) { target_set_examined(target); return ERROR_OK; } int target_examine_one(struct target_s *target) { return target->type->examine(target); } static int jtag_enable_callback(enum jtag_event event, void *priv) { target_t *target = priv; if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled) return ERROR_OK; jtag_unregister_event_callback(jtag_enable_callback, target); return target_examine_one(target); } /* Targets that correctly implement init + examine, i.e. * no communication with target during init: * * XScale */ int target_examine(void) { int retval = ERROR_OK; target_t *target; for (target = all_targets; target; target = target->next) { /* defer examination, but don't skip it */ if (!target->tap->enabled) { jtag_register_event_callback(jtag_enable_callback, target); continue; } if ((retval = target_examine_one(target)) != ERROR_OK) return retval; } return retval; } const char *target_get_name(struct target_s *target) { return target->type->name; } static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->write_memory_imp(target, address, size, count, buffer); } static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->read_memory_imp(target, address, size, count, buffer); } static int target_soft_reset_halt_imp(struct target_s *target) { if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->soft_reset_halt_imp(target); } static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info) { if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info); } int target_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { return target->type->read_memory(target, address, size, count, buffer); } int target_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { return target->type->write_memory(target, address, size, count, buffer); } int target_bulk_write_memory(struct target_s *target, uint32_t address, uint32_t count, uint8_t *buffer) { return target->type->bulk_write_memory(target, address, count, buffer); } int target_add_breakpoint(struct target_s *target, struct breakpoint_s *breakpoint) { return target->type->add_breakpoint(target, breakpoint); } int target_remove_breakpoint(struct target_s *target, struct breakpoint_s *breakpoint) { return target->type->remove_breakpoint(target, breakpoint); } int target_add_watchpoint(struct target_s *target, struct watchpoint_s *watchpoint) { return target->type->add_watchpoint(target, watchpoint); } int target_remove_watchpoint(struct target_s *target, struct watchpoint_s *watchpoint) { return target->type->remove_watchpoint(target, watchpoint); } int target_get_gdb_reg_list(struct target_s *target, struct reg_s **reg_list[], int *reg_list_size) { return target->type->get_gdb_reg_list(target, reg_list, reg_list_size); } int target_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints) { return target->type->step(target, current, address, handle_breakpoints); } int target_run_algorithm(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info) { return target->type->run_algorithm(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info); } /// @returns @c true if the target has been examined. bool target_was_examined(struct target_s *target) { return target->type->examined; } /// Sets the @c examined flag for the given target. void target_set_examined(struct target_s *target) { target->type->examined = true; } // Reset the @c examined flag for the given target. void target_reset_examined(struct target_s *target) { target->type->examined = false; } int target_init(struct command_context_s *cmd_ctx) { target_t *target = all_targets; int retval; while (target) { target_reset_examined(target); if (target->type->examine == NULL) { target->type->examine = default_examine; } if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK) { LOG_ERROR("target '%s' init failed", target_get_name(target)); return retval; } /* Set up default functions if none are provided by target */ if (target->type->virt2phys == NULL) { target->type->virt2phys = default_virt2phys; } target->type->virt2phys = default_virt2phys; /* a non-invasive way(in terms of patches) to add some code that * runs before the type->write/read_memory implementation */ target->type->write_memory_imp = target->type->write_memory; target->type->write_memory = target_write_memory_imp; target->type->read_memory_imp = target->type->read_memory; target->type->read_memory = target_read_memory_imp; target->type->soft_reset_halt_imp = target->type->soft_reset_halt; target->type->soft_reset_halt = target_soft_reset_halt_imp; target->type->run_algorithm_imp = target->type->run_algorithm; target->type->run_algorithm = target_run_algorithm_imp; if (target->type->mmu == NULL) { target->type->mmu = default_mmu; } target = target->next; } if (all_targets) { if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK) return retval; if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK) return retval; } return ERROR_OK; } int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **callbacks_p = &target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_event_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv) { target_timer_callback_t **callbacks_p = &target_timer_callbacks; struct timeval now; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_timer_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->periodic = periodic; (*callbacks_p)->time_ms = time_ms; gettimeofday(&now, NULL); (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000); if ((*callbacks_p)->when.tv_usec > 1000000) { (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000; (*callbacks_p)->when.tv_sec += 1; } (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **p = &target_event_callbacks; target_event_callback_t *c = target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_event_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_unregister_timer_callback(int (*callback)(void *priv), void *priv) { target_timer_callback_t **p = &target_timer_callbacks; target_timer_callback_t *c = target_timer_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_timer_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_call_event_callbacks(target_t *target, enum target_event event) { target_event_callback_t *callback = target_event_callbacks; target_event_callback_t *next_callback; if (event == TARGET_EVENT_HALTED) { /* execute early halted first */ target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED); } LOG_DEBUG("target event %i (%s)", event, Jim_Nvp_value2name_simple(nvp_target_event, event)->name); target_handle_event(target, event); while (callback) { next_callback = callback->next; callback->callback(target, event, callback->priv); callback = next_callback; } return ERROR_OK; } static int target_timer_callback_periodic_restart( target_timer_callback_t *cb, struct timeval *now) { int time_ms = cb->time_ms; cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); cb->when.tv_sec = now->tv_sec + time_ms / 1000; if (cb->when.tv_usec > 1000000) { cb->when.tv_usec = cb->when.tv_usec - 1000000; cb->when.tv_sec += 1; } return ERROR_OK; } static int target_call_timer_callback(target_timer_callback_t *cb, struct timeval *now) { cb->callback(cb->priv); if (cb->periodic) return target_timer_callback_periodic_restart(cb, now); return target_unregister_timer_callback(cb->callback, cb->priv); } static int target_call_timer_callbacks_check_time(int checktime) { keep_alive(); struct timeval now; gettimeofday(&now, NULL); target_timer_callback_t *callback = target_timer_callbacks; while (callback) { // cleaning up may unregister and free this callback target_timer_callback_t *next_callback = callback->next; bool call_it = callback->callback && ((!checktime && callback->periodic) || now.tv_sec > callback->when.tv_sec || (now.tv_sec == callback->when.tv_sec && now.tv_usec >= callback->when.tv_usec)); if (call_it) { int retval = target_call_timer_callback(callback, &now); if (retval != ERROR_OK) return retval; } callback = next_callback; } return ERROR_OK; } int target_call_timer_callbacks(void) { return target_call_timer_callbacks_check_time(1); } /* invoke periodic callbacks immediately */ int target_call_timer_callbacks_now(void) { return target_call_timer_callbacks_check_time(0); } int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area) { working_area_t *c = target->working_areas; working_area_t *new_wa = NULL; /* Reevaluate working area address based on MMU state*/ if (target->working_areas == NULL) { int retval; int enabled; retval = target->type->mmu(target, &enabled); if (retval != ERROR_OK) { return retval; } if (enabled) { target->working_area = target->working_area_virt; } else { target->working_area = target->working_area_phys; } } /* only allocate multiples of 4 byte */ if (size % 4) { LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size))); size = (size + 3) & (~3); } /* see if there's already a matching working area */ while (c) { if ((c->free) && (c->size == size)) { new_wa = c; break; } c = c->next; } /* if not, allocate a new one */ if (!new_wa) { working_area_t **p = &target->working_areas; uint32_t first_free = target->working_area; uint32_t free_size = target->working_area_size; LOG_DEBUG("allocating new working area"); c = target->working_areas; while (c) { first_free += c->size; free_size -= c->size; p = &c->next; c = c->next; } if (free_size < size) { LOG_WARNING("not enough working area available(requested %u, free %u)", (unsigned)(size), (unsigned)(free_size)); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } new_wa = malloc(sizeof(working_area_t)); new_wa->next = NULL; new_wa->size = size; new_wa->address = first_free; if (target->backup_working_area) { int retval; new_wa->backup = malloc(new_wa->size); if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK) { free(new_wa->backup); free(new_wa); return retval; } } else { new_wa->backup = NULL; } /* put new entry in list */ *p = new_wa; } /* mark as used, and return the new (reused) area */ new_wa->free = 0; *area = new_wa; /* user pointer */ new_wa->user = area; return ERROR_OK; } int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore) { if (area->free) return ERROR_OK; if (restore && target->backup_working_area) { int retval; if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK) return retval; } area->free = 1; /* mark user pointer invalid */ *area->user = NULL; area->user = NULL; return ERROR_OK; } int target_free_working_area(struct target_s *target, working_area_t *area) { return target_free_working_area_restore(target, area, 1); } /* free resources and restore memory, if restoring memory fails, * free up resources anyway */ void target_free_all_working_areas_restore(struct target_s *target, int restore) { working_area_t *c = target->working_areas; while (c) { working_area_t *next = c->next; target_free_working_area_restore(target, c, restore); if (c->backup) free(c->backup); free(c); c = next; } target->working_areas = NULL; } void target_free_all_working_areas(struct target_s *target) { target_free_all_working_areas_restore(target, 1); } int target_register_commands(struct command_context_s *cmd_ctx) { register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)"); register_jim(cmd_ctx, "target", jim_target, "configure target"); return ERROR_OK; } int target_arch_state(struct target_s *target) { int retval; if (target == NULL) { LOG_USER("No target has been configured"); return ERROR_OK; } LOG_USER("target state: %s", target_state_name( target )); if (target->state != TARGET_HALTED) return ERROR_OK; retval = target->type->arch_state(target); return retval; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer) { int retval; LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", (int)size, (unsigned)address); if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (size == 0) { return ERROR_OK; } if ((address + size - 1) < address) { /* GDB can request this when e.g. PC is 0xfffffffc*/ LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)", (unsigned)address, (unsigned)size); return ERROR_FAIL; } if (((address % 2) == 0) && (size == 2)) { return target_write_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { uint32_t unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); /* use bulk writes above a certain limit. This may have to be changed */ if (aligned > 128) { if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK) return retval; } else { if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; } buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer) { int retval; LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", (int)size, (unsigned)address); if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (size == 0) { return ERROR_OK; } if ((address + size - 1) < address) { /* GDB can request this when e.g. PC is 0xfffffffc*/ LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")", address, size); return ERROR_FAIL; } if (((address % 2) == 0) && (size == 2)) { return target_read_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { uint32_t unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc) { uint8_t *buffer; int retval; uint32_t i; uint32_t checksum = 0; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if ((retval = target->type->checksum_memory(target, address, size, &checksum)) != ERROR_OK) { buffer = malloc(size); if (buffer == NULL) { LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size); return ERROR_INVALID_ARGUMENTS; } retval = target_read_buffer(target, address, size, buffer); if (retval != ERROR_OK) { free(buffer); return retval; } /* convert to target endianess */ for (i = 0; i < (size/sizeof(uint32_t)); i++) { uint32_t target_data; target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]); target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data); } retval = image_calculate_checksum(buffer, size, &checksum); free(buffer); } *crc = checksum; return retval; } int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank) { int retval; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (target->type->blank_check_memory == 0) return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; retval = target->type->blank_check_memory(target, address, size, blank); return retval; } int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value) { uint8_t value_buf[4]; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } int retval = target_read_memory(target, address, 4, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u32(target, value_buf); LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8" PRIx32 " failed", address); } return retval; } int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value) { uint8_t value_buf[2]; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } int retval = target_read_memory(target, address, 2, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u16(target, value_buf); LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8" PRIx32 " failed", address); } return retval; } int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value) { int retval = target_read_memory(target, address, 1, 1, value); if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (retval == ERROR_OK) { LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8" PRIx32 " failed", address); } return retval; } int target_write_u32(struct target_s *target, uint32_t address, uint32_t value) { int retval; uint8_t value_buf[4]; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "", address, value); target_buffer_set_u32(target, value_buf, value); if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_write_u16(struct target_s *target, uint32_t address, uint16_t value) { int retval; uint8_t value_buf[2]; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x", address, value); target_buffer_set_u16(target, value_buf, value); if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_write_u8(struct target_s *target, uint32_t address, uint8_t value) { int retval; if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x", address, value); if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_register_user_commands(struct command_context_s *cmd_ctx) { int retval = ERROR_OK; /* script procedures */ register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC"); register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing
"); register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values
"); register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY, "same args as load_image, image stored in memory - mainly for profiling purposes"); register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY, "loads active fast load image to current target - mainly for profiling purposes"); register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address"); register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register"); register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state"); register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]"); register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target"); register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]"); register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]"); register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run | halt | init] - default is run"); register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset"); register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words [count]"); register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words [count]"); register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes [count]"); register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word [count]"); register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word [count]"); register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte [count]"); register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint
[hw]"); register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint "); register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint
[value] [mask]"); register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint "); register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image
['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]"); register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image
"); register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image [offset] [type]"); register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image [offset] [type]"); if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK) return retval; if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK) return retval; return retval; } static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = all_targets; if (argc == 1) { target = get_target(args[0]); if (target == NULL) { command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]); goto DumpTargets; } if (!target->tap->enabled) { command_print(cmd_ctx,"Target: TAP %s is disabled, " "can't be the current target\n", target->tap->dotted_name); return ERROR_FAIL; } cmd_ctx->current_target = target->target_number; return ERROR_OK; } DumpTargets: target = all_targets; command_print(cmd_ctx, " TargetName Type Endian TapName State "); command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------"); while (target) { const char *state; char marker = ' '; if (target->tap->enabled) state = target_state_name( target ); else state = "tap-disabled"; if (cmd_ctx->current_target == target->target_number) marker = '*'; /* keep columns lined up to match the headers above */ command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s", target->target_number, marker, target->cmd_name, target_get_name(target), Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness)->name, target->tap->dotted_name, state); target = target->next; } return ERROR_OK; } /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */ static int powerDropout; static int srstAsserted; static int runPowerRestore; static int runPowerDropout; static int runSrstAsserted; static int runSrstDeasserted; static int sense_handler(void) { static int prevSrstAsserted = 0; static int prevPowerdropout = 0; int retval; if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK) return retval; int powerRestored; powerRestored = prevPowerdropout && !powerDropout; if (powerRestored) { runPowerRestore = 1; } long long current = timeval_ms(); static long long lastPower = 0; int waitMore = lastPower + 2000 > current; if (powerDropout && !waitMore) { runPowerDropout = 1; lastPower = current; } if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK) return retval; int srstDeasserted; srstDeasserted = prevSrstAsserted && !srstAsserted; static long long lastSrst = 0; waitMore = lastSrst + 2000 > current; if (srstDeasserted && !waitMore) { runSrstDeasserted = 1; lastSrst = current; } if (!prevSrstAsserted && srstAsserted) { runSrstAsserted = 1; } prevSrstAsserted = srstAsserted; prevPowerdropout = powerDropout; if (srstDeasserted || powerRestored) { /* Other than logging the event we can't do anything here. * Issuing a reset is a particularly bad idea as we might * be inside a reset already. */ } return ERROR_OK; } /* process target state changes */ int handle_target(void *priv) { int retval = ERROR_OK; /* we do not want to recurse here... */ static int recursive = 0; if (! recursive) { recursive = 1; sense_handler(); /* danger! running these procedures can trigger srst assertions and power dropouts. * We need to avoid an infinite loop/recursion here and we do that by * clearing the flags after running these events. */ int did_something = 0; if (runSrstAsserted) { Jim_Eval(interp, "srst_asserted"); did_something = 1; } if (runSrstDeasserted) { Jim_Eval(interp, "srst_deasserted"); did_something = 1; } if (runPowerDropout) { Jim_Eval(interp, "power_dropout"); did_something = 1; } if (runPowerRestore) { Jim_Eval(interp, "power_restore"); did_something = 1; } if (did_something) { /* clear detect flags */ sense_handler(); } /* clear action flags */ runSrstAsserted = 0; runSrstDeasserted = 0; runPowerRestore = 0; runPowerDropout = 0; recursive = 0; } /* Poll targets for state changes unless that's globally disabled. * Skip targets that are currently disabled. */ for (target_t *target = all_targets; target_continuous_poll && target; target = target->next) { if (!target->tap->enabled) continue; /* only poll target if we've got power and srst isn't asserted */ if (!powerDropout && !srstAsserted) { /* polling may fail silently until the target has been examined */ if ((retval = target_poll(target)) != ERROR_OK) return retval; } } return retval; } static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target; reg_t *reg = NULL; int count = 0; char *value; LOG_DEBUG("-"); target = get_current_target(cmd_ctx); /* list all available registers for the current target */ if (argc == 0) { reg_cache_t *cache = target->reg_cache; count = 0; while (cache) { int i; for (i = 0; i < cache->num_regs; i++) { value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16); command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, (int)(cache->reg_list[i].size), value, cache->reg_list[i].dirty, cache->reg_list[i].valid); free(value); } cache = cache->next; } return ERROR_OK; } /* access a single register by its ordinal number */ if ((args[0][0] >= '0') && (args[0][0] <= '9')) { unsigned num; int retval = parse_uint(args[0], &num); if (ERROR_OK != retval) return ERROR_COMMAND_SYNTAX_ERROR; reg_cache_t *cache = target->reg_cache; count = 0; while (cache) { int i; for (i = 0; i < cache->num_regs; i++) { if (count++ == (int)num) { reg = &cache->reg_list[i]; break; } } if (reg) break; cache = cache->next; } if (!reg) { command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1); return ERROR_OK; } } else /* access a single register by its name */ { reg = register_get_by_name(target->reg_cache, args[0], 1); if (!reg) { command_print(cmd_ctx, "register %s not found in current target", args[0]); return ERROR_OK; } } /* display a register */ if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9')))) { if ((argc == 2) && (strcmp(args[1], "force") == 0)) reg->valid = 0; if (reg->valid == 0) { reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); arch_type->get(reg); } value = buf_to_str(reg->value, reg->size, 16); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value); free(value); return ERROR_OK; } /* set register value */ if (argc == 2) { uint8_t *buf = malloc(CEIL(reg->size, 8)); str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0); reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); arch_type->set(reg, buf); value = buf_to_str(reg->value, reg->size, 16); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value); free(value); free(buf); return ERROR_OK; } command_print(cmd_ctx, "usage: reg <#|name> [value]"); return ERROR_OK; } static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval = ERROR_OK; target_t *target = get_current_target(cmd_ctx); if (argc == 0) { command_print(cmd_ctx, "background polling: %s", target_continuous_poll ? "on" : "off"); command_print(cmd_ctx, "TAP: %s (%s)", target->tap->dotted_name, target->tap->enabled ? "enabled" : "disabled"); if (!target->tap->enabled) return ERROR_OK; if ((retval = target_poll(target)) != ERROR_OK) return retval; if ((retval = target_arch_state(target)) != ERROR_OK) return retval; } else if (argc == 1) { if (strcmp(args[0], "on") == 0) { target_continuous_poll = 1; } else if (strcmp(args[0], "off") == 0) { target_continuous_poll = 0; } else { command_print(cmd_ctx, "arg is \"on\" or \"off\""); } } else { return ERROR_COMMAND_SYNTAX_ERROR; } return retval; } static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc > 1) return ERROR_COMMAND_SYNTAX_ERROR; unsigned ms = 5000; if (1 == argc) { int retval = parse_uint(args[0], &ms); if (ERROR_OK != retval) { command_print(cmd_ctx, "usage: %s [seconds]", cmd); return ERROR_COMMAND_SYNTAX_ERROR; } // convert seconds (given) to milliseconds (needed) ms *= 1000; } target_t *target = get_current_target(cmd_ctx); return target_wait_state(target, TARGET_HALTED, ms); } /* wait for target state to change. The trick here is to have a low * latency for short waits and not to suck up all the CPU time * on longer waits. * * After 500ms, keep_alive() is invoked */ int target_wait_state(target_t *target, enum target_state state, int ms) { int retval; long long then = 0, cur; int once = 1; for (;;) { if ((retval = target_poll(target)) != ERROR_OK) return retval; if (target->state == state) { break; } cur = timeval_ms(); if (once) { once = 0; then = timeval_ms(); LOG_DEBUG("waiting for target %s...", Jim_Nvp_value2name_simple(nvp_target_state,state)->name); } if (cur-then > 500) { keep_alive(); } if ((cur-then) > ms) { LOG_ERROR("timed out while waiting for target %s", Jim_Nvp_value2name_simple(nvp_target_state,state)->name); return ERROR_FAIL; } } return ERROR_OK; } static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { LOG_DEBUG("-"); target_t *target = get_current_target(cmd_ctx); int retval = target_halt(target); if (ERROR_OK != retval) return retval; if (argc == 1) { unsigned wait; retval = parse_uint(args[0], &wait); if (ERROR_OK != retval) return ERROR_COMMAND_SYNTAX_ERROR; if (!wait) return ERROR_OK; } return handle_wait_halt_command(cmd_ctx, cmd, args, argc); } static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); LOG_USER("requesting target halt and executing a soft reset"); target->type->soft_reset_halt(target); return ERROR_OK; } static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc > 1) return ERROR_COMMAND_SYNTAX_ERROR; enum target_reset_mode reset_mode = RESET_RUN; if (argc == 1) { const Jim_Nvp *n; n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]); if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) { return ERROR_COMMAND_SYNTAX_ERROR; } reset_mode = n->value; } /* reset *all* targets */ return target_process_reset(cmd_ctx, reset_mode); } static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int current = 1; if (argc > 1) return ERROR_COMMAND_SYNTAX_ERROR; target_t *target = get_current_target(cmd_ctx); target_handle_event(target, TARGET_EVENT_OLD_pre_resume); /* with no args, resume from current pc, addr = 0, * with one arguments, addr = args[0], * handle breakpoints, not debugging */ uint32_t addr = 0; if (argc == 1) { int retval = parse_u32(args[0], &addr); if (ERROR_OK != retval) return retval; current = 0; } return target_resume(target, current, addr, 1, 0); } static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc > 1) return ERROR_COMMAND_SYNTAX_ERROR; LOG_DEBUG("-"); /* with no args, step from current pc, addr = 0, * with one argument addr = args[0], * handle breakpoints, debugging */ uint32_t addr = 0; if (argc == 1) { int retval = parse_u32(args[0], &addr); if (ERROR_OK != retval) return retval; } target_t *target = get_current_target(cmd_ctx); return target->type->step(target, 0, addr, 1); } static void handle_md_output(struct command_context_s *cmd_ctx, struct target_s *target, uint32_t address, unsigned size, unsigned count, const uint8_t *buffer) { const unsigned line_bytecnt = 32; unsigned line_modulo = line_bytecnt / size; char output[line_bytecnt * 4 + 1]; unsigned output_len = 0; const char *value_fmt; switch (size) { case 4: value_fmt = "%8.8x "; break; case 2: value_fmt = "%4.2x "; break; case 1: value_fmt = "%2.2x "; break; default: LOG_ERROR("invalid memory read size: %u", size); exit(-1); } for (unsigned i = 0; i < count; i++) { if (i % line_modulo == 0) { output_len += snprintf(output + output_len, sizeof(output) - output_len, "0x%8.8x: ", (unsigned)(address + (i*size))); } uint32_t value = 0; const uint8_t *value_ptr = buffer + i * size; switch (size) { case 4: value = target_buffer_get_u32(target, value_ptr); break; case 2: value = target_buffer_get_u16(target, value_ptr); break; case 1: value = *value_ptr; } output_len += snprintf(output + output_len, sizeof(output) - output_len, value_fmt, value); if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) { command_print(cmd_ctx, "%s", output); output_len = 0; } } } static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc < 1) return ERROR_COMMAND_SYNTAX_ERROR; unsigned size = 0; switch (cmd[2]) { case 'w': size = 4; break; case 'h': size = 2; break; case 'b': size = 1; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } uint32_t address; int retval = parse_u32(args[0], &address); if (ERROR_OK != retval) return retval; unsigned count = 1; if (argc == 2) { retval = parse_uint(args[1], &count); if (ERROR_OK != retval) return retval; } uint8_t *buffer = calloc(count, size); target_t *target = get_current_target(cmd_ctx); retval = target_read_memory(target, address, size, count, buffer); if (ERROR_OK == retval) handle_md_output(cmd_ctx, target, address, size, count, buffer); free(buffer); return retval; } static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if ((argc < 2) || (argc > 3)) return ERROR_COMMAND_SYNTAX_ERROR; uint32_t address; int retval = parse_u32(args[0], &address); if (ERROR_OK != retval) return retval; uint32_t value; retval = parse_u32(args[1], &value); if (ERROR_OK != retval) return retval; unsigned count = 1; if (argc == 3) { retval = parse_uint(args[2], &count); if (ERROR_OK != retval) return retval; } target_t *target = get_current_target(cmd_ctx); unsigned wordsize; uint8_t value_buf[4]; switch (cmd[2]) { case 'w': wordsize = 4; target_buffer_set_u32(target, value_buf, value); break; case 'h': wordsize = 2; target_buffer_set_u16(target, value_buf, value); break; case 'b': wordsize = 1; value_buf[0] = value; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } for (unsigned i = 0; i < count; i++) { retval = target_write_memory(target, address + i * wordsize, wordsize, 1, value_buf); if (ERROR_OK != retval) return retval; keep_alive(); } return ERROR_OK; } static int parse_load_image_command_args(char **args, int argc, image_t *image, uint32_t *min_address, uint32_t *max_address) { if (argc < 1 || argc > 5) return ERROR_COMMAND_SYNTAX_ERROR; /* a base address isn't always necessary, * default to 0x0 (i.e. don't relocate) */ if (argc >= 2) { uint32_t addr; int retval = parse_u32(args[1], &addr); if (ERROR_OK != retval) return ERROR_COMMAND_SYNTAX_ERROR; image->base_address = addr; image->base_address_set = 1; } else image->base_address_set = 0; image->start_address_set = 0; if (argc >= 4) { int retval = parse_u32(args[3], min_address); if (ERROR_OK != retval) return ERROR_COMMAND_SYNTAX_ERROR; } if (argc == 5) { int retval = parse_u32(args[4], max_address); if (ERROR_OK != retval) return ERROR_COMMAND_SYNTAX_ERROR; // use size (given) to find max (required) *max_address += *min_address; } if (*min_address > *max_address) return ERROR_COMMAND_SYNTAX_ERROR; return ERROR_OK; } static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { uint8_t *buffer; uint32_t buf_cnt; uint32_t image_size; uint32_t min_address = 0; uint32_t max_address = 0xffffffff; int i; int retvaltemp; image_t image; duration_t duration; char *duration_text; int retval = parse_load_image_command_args(args, argc, &image, &min_address, &max_address); if (ERROR_OK != retval) return retval; target_t *target = get_current_target(cmd_ctx); duration_start_measure(&duration); if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK) { return ERROR_OK; } image_size = 0x0; retval = ERROR_OK; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", (int)(image.sections[i].size)); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } uint32_t offset = 0; uint32_t length = buf_cnt; /* DANGER!!! beware of unsigned comparision here!!! */ if ((image.sections[i].base_address + buf_cnt >= min_address)&& (image.sections[i].base_address < max_address)) { if (image.sections[i].base_address < min_address) { /* clip addresses below */ offset += min_address-image.sections[i].base_address; length -= offset; } if (image.sections[i].base_address + buf_cnt > max_address) { length -= (image.sections[i].base_address + buf_cnt)-max_address; } if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK) { free(buffer); break; } image_size += length; command_print(cmd_ctx, "%u byte written at address 0x%8.8" PRIx32 "", (unsigned int)length, image.sections[i].base_address + offset); } free(buffer); } if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK) { image_close(&image); return retvaltemp; } if (retval == ERROR_OK) { command_print(cmd_ctx, "downloaded %u byte in %s", (unsigned int)image_size, duration_text); } free(duration_text); image_close(&image); return retval; } static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { fileio_t fileio; uint8_t buffer[560]; int retvaltemp; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if (argc != 3) { command_print(cmd_ctx, "usage: dump_image
"); return ERROR_OK; } uint32_t address; int retval = parse_u32(args[1], &address); if (ERROR_OK != retval) return retval; uint32_t size; retval = parse_u32(args[2], &size); if (ERROR_OK != retval) return retval; if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK) { return ERROR_OK; } duration_start_measure(&duration); while (size > 0) { uint32_t size_written; uint32_t this_run_size = (size > 560) ? 560 : size; retval = target_read_buffer(target, address, this_run_size, buffer); if (retval != ERROR_OK) { break; } retval = fileio_write(&fileio, this_run_size, buffer, &size_written); if (retval != ERROR_OK) { break; } size -= this_run_size; address += this_run_size; } if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK) return retvaltemp; if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK) return retvaltemp; if (retval == ERROR_OK) { command_print(cmd_ctx, "dumped %lld byte in %s", fileio.size, duration_text); free(duration_text); } return retval; } static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify) { uint8_t *buffer; uint32_t buf_cnt; uint32_t image_size; int i; int retval, retvaltemp; uint32_t checksum = 0; uint32_t mem_checksum = 0; image_t image; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if (argc < 1) { return ERROR_COMMAND_SYNTAX_ERROR; } if (!target) { LOG_ERROR("no target selected"); return ERROR_FAIL; } duration_start_measure(&duration); if (argc >= 2) { uint32_t addr; retval = parse_u32(args[1], &addr); if (ERROR_OK != retval) return ERROR_COMMAND_SYNTAX_ERROR; image.base_address = addr; image.base_address_set = 1; } else { image.base_address_set = 0; image.base_address = 0x0; } image.start_address_set = 0; if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK) { return retval; } image_size = 0x0; retval = ERROR_OK; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", (int)(image.sections[i].size)); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } if (verify) { /* calculate checksum of image */ image_calculate_checksum(buffer, buf_cnt, &checksum); retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum); if (retval != ERROR_OK) { free(buffer); break; } if (checksum != mem_checksum) { /* failed crc checksum, fall back to a binary compare */ uint8_t *data; command_print(cmd_ctx, "checksum mismatch - attempting binary compare"); data = (uint8_t*)malloc(buf_cnt); /* Can we use 32bit word accesses? */ int size = 1; int count = buf_cnt; if ((count % 4) == 0) { size *= 4; count /= 4; } retval = target_read_memory(target, image.sections[i].base_address, size, count, data); if (retval == ERROR_OK) { uint32_t t; for (t = 0; t < buf_cnt; t++) { if (data[t] != buffer[t]) { command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", (unsigned)(t + image.sections[i].base_address), data[t], buffer[t]); free(data); free(buffer); retval = ERROR_FAIL; goto done; } if ((t%16384) == 0) { keep_alive(); } } } free(data); } } else { command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "", image.sections[i].base_address, buf_cnt); } free(buffer); image_size += buf_cnt; } done: if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK) { image_close(&image); return retvaltemp; } if (retval == ERROR_OK) { command_print(cmd_ctx, "verified %u bytes in %s", (unsigned int)image_size, duration_text); } free(duration_text); image_close(&image); return retval; } static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1); } static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0); } static int handle_bp_command_list(struct command_context_s *cmd_ctx) { target_t *target = get_current_target(cmd_ctx); breakpoint_t *breakpoint = target->breakpoints; while (breakpoint) { if (breakpoint->type == BKPT_SOFT) { char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16); command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf); free(buf); } else { command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set); } breakpoint = breakpoint->next; } return ERROR_OK; } static int handle_bp_command_set(struct command_context_s *cmd_ctx, uint32_t addr, uint32_t length, int hw) { target_t *target = get_current_target(cmd_ctx); int retval = breakpoint_add(target, addr, length, hw); if (ERROR_OK == retval) command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr); else LOG_ERROR("Failure setting breakpoint"); return retval; } static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc == 0) return handle_bp_command_list(cmd_ctx); if (argc < 2 || argc > 3) { command_print(cmd_ctx, "usage: bp
['hw']"); return ERROR_COMMAND_SYNTAX_ERROR; } uint32_t addr; int retval = parse_u32(args[0], &addr); if (ERROR_OK != retval) return retval; uint32_t length; retval = parse_u32(args[1], &length); if (ERROR_OK != retval) return retval; int hw = BKPT_SOFT; if (argc == 3) { if (strcmp(args[2], "hw") == 0) hw = BKPT_HARD; else return ERROR_COMMAND_SYNTAX_ERROR; } return handle_bp_command_set(cmd_ctx, addr, length, hw); } static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc != 1) return ERROR_COMMAND_SYNTAX_ERROR; uint32_t addr; int retval = parse_u32(args[0], &addr); if (ERROR_OK != retval) return retval; target_t *target = get_current_target(cmd_ctx); breakpoint_remove(target, addr); return ERROR_OK; } static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc == 0) { watchpoint_t *watchpoint = target->watchpoints; while (watchpoint) { command_print(cmd_ctx, "address: 0x%8.8" PRIx32 ", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32 "", watchpoint->address, watchpoint->length, (int)(watchpoint->rw), watchpoint->value, watchpoint->mask); watchpoint = watchpoint->next; } return ERROR_OK; } enum watchpoint_rw type = WPT_ACCESS; uint32_t addr = 0; uint32_t length = 0; uint32_t data_value = 0x0; uint32_t data_mask = 0xffffffff; int retval; switch (argc) { case 5: retval = parse_u32(args[4], &data_mask); if (ERROR_OK != retval) return retval; // fall through case 4: retval = parse_u32(args[3], &data_value); if (ERROR_OK != retval) return retval; // fall through case 3: switch (args[2][0]) { case 'r': type = WPT_READ; break; case 'w': type = WPT_WRITE; break; case 'a': type = WPT_ACCESS; break; default: LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]); return ERROR_COMMAND_SYNTAX_ERROR; } // fall through case 2: retval = parse_u32(args[1], &length); if (ERROR_OK != retval) return retval; retval = parse_u32(args[0], &addr); if (ERROR_OK != retval) return retval; break; default: command_print(cmd_ctx, "usage: wp
[r/w/a] [value] [mask]"); return ERROR_COMMAND_SYNTAX_ERROR; } retval = watchpoint_add(target, addr, length, type, data_value, data_mask); if (ERROR_OK != retval) LOG_ERROR("Failure setting watchpoints"); return retval; } static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc != 1) return ERROR_COMMAND_SYNTAX_ERROR; uint32_t addr; int retval = parse_u32(args[0], &addr); if (ERROR_OK != retval) return retval; target_t *target = get_current_target(cmd_ctx); watchpoint_remove(target, addr); return ERROR_OK; } /** * Translate a virtual address to a physical address. * * The low-level target implementation must have logged a detailed error * which is forwarded to telnet/GDB session. */ static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc) { if (argc != 1) return ERROR_COMMAND_SYNTAX_ERROR; uint32_t va; int retval = parse_u32(args[0], &va); if (ERROR_OK != retval) return retval; uint32_t pa; target_t *target = get_current_target(cmd_ctx); retval = target->type->virt2phys(target, va, &pa); if (retval == ERROR_OK) command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa); return retval; } static void writeData(FILE *f, const void *data, size_t len) { size_t written = fwrite(data, 1, len, f); if (written != len) LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno)); } static void writeLong(FILE *f, int l) { int i; for (i = 0; i < 4; i++) { char c = (l >> (i*8))&0xff; writeData(f, &c, 1); } } static void writeString(FILE *f, char *s) { writeData(f, s, strlen(s)); } /* Dump a gmon.out histogram file. */ static void writeGmon(uint32_t *samples, uint32_t sampleNum, char *filename) { uint32_t i; FILE *f = fopen(filename, "w"); if (f == NULL) return; writeString(f, "gmon"); writeLong(f, 0x00000001); /* Version */ writeLong(f, 0); /* padding */ writeLong(f, 0); /* padding */ writeLong(f, 0); /* padding */ uint8_t zero = 0; /* GMON_TAG_TIME_HIST */ writeData(f, &zero, 1); /* figure out bucket size */ uint32_t min = samples[0]; uint32_t max = samples[0]; for (i = 0; i < sampleNum; i++) { if (min > samples[i]) { min = samples[i]; } if (max < samples[i]) { max = samples[i]; } } int addressSpace = (max-min + 1); static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */ uint32_t length = addressSpace; if (length > maxBuckets) { length = maxBuckets; } int *buckets = malloc(sizeof(int)*length); if (buckets == NULL) { fclose(f); return; } memset(buckets, 0, sizeof(int)*length); for (i = 0; i < sampleNum;i++) { uint32_t address = samples[i]; long long a = address-min; long long b = length-1; long long c = addressSpace-1; int index = (a*b)/c; /* danger!!!! int32 overflows */ buckets[index]++; } /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */ writeLong(f, min); /* low_pc */ writeLong(f, max); /* high_pc */ writeLong(f, length); /* # of samples */ writeLong(f, 64000000); /* 64MHz */ writeString(f, "seconds"); for (i = 0; i < (15-strlen("seconds")); i++) writeData(f, &zero, 1); writeString(f, "s"); /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */ char *data = malloc(2*length); if (data != NULL) { for (i = 0; i < length;i++) { int val; val = buckets[i]; if (val > 65535) { val = 65535; } data[i*2]=val&0xff; data[i*2 + 1]=(val >> 8)&0xff; } free(buckets); writeData(f, data, length * 2); free(data); } else { free(buckets); } fclose(f); } /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */ static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); struct timeval timeout, now; gettimeofday(&timeout, NULL); if (argc != 2) { return ERROR_COMMAND_SYNTAX_ERROR; } unsigned offset; int retval = parse_uint(args[0], &offset); if (ERROR_OK != retval) return retval; timeval_add_time(&timeout, offset, 0); command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can..."); static const int maxSample = 10000; uint32_t *samples = malloc(sizeof(uint32_t)*maxSample); if (samples == NULL) return ERROR_OK; int numSamples = 0; /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */ reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1); for (;;) { target_poll(target); if (target->state == TARGET_HALTED) { uint32_t t=*((uint32_t *)reg->value); samples[numSamples++]=t; retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */ target_poll(target); alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */ } else if (target->state == TARGET_RUNNING) { /* We want to quickly sample the PC. */ if ((retval = target_halt(target)) != ERROR_OK) { free(samples); return retval; } } else { command_print(cmd_ctx, "Target not halted or running"); retval = ERROR_OK; break; } if (retval != ERROR_OK) { break; } gettimeofday(&now, NULL); if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) { command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples); if ((retval = target_poll(target)) != ERROR_OK) { free(samples); return retval; } if (target->state == TARGET_HALTED) { target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */ } if ((retval = target_poll(target)) != ERROR_OK) { free(samples); return retval; } writeGmon(samples, numSamples, args[1]); command_print(cmd_ctx, "Wrote %s", args[1]); break; } } free(samples); return ERROR_OK; } static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val) { char *namebuf; Jim_Obj *nameObjPtr, *valObjPtr; int result; namebuf = alloc_printf("%s(%d)", varname, idx); if (!namebuf) return JIM_ERR; nameObjPtr = Jim_NewStringObj(interp, namebuf, -1); valObjPtr = Jim_NewIntObj(interp, val); if (!nameObjPtr || !valObjPtr) { free(namebuf); return JIM_ERR; } Jim_IncrRefCount(nameObjPtr); Jim_IncrRefCount(valObjPtr); result = Jim_SetVariable(interp, nameObjPtr, valObjPtr); Jim_DecrRefCount(interp, nameObjPtr); Jim_DecrRefCount(interp, valObjPtr); free(namebuf); /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */ return result; } static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { command_context_t *context; target_t *target; context = Jim_GetAssocData(interp, "context"); if (context == NULL) { LOG_ERROR("mem2array: no command context"); return JIM_ERR; } target = get_current_target(context); if (target == NULL) { LOG_ERROR("mem2array: no current target"); return JIM_ERR; } return target_mem2array(interp, target, argc-1, argv + 1); } static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv) { long l; uint32_t width; int len; uint32_t addr; uint32_t count; uint32_t v; const char *varname; uint8_t buffer[4096]; int n, e, retval; uint32_t i; /* argv[1] = name of array to receive the data * argv[2] = desired width * argv[3] = memory address * argv[4] = count of times to read */ if (argc != 4) { Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems"); return JIM_ERR; } varname = Jim_GetString(argv[0], &len); /* given "foo" get space for worse case "foo(%d)" .. add 20 */ e = Jim_GetLong(interp, argv[1], &l); width = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[2], &l); addr = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[3], &l); len = l; if (e != JIM_OK) { return e; } switch (width) { case 8: width = 1; break; case 16: width = 2; break; case 32: width = 4; break; default: Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL); return JIM_ERR; } if (len == 0) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL); return JIM_ERR; } if ((addr + (len * width)) < addr) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL); return JIM_ERR; } /* absurd transfer size? */ if (len > 65536) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL); return JIM_ERR; } if ((width == 1) || ((width == 2) && ((addr & 1) == 0)) || ((width == 4) && ((addr & 3) == 0))) { /* all is well */ } else { char buf[100]; Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads", addr, width); Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL); return JIM_ERR; } /* Transfer loop */ /* index counter */ n = 0; /* assume ok */ e = JIM_OK; while (len) { /* Slurp... in buffer size chunks */ count = len; /* in objects.. */ if (count > (sizeof(buffer)/width)) { count = (sizeof(buffer)/width); } retval = target_read_memory(target, addr, width, count, buffer); if (retval != ERROR_OK) { /* BOO !*/ LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", (unsigned int)addr, (int)width, (int)count); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL); e = JIM_ERR; len = 0; } else { v = 0; /* shut up gcc */ for (i = 0 ;i < count ;i++, n++) { switch (width) { case 4: v = target_buffer_get_u32(target, &buffer[i*width]); break; case 2: v = target_buffer_get_u16(target, &buffer[i*width]); break; case 1: v = buffer[i] & 0x0ff; break; } new_int_array_element(interp, varname, n, v); } len -= count; } } Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); return JIM_OK; } static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val) { char *namebuf; Jim_Obj *nameObjPtr, *valObjPtr; int result; long l; namebuf = alloc_printf("%s(%d)", varname, idx); if (!namebuf) return JIM_ERR; nameObjPtr = Jim_NewStringObj(interp, namebuf, -1); if (!nameObjPtr) { free(namebuf); return JIM_ERR; } Jim_IncrRefCount(nameObjPtr); valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG); Jim_DecrRefCount(interp, nameObjPtr); free(namebuf); if (valObjPtr == NULL) return JIM_ERR; result = Jim_GetLong(interp, valObjPtr, &l); /* printf("%s(%d) => 0%08x\n", varname, idx, val); */ *val = l; return result; } static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { command_context_t *context; target_t *target; context = Jim_GetAssocData(interp, "context"); if (context == NULL) { LOG_ERROR("array2mem: no command context"); return JIM_ERR; } target = get_current_target(context); if (target == NULL) { LOG_ERROR("array2mem: no current target"); return JIM_ERR; } return target_array2mem(interp,target, argc-1, argv + 1); } static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv) { long l; uint32_t width; int len; uint32_t addr; uint32_t count; uint32_t v; const char *varname; uint8_t buffer[4096]; int n, e, retval; uint32_t i; /* argv[1] = name of array to get the data * argv[2] = desired width * argv[3] = memory address * argv[4] = count to write */ if (argc != 4) { Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems"); return JIM_ERR; } varname = Jim_GetString(argv[0], &len); /* given "foo" get space for worse case "foo(%d)" .. add 20 */ e = Jim_GetLong(interp, argv[1], &l); width = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[2], &l); addr = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[3], &l); len = l; if (e != JIM_OK) { return e; } switch (width) { case 8: width = 1; break; case 16: width = 2; break; case 32: width = 4; break; default: Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL); return JIM_ERR; } if (len == 0) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL); return JIM_ERR; } if ((addr + (len * width)) < addr) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL); return JIM_ERR; } /* absurd transfer size? */ if (len > 65536) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL); return JIM_ERR; } if ((width == 1) || ((width == 2) && ((addr & 1) == 0)) || ((width == 4) && ((addr & 3) == 0))) { /* all is well */ } else { char buf[100]; Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", (unsigned int)addr, (int)width); Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL); return JIM_ERR; } /* Transfer loop */ /* index counter */ n = 0; /* assume ok */ e = JIM_OK; while (len) { /* Slurp... in buffer size chunks */ count = len; /* in objects.. */ if (count > (sizeof(buffer)/width)) { count = (sizeof(buffer)/width); } v = 0; /* shut up gcc */ for (i = 0 ;i < count ;i++, n++) { get_int_array_element(interp, varname, n, &v); switch (width) { case 4: target_buffer_set_u32(target, &buffer[i*width], v); break; case 2: target_buffer_set_u16(target, &buffer[i*width], v); break; case 1: buffer[i] = v & 0x0ff; break; } } len -= count; retval = target_write_memory(target, addr, width, count, buffer); if (retval != ERROR_OK) { /* BOO !*/ LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", (unsigned int)addr, (int)width, (int)count); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL); e = JIM_ERR; len = 0; } } Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); return JIM_OK; } void target_all_handle_event(enum target_event e) { target_t *target; LOG_DEBUG("**all*targets: event: %d, %s", (int)e, Jim_Nvp_value2name_simple(nvp_target_event, e)->name); target = all_targets; while (target) { target_handle_event(target, e); target = target->next; } } void target_handle_event(target_t *target, enum target_event e) { target_event_action_t *teap; int done; teap = target->event_action; done = 0; while (teap) { if (teap->event == e) { done = 1; LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s", target->target_number, target->cmd_name, target_get_name(target), e, Jim_Nvp_value2name_simple(nvp_target_event, e)->name, Jim_GetString(teap->body, NULL)); if (Jim_EvalObj(interp, teap->body) != JIM_OK) { Jim_PrintErrorMessage(interp); } } teap = teap->next; } if (!done) { LOG_DEBUG("event: %d %s - no action", e, Jim_Nvp_value2name_simple(nvp_target_event, e)->name); } } enum target_cfg_param { TCFG_TYPE, TCFG_EVENT, TCFG_WORK_AREA_VIRT, TCFG_WORK_AREA_PHYS, TCFG_WORK_AREA_SIZE, TCFG_WORK_AREA_BACKUP, TCFG_ENDIAN, TCFG_VARIANT, TCFG_CHAIN_POSITION, }; static Jim_Nvp nvp_config_opts[] = { { .name = "-type", .value = TCFG_TYPE }, { .name = "-event", .value = TCFG_EVENT }, { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT }, { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS }, { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE }, { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP }, { .name = "-endian" , .value = TCFG_ENDIAN }, { .name = "-variant", .value = TCFG_VARIANT }, { .name = "-chain-position", .value = TCFG_CHAIN_POSITION }, { .name = NULL, .value = -1 } }; static int target_configure(Jim_GetOptInfo *goi, target_t *target) { Jim_Nvp *n; Jim_Obj *o; jim_wide w; char *cp; int e; /* parse config or cget options ... */ while (goi->argc > 0) { Jim_SetEmptyResult(goi->interp); /* Jim_GetOpt_Debug(goi); */ if (target->type->target_jim_configure) { /* target defines a configure function */ /* target gets first dibs on parameters */ e = (*(target->type->target_jim_configure))(target, goi); if (e == JIM_OK) { /* more? */ continue; } if (e == JIM_ERR) { /* An error */ return e; } /* otherwise we 'continue' below */ } e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0); return e; } switch (n->value) { case TCFG_TYPE: /* not setable */ if (goi->isconfigure) { Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name); return JIM_ERR; } else { no_params: if (goi->argc != 0) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS"); return JIM_ERR; } } Jim_SetResultString(goi->interp, target_get_name(target), -1); /* loop for more */ break; case TCFG_EVENT: if (goi->argc == 0) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ..."); return JIM_ERR; } e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1); return e; } if (goi->isconfigure) { if (goi->argc != 1) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?"); return JIM_ERR; } } else { if (goi->argc != 0) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?"); return JIM_ERR; } } { target_event_action_t *teap; teap = target->event_action; /* replace existing? */ while (teap) { if (teap->event == (enum target_event)n->value) { break; } teap = teap->next; } if (goi->isconfigure) { if (teap == NULL) { /* create new */ teap = calloc(1, sizeof(*teap)); } teap->event = n->value; Jim_GetOpt_Obj(goi, &o); if (teap->body) { Jim_DecrRefCount(interp, teap->body); } teap->body = Jim_DuplicateObj(goi->interp, o); /* * FIXME: * Tcl/TK - "tk events" have a nice feature. * See the "BIND" command. * We should support that here. * You can specify %X and %Y in the event code. * The idea is: %T - target name. * The idea is: %N - target number * The idea is: %E - event name. */ Jim_IncrRefCount(teap->body); /* add to head of event list */ teap->next = target->event_action; target->event_action = teap; Jim_SetEmptyResult(goi->interp); } else { /* get */ if (teap == NULL) { Jim_SetEmptyResult(goi->interp); } else { Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body)); } } } /* loop for more */ break; case TCFG_WORK_AREA_VIRT: if (goi->isconfigure) { target_free_all_working_areas(target); e = Jim_GetOpt_Wide(goi, &w); if (e != JIM_OK) { return e; } target->working_area_virt = w; } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt)); /* loop for more */ break; case TCFG_WORK_AREA_PHYS: if (goi->isconfigure) { target_free_all_working_areas(target); e = Jim_GetOpt_Wide(goi, &w); if (e != JIM_OK) { return e; } target->working_area_phys = w; } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys)); /* loop for more */ break; case TCFG_WORK_AREA_SIZE: if (goi->isconfigure) { target_free_all_working_areas(target); e = Jim_GetOpt_Wide(goi, &w); if (e != JIM_OK) { return e; } target->working_area_size = w; } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size)); /* loop for more */ break; case TCFG_WORK_AREA_BACKUP: if (goi->isconfigure) { target_free_all_working_areas(target); e = Jim_GetOpt_Wide(goi, &w); if (e != JIM_OK) { return e; } /* make this exactly 1 or 0 */ target->backup_working_area = (!!w); } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area)); /* loop for more e*/ break; case TCFG_ENDIAN: if (goi->isconfigure) { e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1); return e; } target->endianness = n->value; } else { if (goi->argc != 0) { goto no_params; } } n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness); if (n->name == NULL) { target->endianness = TARGET_LITTLE_ENDIAN; n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness); } Jim_SetResultString(goi->interp, n->name, -1); /* loop for more */ break; case TCFG_VARIANT: if (goi->isconfigure) { if (goi->argc < 1) { Jim_SetResult_sprintf(goi->interp, "%s ?STRING?", n->name); return JIM_ERR; } if (target->variant) { free((void *)(target->variant)); } e = Jim_GetOpt_String(goi, &cp, NULL); target->variant = strdup(cp); } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResultString(goi->interp, target->variant,-1); /* loop for more */ break; case TCFG_CHAIN_POSITION: if (goi->isconfigure) { Jim_Obj *o; jtag_tap_t *tap; target_free_all_working_areas(target); e = Jim_GetOpt_Obj(goi, &o); if (e != JIM_OK) { return e; } tap = jtag_tap_by_jim_obj(goi->interp, o); if (tap == NULL) { return JIM_ERR; } /* make this exactly 1 or 0 */ target->tap = tap; } else { if (goi->argc != 0) { goto no_params; } } Jim_SetResultString(interp, target->tap->dotted_name, -1); /* loop for more e*/ break; } } /* while (goi->argc) */ /* done - we return */ return JIM_OK; } /** this is the 'tcl' handler for the target specific command */ static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_GetOptInfo goi; jim_wide a,b,c; int x,y,z; uint8_t target_buf[32]; Jim_Nvp *n; target_t *target; struct command_context_s *cmd_ctx; int e; enum { TS_CMD_CONFIGURE, TS_CMD_CGET, TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB, TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB, TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB, TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM, TS_CMD_EXAMINE, TS_CMD_POLL, TS_CMD_RESET, TS_CMD_HALT, TS_CMD_WAITSTATE, TS_CMD_EVENTLIST, TS_CMD_CURSTATE, TS_CMD_INVOKE_EVENT, }; static const Jim_Nvp target_options[] = { { .name = "configure", .value = TS_CMD_CONFIGURE }, { .name = "cget", .value = TS_CMD_CGET }, { .name = "mww", .value = TS_CMD_MWW }, { .name = "mwh", .value = TS_CMD_MWH }, { .name = "mwb", .value = TS_CMD_MWB }, { .name = "mdw", .value = TS_CMD_MDW }, { .name = "mdh", .value = TS_CMD_MDH }, { .name = "mdb", .value = TS_CMD_MDB }, { .name = "mem2array", .value = TS_CMD_MEM2ARRAY }, { .name = "array2mem", .value = TS_CMD_ARRAY2MEM }, { .name = "eventlist", .value = TS_CMD_EVENTLIST }, { .name = "curstate", .value = TS_CMD_CURSTATE }, { .name = "arp_examine", .value = TS_CMD_EXAMINE }, { .name = "arp_poll", .value = TS_CMD_POLL }, { .name = "arp_reset", .value = TS_CMD_RESET }, { .name = "arp_halt", .value = TS_CMD_HALT }, { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE }, { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT }, { .name = NULL, .value = -1 }, }; /* go past the "command" */ Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1); target = Jim_CmdPrivData(goi.interp); cmd_ctx = Jim_GetAssocData(goi.interp, "context"); /* commands here are in an NVP table */ e = Jim_GetOpt_Nvp(&goi, target_options, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(&goi, target_options, 0); return e; } /* Assume blank result */ Jim_SetEmptyResult(goi.interp); switch (n->value) { case TS_CMD_CONFIGURE: if (goi.argc < 2) { Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ..."); return JIM_ERR; } goi.isconfigure = 1; return target_configure(&goi, target); case TS_CMD_CGET: // some things take params if (goi.argc < 1) { Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?"); return JIM_ERR; } goi.isconfigure = 0; return target_configure(&goi, target); break; case TS_CMD_MWW: case TS_CMD_MWH: case TS_CMD_MWB: /* argv[0] = cmd * argv[1] = address * argv[2] = data * argv[3] = optional count. */ if ((goi.argc == 2) || (goi.argc == 3)) { /* all is well */ } else { mwx_error: Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name); return JIM_ERR; } e = Jim_GetOpt_Wide(&goi, &a); if (e != JIM_OK) { goto mwx_error; } e = Jim_GetOpt_Wide(&goi, &b); if (e != JIM_OK) { goto mwx_error; } if (goi.argc == 3) { e = Jim_GetOpt_Wide(&goi, &c); if (e != JIM_OK) { goto mwx_error; } } else { c = 1; } switch (n->value) { case TS_CMD_MWW: target_buffer_set_u32(target, target_buf, b); b = 4; break; case TS_CMD_MWH: target_buffer_set_u16(target, target_buf, b); b = 2; break; case TS_CMD_MWB: target_buffer_set_u8(target, target_buf, b); b = 1; break; } for (x = 0 ; x < c ; x++) { e = target_write_memory(target, a, b, 1, target_buf); if (e != ERROR_OK) { Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e); return JIM_ERR; } /* b = width */ a = a + b; } return JIM_OK; break; /* display */ case TS_CMD_MDW: case TS_CMD_MDH: case TS_CMD_MDB: /* argv[0] = command * argv[1] = address * argv[2] = optional count */ if ((goi.argc == 2) || (goi.argc == 3)) { Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name); return JIM_ERR; } e = Jim_GetOpt_Wide(&goi, &a); if (e != JIM_OK) { return JIM_ERR; } if (goi.argc) { e = Jim_GetOpt_Wide(&goi, &c); if (e != JIM_OK) { return JIM_ERR; } } else { c = 1; } b = 1; /* shut up gcc */ switch (n->value) { case TS_CMD_MDW: b = 4; break; case TS_CMD_MDH: b = 2; break; case TS_CMD_MDB: b = 1; break; } /* convert to "bytes" */ c = c * b; /* count is now in 'BYTES' */ while (c > 0) { y = c; if (y > 16) { y = 16; } e = target_read_memory(target, a, b, y / b, target_buf); if (e != ERROR_OK) { Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a)); return JIM_ERR; } Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a)); switch (b) { case 4: for (x = 0 ; (x < 16) && (x < y) ; x += 4) { z = target_buffer_get_u32(target, &(target_buf[ x * 4 ])); Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z)); } for (; (x < 16) ; x += 4) { Jim_fprintf(interp, interp->cookie_stdout, " "); } break; case 2: for (x = 0 ; (x < 16) && (x < y) ; x += 2) { z = target_buffer_get_u16(target, &(target_buf[ x * 2 ])); Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z)); } for (; (x < 16) ; x += 2) { Jim_fprintf(interp, interp->cookie_stdout, " "); } break; case 1: default: for (x = 0 ; (x < 16) && (x < y) ; x += 1) { z = target_buffer_get_u8(target, &(target_buf[ x * 4 ])); Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z)); } for (; (x < 16) ; x += 1) { Jim_fprintf(interp, interp->cookie_stdout, " "); } break; } /* ascii-ify the bytes */ for (x = 0 ; x < y ; x++) { if ((target_buf[x] >= 0x20) && (target_buf[x] <= 0x7e)) { /* good */ } else { /* smack it */ target_buf[x] = '.'; } } /* space pad */ while (x < 16) { target_buf[x] = ' '; x++; } /* terminate */ target_buf[16] = 0; /* print - with a newline */ Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf); /* NEXT... */ c -= 16; a += 16; } return JIM_OK; case TS_CMD_MEM2ARRAY: return target_mem2array(goi.interp, target, goi.argc, goi.argv); break; case TS_CMD_ARRAY2MEM: return target_array2mem(goi.interp, target, goi.argc, goi.argv); break; case TS_CMD_EXAMINE: if (goi.argc) { Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]"); return JIM_ERR; } if (!target->tap->enabled) goto err_tap_disabled; e = target->type->examine(target); if (e != ERROR_OK) { Jim_SetResult_sprintf(interp, "examine-fails: %d", e); return JIM_ERR; } return JIM_OK; case TS_CMD_POLL: if (goi.argc) { Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]"); return JIM_ERR; } if (!target->tap->enabled) goto err_tap_disabled; if (!(target_was_examined(target))) { e = ERROR_TARGET_NOT_EXAMINED; } else { e = target->type->poll(target); } if (e != ERROR_OK) { Jim_SetResult_sprintf(interp, "poll-fails: %d", e); return JIM_ERR; } else { return JIM_OK; } break; case TS_CMD_RESET: if (goi.argc != 2) { Jim_WrongNumArgs(interp, 2, argv, "t | f|assert | deassert BOOL"); return JIM_ERR; } e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1); return e; } /* the halt or not param */ e = Jim_GetOpt_Wide(&goi, &a); if (e != JIM_OK) { return e; } if (!target->tap->enabled) goto err_tap_disabled; /* determine if we should halt or not. */ target->reset_halt = !!a; /* When this happens - all workareas are invalid. */ target_free_all_working_areas_restore(target, 0); /* do the assert */ if (n->value == NVP_ASSERT) { target->type->assert_reset(target); } else { target->type->deassert_reset(target); } return JIM_OK; case TS_CMD_HALT: if (goi.argc) { Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]"); return JIM_ERR; } if (!target->tap->enabled) goto err_tap_disabled; target->type->halt(target); return JIM_OK; case TS_CMD_WAITSTATE: /* params: statename timeoutmsecs */ if (goi.argc != 2) { Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name); return JIM_ERR; } e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1); return e; } e = Jim_GetOpt_Wide(&goi, &a); if (e != JIM_OK) { return e; } if (!target->tap->enabled) goto err_tap_disabled; e = target_wait_state(target, n->value, a); if (e != ERROR_OK) { Jim_SetResult_sprintf(goi.interp, "target: %s wait %s fails (%d) %s", target->cmd_name, n->name, e, target_strerror_safe(e)); return JIM_ERR; } else { return JIM_OK; } case TS_CMD_EVENTLIST: /* List for human, Events defined for this target. * scripts/programs should use 'name cget -event NAME' */ { target_event_action_t *teap; teap = target->event_action; command_print(cmd_ctx, "Event actions for target (%d) %s\n", target->target_number, target->cmd_name); command_print(cmd_ctx, "%-25s | Body", "Event"); command_print(cmd_ctx, "------------------------- | ----------------------------------------"); while (teap) { command_print(cmd_ctx, "%-25s | %s", Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name, Jim_GetString(teap->body, NULL)); teap = teap->next; } command_print(cmd_ctx, "***END***"); return JIM_OK; } case TS_CMD_CURSTATE: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]"); return JIM_ERR; } Jim_SetResultString(goi.interp, target_state_name( target ), -1); return JIM_OK; case TS_CMD_INVOKE_EVENT: if (goi.argc != 1) { Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name); return JIM_ERR; } e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n); if (e != JIM_OK) { Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1); return e; } target_handle_event(target, n->value); return JIM_OK; } return JIM_ERR; err_tap_disabled: Jim_SetResult_sprintf(interp, "[TAP is disabled]"); return JIM_ERR; } static int target_create(Jim_GetOptInfo *goi) { Jim_Obj *new_cmd; Jim_Cmd *cmd; const char *cp; char *cp2; int e; int x; target_t *target; struct command_context_s *cmd_ctx; cmd_ctx = Jim_GetAssocData(goi->interp, "context"); if (goi->argc < 3) { Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options..."); return JIM_ERR; } /* COMMAND */ Jim_GetOpt_Obj(goi, &new_cmd); /* does this command exist? */ cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG); if (cmd) { cp = Jim_GetString(new_cmd, NULL); Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp); return JIM_ERR; } /* TYPE */ e = Jim_GetOpt_String(goi, &cp2, NULL); cp = cp2; /* now does target type exist */ for (x = 0 ; target_types[x] ; x++) { if (0 == strcmp(cp, target_types[x]->name)) { /* found */ break; } } if (target_types[x] == NULL) { Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp); for (x = 0 ; target_types[x] ; x++) { if (target_types[x + 1]) { Jim_AppendStrings(goi->interp, Jim_GetResult(goi->interp), target_types[x]->name, ", ", NULL); } else { Jim_AppendStrings(goi->interp, Jim_GetResult(goi->interp), " or ", target_types[x]->name,NULL); } } return JIM_ERR; } /* Create it */ target = calloc(1,sizeof(target_t)); /* set target number */ target->target_number = new_target_number(); /* allocate memory for each unique target type */ target->type = (target_type_t*)calloc(1,sizeof(target_type_t)); memcpy(target->type, target_types[x], sizeof(target_type_t)); /* will be set by "-endian" */ target->endianness = TARGET_ENDIAN_UNKNOWN; target->working_area = 0x0; target->working_area_size = 0x0; target->working_areas = NULL; target->backup_working_area = 0; target->state = TARGET_UNKNOWN; target->debug_reason = DBG_REASON_UNDEFINED; target->reg_cache = NULL; target->breakpoints = NULL; target->watchpoints = NULL; target->next = NULL; target->arch_info = NULL; target->display = 1; /* initialize trace information */ target->trace_info = malloc(sizeof(trace_t)); target->trace_info->num_trace_points = 0; target->trace_info->trace_points_size = 0; target->trace_info->trace_points = NULL; target->trace_info->trace_history_size = 0; target->trace_info->trace_history = NULL; target->trace_info->trace_history_pos = 0; target->trace_info->trace_history_overflowed = 0; target->dbgmsg = NULL; target->dbg_msg_enabled = 0; target->endianness = TARGET_ENDIAN_UNKNOWN; /* Do the rest as "configure" options */ goi->isconfigure = 1; e = target_configure(goi, target); if (target->tap == NULL) { Jim_SetResultString(interp, "-chain-position required when creating target", -1); e = JIM_ERR; } if (e != JIM_OK) { free(target->type); free(target); return e; } if (target->endianness == TARGET_ENDIAN_UNKNOWN) { /* default endian to little if not specified */ target->endianness = TARGET_LITTLE_ENDIAN; } /* incase variant is not set */ if (!target->variant) target->variant = strdup(""); /* create the target specific commands */ if (target->type->register_commands) { (*(target->type->register_commands))(cmd_ctx); } if (target->type->target_create) { (*(target->type->target_create))(target, goi->interp); } /* append to end of list */ { target_t **tpp; tpp = &(all_targets); while (*tpp) { tpp = &((*tpp)->next); } *tpp = target; } cp = Jim_GetString(new_cmd, NULL); target->cmd_name = strdup(cp); /* now - create the new target name command */ e = Jim_CreateCommand(goi->interp, /* name */ cp, tcl_target_func, /* C function */ target, /* private data */ NULL); /* no del proc */ return e; } static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int x,r,e; jim_wide w; struct command_context_s *cmd_ctx; target_t *target; Jim_GetOptInfo goi; enum tcmd { /* TG = target generic */ TG_CMD_CREATE, TG_CMD_TYPES, TG_CMD_NAMES, TG_CMD_CURRENT, TG_CMD_NUMBER, TG_CMD_COUNT, }; const char *target_cmds[] = { "create", "types", "names", "current", "number", "count", NULL /* terminate */ }; LOG_DEBUG("Target command params:"); LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv)); cmd_ctx = Jim_GetAssocData(interp, "context"); Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1); if (goi.argc == 0) { Jim_WrongNumArgs(interp, 1, argv, "missing: command ..."); return JIM_ERR; } /* Jim_GetOpt_Debug(&goi); */ r = Jim_GetOpt_Enum(&goi, target_cmds, &x); if (r != JIM_OK) { return r; } switch (x) { default: Jim_Panic(goi.interp,"Why am I here?"); return JIM_ERR; case TG_CMD_CURRENT: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters"); return JIM_ERR; } Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1); return JIM_OK; case TG_CMD_TYPES: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters"); return JIM_ERR; } Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0)); for (x = 0 ; target_types[x] ; x++) { Jim_ListAppendElement(goi.interp, Jim_GetResult(goi.interp), Jim_NewStringObj(goi.interp, target_types[x]->name, -1)); } return JIM_OK; case TG_CMD_NAMES: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters"); return JIM_ERR; } Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0)); target = all_targets; while (target) { Jim_ListAppendElement(goi.interp, Jim_GetResult(goi.interp), Jim_NewStringObj(goi.interp, target->cmd_name, -1)); target = target->next; } return JIM_OK; case TG_CMD_CREATE: if (goi.argc < 3) { Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name ... config options ..."); return JIM_ERR; } return target_create(&goi); break; case TG_CMD_NUMBER: if (goi.argc != 1) { Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?"); return JIM_ERR; } e = Jim_GetOpt_Wide(&goi, &w); if (e != JIM_OK) { return JIM_ERR; } { target_t *t; t = get_target_by_num(w); if (t == NULL) { Jim_SetResult_sprintf(goi.interp,"Target: number %d does not exist", (int)(w)); return JIM_ERR; } Jim_SetResultString(goi.interp, t->cmd_name, -1); return JIM_OK; } case TG_CMD_COUNT: if (goi.argc != 0) { Jim_WrongNumArgs(goi.interp, 0, goi.argv, ""); return JIM_ERR; } Jim_SetResult(goi.interp, Jim_NewIntObj(goi.interp, max_target_number())); return JIM_OK; } return JIM_ERR; } struct FastLoad { uint32_t address; uint8_t *data; int length; }; static int fastload_num; static struct FastLoad *fastload; static void free_fastload(void) { if (fastload != NULL) { int i; for (i = 0; i < fastload_num; i++) { if (fastload[i].data) free(fastload[i].data); } free(fastload); fastload = NULL; } } static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { uint8_t *buffer; uint32_t buf_cnt; uint32_t image_size; uint32_t min_address = 0; uint32_t max_address = 0xffffffff; int i; image_t image; duration_t duration; char *duration_text; int retval = parse_load_image_command_args(args, argc, &image, &min_address, &max_address); if (ERROR_OK != retval) return retval; duration_start_measure(&duration); if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK) { return ERROR_OK; } image_size = 0x0; retval = ERROR_OK; fastload_num = image.num_sections; fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections); if (fastload == NULL) { image_close(&image); return ERROR_FAIL; } memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections); for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", (int)(image.sections[i].size)); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } uint32_t offset = 0; uint32_t length = buf_cnt; /* DANGER!!! beware of unsigned comparision here!!! */ if ((image.sections[i].base_address + buf_cnt >= min_address)&& (image.sections[i].base_address < max_address)) { if (image.sections[i].base_address < min_address) { /* clip addresses below */ offset += min_address-image.sections[i].base_address; length -= offset; } if (image.sections[i].base_address + buf_cnt > max_address) { length -= (image.sections[i].base_address + buf_cnt)-max_address; } fastload[i].address = image.sections[i].base_address + offset; fastload[i].data = malloc(length); if (fastload[i].data == NULL) { free(buffer); break; } memcpy(fastload[i].data, buffer + offset, length); fastload[i].length = length; image_size += length; command_print(cmd_ctx, "%u byte written at address 0x%8.8x", (unsigned int)length, ((unsigned int)(image.sections[i].base_address + offset))); } free(buffer); } duration_stop_measure(&duration, &duration_text); if (retval == ERROR_OK) { command_print(cmd_ctx, "Loaded %u bytes in %s", (unsigned int)image_size, duration_text); command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so."); } free(duration_text); image_close(&image); if (retval != ERROR_OK) { free_fastload(); } return retval; } static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc > 0) return ERROR_COMMAND_SYNTAX_ERROR; if (fastload == NULL) { LOG_ERROR("No image in memory"); return ERROR_FAIL; } int i; int ms = timeval_ms(); int size = 0; int retval = ERROR_OK; for (i = 0; i < fastload_num;i++) { target_t *target = get_current_target(cmd_ctx); command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", (unsigned int)(fastload[i].address), (unsigned int)(fastload[i].length)); if (retval == ERROR_OK) { retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data); } size += fastload[i].length; } int after = timeval_ms(); command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0)); return retval; } /* * Local Variables: * c-basic-offset: 4 * tab-width: 4 * End: */ 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489