/***************************************************************************
 *   Copyright (C) 2005 by Dominic Rath                                    *
 *   Dominic.Rath@gmx.de                                                   *
 *                                                                         *
 *   Copyright (C) 2007-2010 Øyvind Harboe                                 *
 *   oyvind.harboe@zylin.com                                               *
 *                                                                         *
 *   Copyright (C) 2008, Duane Ellis                                       *
 *   openocd@duaneeellis.com                                               *
 *                                                                         *
 *   Copyright (C) 2008 by Spencer Oliver                                  *
 *   spen@spen-soft.co.uk                                                  *
 *                                                                         *
 *   Copyright (C) 2008 by Rick Altherr                                    *
 *   kc8apf@kc8apf.net>                                                    *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <helper/time_support.h>
#include <jtag/jtag.h>
#include <flash/nor/core.h>

#include "target.h"
#include "target_type.h"
#include "target_request.h"
#include "breakpoints.h"
#include "register.h"
#include "trace.h"
#include "image.h"


static int target_array2mem(Jim_Interp *interp, struct target *target,
		int argc, Jim_Obj *const *argv);
static int target_mem2array(Jim_Interp *interp, struct target *target,
		int argc, Jim_Obj *const *argv);
static int target_register_user_commands(struct command_context *cmd_ctx);

/* targets */
extern struct target_type arm7tdmi_target;
extern struct target_type arm720t_target;
extern struct target_type arm9tdmi_target;
extern struct target_type arm920t_target;
extern struct target_type arm966e_target;
extern struct target_type arm926ejs_target;
extern struct target_type fa526_target;
extern struct target_type feroceon_target;
extern struct target_type dragonite_target;
extern struct target_type xscale_target;
extern struct target_type cortexm3_target;
extern struct target_type cortexa8_target;
extern struct target_type arm11_target;
extern struct target_type mips_m4k_target;
extern struct target_type avr_target;
extern struct target_type dsp563xx_target;
extern struct target_type testee_target;
extern struct target_type avr32_ap7k_target;

static struct target_type *target_types[] =
{
	&arm7tdmi_target,
	&arm9tdmi_target,
	&arm920t_target,
	&arm720t_target,
	&arm966e_target,
	&arm926ejs_target,
	&fa526_target,
	&feroceon_target,
	&dragonite_target,
	&xscale_target,
	&cortexm3_target,
	&cortexa8_target,
	&arm11_target,
	&mips_m4k_target,
	&avr_target,
	&dsp563xx_target,
	&testee_target,
	&avr32_ap7k_target,
	NULL,
};

struct target *all_targets = NULL;
static struct target_event_callback *target_event_callbacks = NULL;
static struct target_timer_callback *target_timer_callbacks = NULL;
static const int polling_interval = 100;

static const Jim_Nvp nvp_assert[] = {
	{ .name = "assert", NVP_ASSERT },
	{ .name = "deassert", NVP_DEASSERT },
	{ .name = "T", NVP_ASSERT },
	{ .name = "F", NVP_DEASSERT },
	{ .name = "t", NVP_ASSERT },
	{ .name = "f", NVP_DEASSERT },
	{ .name = NULL, .value = -1 }
};

static const Jim_Nvp nvp_error_target[] = {
	{ .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
	{ .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
	{ .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
	{ .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
	{ .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
	{ .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
	{ .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
	{ .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
	{ .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
	{ .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
	{ .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
	{ .value = -1, .name = NULL }
};

static const char *target_strerror_safe(int err)
{
	const Jim_Nvp *n;

	n = Jim_Nvp_value2name_simple(nvp_error_target, err);
	if (n->name == NULL) {
		return "unknown";
	} else {
		return n->name;
	}
}

static const Jim_Nvp nvp_target_event[] = {
	{ .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
	{ .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },

	{ .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
	{ .value = TARGET_EVENT_HALTED, .name = "halted" },
	{ .value = TARGET_EVENT_RESUMED, .name = "resumed" },
	{ .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
	{ .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },

	{ .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
	{ .name = "gdb-end", .value = TARGET_EVENT_GDB_END },

	/* historical name */

	{ .value = TARGET_EVENT_RESET_START, .name = "reset-start" },

	{ .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
	{ .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
	{ .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
	{ .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
	{ .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
	{ .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
	{ .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
	{ .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
	{ .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
	{ .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
	{ .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },

	{ .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
	{ .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },

	{ .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
	{ .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },

	{ .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
	{ .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },

	{ .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
	{ .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },

	{ .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
	{ .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },

	{ .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
	{ .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
	{ .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },

	{ .name = NULL, .value = -1 }
};

static const Jim_Nvp nvp_target_state[] = {
	{ .name = "unknown", .value = TARGET_UNKNOWN },
	{ .name = "running", .value = TARGET_RUNNING },
	{ .name = "halted",  .value = TARGET_HALTED },
	{ .name = "reset",   .value = TARGET_RESET },
	{ .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
	{ .name = NULL, .value = -1 },
};

static const Jim_Nvp nvp_target_debug_reason [] = {
	{ .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
	{ .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
	{ .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
	{ .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
	{ .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
	{ .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
	{ .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
	{ .name = NULL, .value = -1 },
};

static const Jim_Nvp nvp_target_endian[] = {
	{ .name = "big",    .value = TARGET_BIG_ENDIAN },
	{ .name = "little", .value = TARGET_LITTLE_ENDIAN },
	{ .name = "be",     .value = TARGET_BIG_ENDIAN },
	{ .name = "le",     .value = TARGET_LITTLE_ENDIAN },
	{ .name = NULL,     .value = -1 },
};

static const Jim_Nvp nvp_reset_modes[] = {
	{ .name = "unknown", .value = RESET_UNKNOWN },
	{ .name = "run"    , .value = RESET_RUN },
	{ .name = "halt"   , .value = RESET_HALT },
	{ .name = "init"   , .value = RESET_INIT },
	{ .name = NULL     , .value = -1 },
};

const char *debug_reason_name(struct target *t)
{
	const char *cp;

	cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
			t->debug_reason)->name;
	if (!cp) {
		LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
		cp = "(*BUG*unknown*BUG*)";
	}
	return cp;
}

const char *
target_state_name( struct target *t )
{
	const char *cp;
	cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
	if( !cp ){
		LOG_ERROR("Invalid target state: %d", (int)(t->state));
		cp = "(*BUG*unknown*BUG*)";
	}
	return cp;
}

/* determine the number of the new target */
static int new_target_number(void)
{
	struct target *t;
	int x;

	/* number is 0 based */
	x = -1;
	t = all_targets;
	while (t) {
		if (x < t->target_number) {
			x = t->target_number;
		}
		t = t->next;
	}
	return x + 1;
}

/* read a uint32_t from a buffer in target memory endianness */
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		return le_to_h_u32(buffer);
	else
		return be_to_h_u32(buffer);
}

/* read a uint16_t from a buffer in target memory endianness */
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		return le_to_h_u16(buffer);
	else
		return be_to_h_u16(buffer);
}

/* read a uint8_t from a buffer in target memory endianness */
static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
{
	return *buffer & 0x0ff;
}

/* write a uint32_t to a buffer in target memory endianness */
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		h_u32_to_le(buffer, value);
	else
		h_u32_to_be(buffer, value);
}

/* write a uint16_t to a buffer in target memory endianness */
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		h_u16_to_le(buffer, value);
	else
		h_u16_to_be(buffer, value);
}

/* write a uint8_t to a buffer in target memory endianness */
static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
{
	*buffer = value;
}

/* return a pointer to a configured target; id is name or number */
struct target *get_target(const char *id)
{
	struct target *target;

	/* try as tcltarget name */
	for (target = all_targets; target; target = target->next) {
		if (target->cmd_name == NULL)
			continue;
		if (strcmp(id, target->cmd_name) == 0)
			return target;
	}

	/* It's OK to remove this fallback sometime after August 2010 or so */

	/* no match, try as number */
	unsigned num;
	if (parse_uint(id, &num) != ERROR_OK)
		return NULL;

	for (target = all_targets; target; target = target->next) {
		if (target->target_number == (int)num) {
			LOG_WARNING("use '%s' as target identifier, not '%u'",
					target->cmd_name, num);
			return target;
		}
	}

	return NULL;
}

/* returns a pointer to the n-th configured target */
static struct target *get_target_by_num(int num)
{
	struct target *target = all_targets;

	while (target) {
		if (target->target_number == num) {
			return target;
		}
		target = target->next;
	}

	return NULL;
}

struct target* get_current_target(struct command_context *cmd_ctx)
{
	struct target *target = get_target_by_num(cmd_ctx->current_target);

	if (target == NULL)
	{
		LOG_ERROR("BUG: current_target out of bounds");
		exit(-1);
	}

	return target;
}

int target_poll(struct target *target)
{
	int retval;

	/* We can't poll until after examine */
	if (!target_was_examined(target))
	{
		/* Fail silently lest we pollute the log */
		return ERROR_FAIL;
	}

	retval = target->type->poll(target);
	if (retval != ERROR_OK)
		return retval;

	if (target->halt_issued)
	{
		if (target->state == TARGET_HALTED)
		{
			target->halt_issued = false;
		} else
		{
			long long t = timeval_ms() - target->halt_issued_time;
			if (t>1000)
			{
				target->halt_issued = false;
				LOG_INFO("Halt timed out, wake up GDB.");
				target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
			}
		}
	}

	return ERROR_OK;
}

int target_halt(struct target *target)
{
	int retval;
	/* We can't poll until after examine */
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	retval = target->type->halt(target);
	if (retval != ERROR_OK)
		return retval;

	target->halt_issued = true;
	target->halt_issued_time = timeval_ms();

	return ERROR_OK;
}

/**
 * Make the target (re)start executing using its saved execution
 * context (possibly with some modifications).
 *
 * @param target Which target should start executing.
 * @param current True to use the target's saved program counter instead
 *	of the address parameter
 * @param address Optionally used as the program counter.
 * @param handle_breakpoints True iff breakpoints at the resumption PC
 *	should be skipped.  (For example, maybe execution was stopped by
 *	such a breakpoint, in which case it would be counterprodutive to
 *	let it re-trigger.
 * @param debug_execution False if all working areas allocated by OpenOCD
 *	should be released and/or restored to their original contents.
 *	(This would for example be true to run some downloaded "helper"
 *	algorithm code, which resides in one such working buffer and uses
 *	another for data storage.)
 *
 * @todo Resolve the ambiguity about what the "debug_execution" flag
 * signifies.  For example, Target implementations don't agree on how
 * it relates to invalidation of the register cache, or to whether
 * breakpoints and watchpoints should be enabled.  (It would seem wrong
 * to enable breakpoints when running downloaded "helper" algorithms
 * (debug_execution true), since the breakpoints would be set to match
 * target firmware being debugged, not the helper algorithm.... and
 * enabling them could cause such helpers to malfunction (for example,
 * by overwriting data with a breakpoint instruction.  On the other
 * hand the infrastructure for running such helpers might use this
 * procedure but rely on hardware breakpoint to detect termination.)
 */
int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
{
	int retval;

	/* We can't poll until after examine */
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	/* note that resume *must* be asynchronous. The CPU can halt before
	 * we poll. The CPU can even halt at the current PC as a result of
	 * a software breakpoint being inserted by (a bug?) the application.
	 */
	if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
		return retval;

	return retval;
}

static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
{
	char buf[100];
	int retval;
	Jim_Nvp *n;
	n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
	if (n->name == NULL) {
		LOG_ERROR("invalid reset mode");
		return ERROR_FAIL;
	}

	/* disable polling during reset to make reset event scripts
	 * more predictable, i.e. dr/irscan & pathmove in events will
	 * not have JTAG operations injected into the middle of a sequence.
	 */
	bool save_poll = jtag_poll_get_enabled();

	jtag_poll_set_enabled(false);

	sprintf(buf, "ocd_process_reset %s", n->name);
	retval = Jim_Eval(cmd_ctx->interp, buf);

	jtag_poll_set_enabled(save_poll);

	if (retval != JIM_OK) {
		Jim_PrintErrorMessage(cmd_ctx->interp);
		return ERROR_FAIL;
	}

	/* We want any events to be processed before the prompt */
	retval = target_call_timer_callbacks_now();

	struct target *target;
	for (target = all_targets; target; target = target->next) {
		target->type->check_reset(target);
	}

	return retval;
}

static int identity_virt2phys(struct target *target,
		uint32_t virtual, uint32_t *physical)
{
	*physical = virtual;
	return ERROR_OK;
}

static int no_mmu(struct target *target, int *enabled)
{
	*enabled = 0;
	return ERROR_OK;
}

static int default_examine(struct target *target)
{
	target_set_examined(target);
	return ERROR_OK;
}

/* no check by default */
static int default_check_reset(struct target *target)
{
	return ERROR_OK;
}

int target_examine_one(struct target *target)
{
	return target->type->examine(target);
}

static int jtag_enable_callback(enum jtag_event event, void *priv)
{
	struct target *target = priv;

	if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
		return ERROR_OK;

	jtag_unregister_event_callback(jtag_enable_callback, target);
	return target_examine_one(target);
}


/* Targets that correctly implement init + examine, i.e.
 * no communication with target during init:
 *
 * XScale
 */
int target_examine(void)
{
	int retval = ERROR_OK;
	struct target *target;

	for (target = all_targets; target; target = target->next)
	{
		/* defer examination, but don't skip it */
		if (!target->tap->enabled) {
			jtag_register_event_callback(jtag_enable_callback,
					target);
			continue;
		}
		if ((retval = target_examine_one(target)) != ERROR_OK)
			return retval;
	}
	return retval;
}
const char *target_type_name(struct target *target)
{
	return target->type->name;
}

static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}
	return target->type->write_memory_imp(target, address, size, count, buffer);
}

static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}
	return target->type->read_memory_imp(target, address, size, count, buffer);
}

static int target_soft_reset_halt_imp(struct target *target)
{
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}
	if (!target->type->soft_reset_halt_imp) {
		LOG_ERROR("Target %s does not support soft_reset_halt",
				target_name(target));
		return ERROR_FAIL;
	}
	return target->type->soft_reset_halt_imp(target);
}

/**
 * Downloads a target-specific native code algorithm to the target,
 * and executes it.  * Note that some targets may need to set up, enable,
 * and tear down a breakpoint (hard or * soft) to detect algorithm
 * termination, while others may support  lower overhead schemes where
 * soft breakpoints embedded in the algorithm automatically terminate the
 * algorithm.
 *
 * @param target used to run the algorithm
 * @param arch_info target-specific description of the algorithm.
 */
int target_run_algorithm(struct target *target,
		int num_mem_params, struct mem_param *mem_params,
		int num_reg_params, struct reg_param *reg_param,
		uint32_t entry_point, uint32_t exit_point,
		int timeout_ms, void *arch_info)
{
	int retval = ERROR_FAIL;

	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		goto done;
	}
	if (!target->type->run_algorithm) {
		LOG_ERROR("Target type '%s' does not support %s",
				target_type_name(target), __func__);
		goto done;
	}

	target->running_alg = true;
	retval = target->type->run_algorithm(target,
			num_mem_params, mem_params,
			num_reg_params, reg_param,
			entry_point, exit_point, timeout_ms, arch_info);
	target->running_alg = false;

done:
	return retval;
}


int target_read_memory(struct target *target,
		uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
	return target->type->read_memory(target, address, size, count, buffer);
}

static int target_read_phys_memory(struct target *target,
		uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
	return target->type->read_phys_memory(target, address, size, count, buffer);
}

int target_write_memory(struct target *target,
		uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
	return target->type->write_memory(target, address, size, count, buffer);
}

static int target_write_phys_memory(struct target *target,
		uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
	return target->type->write_phys_memory(target, address, size, count, buffer);
}

int target_bulk_write_memory(struct target *target,
		uint32_t address, uint32_t count, uint8_t *buffer)
{
	return target->type->bulk_write_memory(target, address, count, buffer);
}

int target_add_breakpoint(struct target *target,
		struct breakpoint *breakpoint)
{
	if (target->state != TARGET_HALTED) {
		LOG_WARNING("target %s is not halted", target->cmd_name);
		return ERROR_TARGET_NOT_HALTED;
	}
	return target->type->add_breakpoint(target, breakpoint);
}
int target_remove_breakpoint(struct target *target,
		struct breakpoint *breakpoint)
{
	return target->type->remove_breakpoint(target, breakpoint);
}

int target_add_watchpoint(struct target *target,
		struct watchpoint *watchpoint)
{
	if (target->state != TARGET_HALTED) {
		LOG_WARNING("target %s is not halted", target->cmd_name);
		return ERROR_TARGET_NOT_HALTED;
	}
	return target->type->add_watchpoint(target, watchpoint);
}
int target_remove_watchpoint(struct target *target,
		struct watchpoint *watchpoint)
{
	return target->type->remove_watchpoint(target, watchpoint);
}

int target_get_gdb_reg_list(struct target *target,
		struct reg **reg_list[], int *reg_list_size)
{
	return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
}
int target_step(struct target *target,
		int current, uint32_t address, int handle_breakpoints)
{
	return target->type->step(target, current, address, handle_breakpoints);
}


/**
 * Reset the @c examined flag for the given target.
 * Pure paranoia -- targets are zeroed on allocation.
 */
static void target_reset_examined(struct target *target)
{
	target->examined = false;
}

static int
err_read_phys_memory(struct target *target, uint32_t address,
		uint32_t size, uint32_t count, uint8_t *buffer)
{
	LOG_ERROR("Not implemented: %s", __func__);
	return ERROR_FAIL;
}

static int
err_write_phys_memory(struct target *target, uint32_t address,
		uint32_t size, uint32_t count, uint8_t *buffer)
{
	LOG_ERROR("Not implemented: %s", __func__);
	return ERROR_FAIL;
}

static int handle_target(void *priv);

static int target_init_one(struct command_context *cmd_ctx,
		struct target *target)
{
	target_reset_examined(target);

	struct target_type *type = target->type;
	if (type->examine == NULL)
		type->examine = default_examine;

	if (type->check_reset== NULL)
		type->check_reset = default_check_reset;

	int retval = type->init_target(cmd_ctx, target);
	if (ERROR_OK != retval)
	{
		LOG_ERROR("target '%s' init failed", target_name(target));
		return retval;
	}

	/**
	 * @todo get rid of those *memory_imp() methods, now that all
	 * callers are using target_*_memory() accessors ... and make
	 * sure the "physical" paths handle the same issues.
	 */
	/* a non-invasive way(in terms of patches) to add some code that
	 * runs before the type->write/read_memory implementation
	 */
	type->write_memory_imp = target->type->write_memory;
	type->write_memory = target_write_memory_imp;

	type->read_memory_imp = target->type->read_memory;
	type->read_memory = target_read_memory_imp;

	type->soft_reset_halt_imp = target->type->soft_reset_halt;
	type->soft_reset_halt = target_soft_reset_halt_imp;

	/* Sanity-check MMU support ... stub in what we must, to help
	 * implement it in stages, but warn if we need to do so.
	 */
	if (type->mmu)
	{
		if (type->write_phys_memory == NULL)
		{
			LOG_ERROR("type '%s' is missing write_phys_memory",
					type->name);
			type->write_phys_memory = err_write_phys_memory;
		}
		if (type->read_phys_memory == NULL)
		{
			LOG_ERROR("type '%s' is missing read_phys_memory",
					type->name);
			type->read_phys_memory = err_read_phys_memory;
		}
		if (type->virt2phys == NULL)
		{
			LOG_ERROR("type '%s' is missing virt2phys", type->name);
			type->virt2phys = identity_virt2phys;
		}
	}
	else
	{
		/* Make sure no-MMU targets all behave the same:  make no
		 * distinction between physical and virtual addresses, and
		 * ensure that virt2phys() is always an identity mapping.
		 */
		if (type->write_phys_memory || type->read_phys_memory
				|| type->virt2phys)
		{
			LOG_WARNING("type '%s' has bad MMU hooks", type->name);
		}

		type->mmu = no_mmu;
		type->write_phys_memory = type->write_memory;
		type->read_phys_memory = type->read_memory;
		type->virt2phys = identity_virt2phys;
	}
	return ERROR_OK;
}

static int target_init(struct command_context *cmd_ctx)
{
	struct target *target;
	int retval;

	for (target = all_targets; target; target = target->next)
	{
		retval = target_init_one(cmd_ctx, target);
		if (ERROR_OK != retval)
			return retval;
	}

	if (!all_targets)
		return ERROR_OK;

	retval = target_register_user_commands(cmd_ctx);
	if (ERROR_OK != retval)
		return retval;

	retval = target_register_timer_callback(&handle_target,
			polling_interval, 1, cmd_ctx->interp);
	if (ERROR_OK != retval)
		return retval;

	return ERROR_OK;
}

COMMAND_HANDLER(handle_target_init_command)
{
	if (CMD_ARGC != 0)
		return ERROR_COMMAND_SYNTAX_ERROR;

	static bool target_initialized = false;
	if (target_initialized)
	{
		LOG_INFO("'target init' has already been called");
		return ERROR_OK;
	}
	target_initialized = true;

	LOG_DEBUG("Initializing targets...");
	return target_init(CMD_CTX);
}

int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
{
	struct target_event_callback **callbacks_p = &target_event_callbacks;

	if (callback == NULL)
	{
		return ERROR_INVALID_ARGUMENTS;
	}

	if (*callbacks_p)
	{
		while ((*callbacks_p)->next)
			callbacks_p = &((*callbacks_p)->next);
		callbacks_p = &((*callbacks_p)->next);
	}

	(*callbacks_p) = malloc(sizeof(struct target_event_callback));
	(*callbacks_p)->callback = callback;
	(*callbacks_p)->priv = priv;
	(*callbacks_p)->next = NULL;

	return ERROR_OK;
}

int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
{
	struct target_timer_callback **callbacks_p = &target_timer_callbacks;
	struct timeval now;

	if (callback == NULL)
	{
		return ERROR_INVALID_ARGUMENTS;
	}

	if (*callbacks_p)
	{
		while ((*callbacks_p)->next)
			callbacks_p = &((*callbacks_p)->next);
		callbacks_p = &((*callbacks_p)->next);
	}

	(*callbacks_p) = malloc(sizeof(struct target_timer_callback));
	(*callbacks_p)->callback = callback;
	(*callbacks_p)->periodic = periodic;
	(*callbacks_p)->time_ms = time_ms;

	gettimeofday(&now, NULL);
	(*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
	time_ms -= (time_ms % 1000);
	(*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
	if ((*callbacks_p)->when.tv_usec > 1000000)
	{
		(*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
		(*callbacks_p)->when.tv_sec += 1;
	}

	(*callbacks_p)->priv = priv;
	(*callbacks_p)->next = NULL;

	return ERROR_OK;
}

int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
{
	struct target_event_callback **p = &target_event_callbacks;
	struct target_event_callback *c = target_event_callbacks;

	if (callback == NULL)
	{
		return ERROR_INVALID_ARGUMENTS;
	}

	while (c)
	{
		struct target_event_callback *next = c->next;
		if ((c->callback == callback) && (c->priv == priv))
		{
			*p = next;
			free(c);
			return ERROR_OK;
		}
		else
			p = &(c->next);
		c = next;
	}

	return ERROR_OK;
}

static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
{
	struct target_timer_callback **p = &target_timer_callbacks;
	struct target_timer_callback *c = target_timer_callbacks;

	if (callback == NULL)
	{
		return ERROR_INVALID_ARGUMENTS;
	}

	while (c)
	{
		struct target_timer_callback *next = c->next;
		if ((c->callback == callback) && (c->priv == priv))
		{
			*p = next;
			free(c);
			return ERROR_OK;
		}
		else
			p = &(c->next);
		c = next;
	}

	return ERROR_OK;
}

int target_call_event_callbacks(struct target *target, enum target_event event)
{
	struct target_event_callback *callback = target_event_callbacks;
	struct target_event_callback *next_callback;

	if (event == TARGET_EVENT_HALTED)
	{
		/* execute early halted first */
		target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
	}

	LOG_DEBUG("target event %i (%s)",
			  event,
			  Jim_Nvp_value2name_simple(nvp_target_event, event)->name);

	target_handle_event(target, event);

	while (callback)
	{
		next_callback = callback->next;
		callback->callback(target, event, callback->priv);
		callback = next_callback;
	}

	return ERROR_OK;
}

static int target_timer_callback_periodic_restart(
		struct target_timer_callback *cb, struct timeval *now)
{
	int time_ms = cb->time_ms;
	cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
	time_ms -= (time_ms % 1000);
	cb->when.tv_sec = now->tv_sec + time_ms / 1000;
	if (cb->when.tv_usec > 1000000)
	{
		cb->when.tv_usec = cb->when.tv_usec - 1000000;
		cb->when.tv_sec += 1;
	}
	return ERROR_OK;
}

static int target_call_timer_callback(struct target_timer_callback *cb,
		struct timeval *now)
{
	cb->callback(cb->priv);

	if (cb->periodic)
		return target_timer_callback_periodic_restart(cb, now);

	return target_unregister_timer_callback(cb->callback, cb->priv);
}

static int target_call_timer_callbacks_check_time(int checktime)
{
	keep_alive();

	struct timeval now;
	gettimeofday(&now, NULL);

	struct target_timer_callback *callback = target_timer_callbacks;
	while (callback)
	{
		// cleaning up may unregister and free this callback
		struct target_timer_callback *next_callback = callback->next;

		bool call_it = callback->callback &&
			((!checktime && callback->periodic) ||
			  now.tv_sec > callback->when.tv_sec ||
			 (now.tv_sec == callback->when.tv_sec &&
			  now.tv_usec >= callback->when.tv_usec));

		if (call_it)
		{
			int retval = target_call_timer_callback(callback, &now);
			if (retval != ERROR_OK)
				return retval;
		}

		callback = next_callback;
	}

	return ERROR_OK;
}

int target_call_timer_callbacks(void)
{
	return target_call_timer_callbacks_check_time(1);
}

/* invoke periodic callbacks immediately */
int target_call_timer_callbacks_now(void)
{
	return target_call_timer_callbacks_check_time(0);
}

int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
{
	struct working_area *c = target->working_areas;
	struct working_area *new_wa = NULL;

	/* Reevaluate working area address based on MMU state*/
	if (target->working_areas == NULL)
	{
		int retval;
		int enabled;

		retval = target->type->mmu(target, &enabled);
		if (retval != ERROR_OK)
		{
			return retval;
		}

		if (!enabled) {
			if (target->working_area_phys_spec) {
				LOG_DEBUG("MMU disabled, using physical "
					"address for working memory 0x%08x",
					(unsigned)target->working_area_phys);
				target->working_area = target->working_area_phys;
			} else {
				LOG_ERROR("No working memory available. "
					"Specify -work-area-phys to target.");
				return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
			}
		} else {
			if (target->working_area_virt_spec) {
				LOG_DEBUG("MMU enabled, using virtual "
					"address for working memory 0x%08x",
					(unsigned)target->working_area_virt);
				target->working_area = target->working_area_virt;
			} else {
				LOG_ERROR("No working memory available. "
					"Specify -work-area-virt to target.");
				return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
			}
		}
	}

	/* only allocate multiples of 4 byte */
	if (size % 4)
	{
		LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
		size = (size + 3) & (~3);
	}

	/* see if there's already a matching working area */
	while (c)
	{
		if ((c->free) && (c->size == size))
		{
			new_wa = c;
			break;
		}
		c = c->next;
	}

	/* if not, allocate a new one */
	if (!new_wa)
	{
		struct working_area **p = &target->working_areas;
		uint32_t first_free = target->working_area;
		uint32_t free_size = target->working_area_size;

		c = target->working_areas;
		while (c)
		{
			first_free += c->size;
			free_size -= c->size;
			p = &c->next;
			c = c->next;
		}

		if (free_size < size)
		{
			return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
		}

		LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);

		new_wa = malloc(sizeof(struct working_area));
		new_wa->next = NULL;
		new_wa->size = size;
		new_wa->address = first_free;

		if (target->backup_working_area)
		{
			int retval;
			new_wa->backup = malloc(new_wa->size);
			if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
			{
				free(new_wa->backup);
				free(new_wa);
				return retval;
			}
		}
		else
		{
			new_wa->backup = NULL;
		}

		/* put new entry in list */
		*p = new_wa;
	}

	/* mark as used, and return the new (reused) area */
	new_wa->free = 0;
	*area = new_wa;

	/* user pointer */
	new_wa->user = area;

	return ERROR_OK;
}

int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
{
	int retval;

	retval = target_alloc_working_area_try(target, size, area);
	if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
	{
		LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
	}
	return retval;

}

static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
{
	if (area->free)
		return ERROR_OK;

	if (restore && target->backup_working_area)
	{
		int retval;
		if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
			return retval;
	}

	area->free = 1;

	/* mark user pointer invalid */
	*area->user = NULL;
	area->user = NULL;

	return ERROR_OK;
}

int target_free_working_area(struct target *target, struct working_area *area)
{
	return target_free_working_area_restore(target, area, 1);
}

/* free resources and restore memory, if restoring memory fails,
 * free up resources anyway
 */
static void target_free_all_working_areas_restore(struct target *target, int restore)
{
	struct working_area *c = target->working_areas;

	while (c)
	{
		struct working_area *next = c->next;
		target_free_working_area_restore(target, c, restore);

		if (c->backup)
			free(c->backup);

		free(c);

		c = next;
	}

	target->working_areas = NULL;
}

void target_free_all_working_areas(struct target *target)
{
	target_free_all_working_areas_restore(target, 1);
}

int target_arch_state(struct target *target)
{
	int retval;
	if (target == NULL)
	{
		LOG_USER("No target has been configured");
		return ERROR_OK;
	}

	LOG_USER("target state: %s", target_state_name( target ));

	if (target->state != TARGET_HALTED)
		return ERROR_OK;

	retval = target->type->arch_state(target);
	return retval;
}

/* Single aligned words are guaranteed to use 16 or 32 bit access
 * mode respectively, otherwise data is handled as quickly as
 * possible
 */
int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
{
	int retval;
	LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
		  (int)size, (unsigned)address);

	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	if (size == 0) {
		return ERROR_OK;
	}

	if ((address + size - 1) < address)
	{
		/* GDB can request this when e.g. PC is 0xfffffffc*/
		LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
				  (unsigned)address,
				  (unsigned)size);
		return ERROR_FAIL;
	}

	if (((address % 2) == 0) && (size == 2))
	{
		return target_write_memory(target, address, 2, 1, buffer);
	}

	/* handle unaligned head bytes */
	if (address % 4)
	{
		uint32_t unaligned = 4 - (address % 4);

		if (unaligned > size)
			unaligned = size;

		if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
			return retval;

		buffer += unaligned;
		address += unaligned;
		size -= unaligned;
	}

	/* handle aligned words */
	if (size >= 4)
	{
		int aligned = size - (size % 4);

		/* use bulk writes above a certain limit. This may have to be changed */
		if (aligned > 128)
		{
			if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
				return retval;
		}
		else
		{
			if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
				return retval;
		}

		buffer += aligned;
		address += aligned;
		size -= aligned;
	}

	/* handle tail writes of less than 4 bytes */
	if (size > 0)
	{
		if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
			return retval;
	}

	return ERROR_OK;
}

/* Single aligned words are guaranteed to use 16 or 32 bit access
 * mode respectively, otherwise data is handled as quickly as
 * possible
 */
int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
{
	int retval;
	LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
			  (int)size, (unsigned)address);

	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	if (size == 0) {
		return ERROR_OK;
	}

	if ((address + size - 1) < address)
	{
		/* GDB can request this when e.g. PC is 0xfffffffc*/
		LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
				  address,
				  size);
		return ERROR_FAIL;
	}

	if (((address % 2) == 0) && (size == 2))
	{
		return target_read_memory(target, address, 2, 1, buffer);
	}

	/* handle unaligned head bytes */
	if (address % 4)
	{
		uint32_t unaligned = 4 - (address % 4);

		if (unaligned > size)
			unaligned = size;

		if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
			return retval;

		buffer += unaligned;
		address += unaligned;
		size -= unaligned;
	}

	/* handle aligned words */
	if (size >= 4)
	{
		int aligned = size - (size % 4);

		if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
			return retval;

		buffer += aligned;
		address += aligned;
		size -= aligned;
	}

	/*prevent byte access when possible (avoid AHB access limitations in some cases)*/
	if(size	>=2)
	{
		int aligned = size - (size%2);
		retval = target_read_memory(target, address, 2, aligned / 2, buffer);
		if (retval != ERROR_OK)
			return retval;

		buffer += aligned;
		address += aligned;
		size -= aligned;
	}
	/* handle tail writes of less than 4 bytes */
	if (size > 0)
	{
		if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
			return retval;
	}

	return ERROR_OK;
}

int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
{
	uint8_t *buffer;
	int retval;
	uint32_t i;
	uint32_t checksum = 0;
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	if ((retval = target->type->checksum_memory(target, address,
		size, &checksum)) != ERROR_OK)
	{
		buffer = malloc(size);
		if (buffer == NULL)
		{
			LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
			return ERROR_INVALID_ARGUMENTS;
		}
		retval = target_read_buffer(target, address, size, buffer);
		if (retval != ERROR_OK)
		{
			free(buffer);
			return retval;
		}

		/* convert to target endianess */
		for (i = 0; i < (size/sizeof(uint32_t)); i++)
		{
			uint32_t target_data;
			target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
			target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
		}

		retval = image_calculate_checksum(buffer, size, &checksum);
		free(buffer);
	}

	*crc = checksum;

	return retval;
}

int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
{
	int retval;
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	if (target->type->blank_check_memory == 0)
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;

	retval = target->type->blank_check_memory(target, address, size, blank);

	return retval;
}

int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
{
	uint8_t value_buf[4];
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	int retval = target_read_memory(target, address, 4, 1, value_buf);

	if (retval == ERROR_OK)
	{
		*value = target_buffer_get_u32(target, value_buf);
		LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
				  address,
				  *value);
	}
	else
	{
		*value = 0x0;
		LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
				  address);
	}

	return retval;
}

int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
{
	uint8_t value_buf[2];
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	int retval = target_read_memory(target, address, 2, 1, value_buf);

	if (retval == ERROR_OK)
	{
		*value = target_buffer_get_u16(target, value_buf);
		LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
				  address,
				  *value);
	}
	else
	{
		*value = 0x0;
		LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
				  address);
	}

	return retval;
}

int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
{
	int retval = target_read_memory(target, address, 1, 1, value);
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	if (retval == ERROR_OK)
	{
		LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
				  address,
				  *value);
	}
	else
	{
		*value = 0x0;
		LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
				  address);
	}

	return retval;
}

int target_write_u32(struct target *target, uint32_t address, uint32_t value)
{
	int retval;
	uint8_t value_buf[4];
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
			  address,
			  value);

	target_buffer_set_u32(target, value_buf, value);
	if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
	{
		LOG_DEBUG("failed: %i", retval);
	}

	return retval;
}

int target_write_u16(struct target *target, uint32_t address, uint16_t value)
{
	int retval;
	uint8_t value_buf[2];
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
			  address,
			  value);

	target_buffer_set_u16(target, value_buf, value);
	if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
	{
		LOG_DEBUG("failed: %i", retval);
	}

	return retval;
}

int target_write_u8(struct target *target, uint32_t address, uint8_t value)
{
	int retval;
	if (!target_was_examined(target))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
			  address, value);

	if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
	{
		LOG_DEBUG("failed: %i", retval);
	}

	return retval;
}

COMMAND_HANDLER(handle_targets_command)
{
	struct target *target = all_targets;

	if (CMD_ARGC == 1)
	{
		target = get_target(CMD_ARGV[0]);
		if (target == NULL) {
			command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
			goto DumpTargets;
		}
		if (!target->tap->enabled) {
			command_print(CMD_CTX,"Target: TAP %s is disabled, "
					"can't be the current target\n",
					target->tap->dotted_name);
			return ERROR_FAIL;
		}

		CMD_CTX->current_target = target->target_number;
		return ERROR_OK;
	}
DumpTargets:

	target = all_targets;
	command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
	command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
	while (target)
	{
		const char *state;
		char marker = ' ';

		if (target->tap->enabled)
			state = target_state_name( target );
		else
			state = "tap-disabled";

		if (CMD_CTX->current_target == target->target_number)
			marker = '*';

		/* keep columns lined up to match the headers above */
		command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
					  target->target_number,
					  marker,
					  target_name(target),
					  target_type_name(target),
					  Jim_Nvp_value2name_simple(nvp_target_endian,
								target->endianness)->name,
					  target->tap->dotted_name,
					  state);
		target = target->next;
	}

	return ERROR_OK;
}

/* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */

static int powerDropout;
static int srstAsserted;

static int runPowerRestore;
static int runPowerDropout;
static int runSrstAsserted;
static int runSrstDeasserted;

static int sense_handler(void)
{
	static int prevSrstAsserted = 0;
	static int prevPowerdropout = 0;

	int retval;
	if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
		return retval;

	int powerRestored;
	powerRestored = prevPowerdropout && !powerDropout;
	if (powerRestored)
	{
		runPowerRestore = 1;
	}

	long long current = timeval_ms();
	static long long lastPower = 0;
	int waitMore = lastPower + 2000 > current;
	if (powerDropout && !waitMore)
	{
		runPowerDropout = 1;
		lastPower = current;
	}

	if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
		return retval;

	int srstDeasserted;
	srstDeasserted = prevSrstAsserted && !srstAsserted;

	static long long lastSrst = 0;
	waitMore = lastSrst + 2000 > current;
	if (srstDeasserted && !waitMore)
	{
		runSrstDeasserted = 1;
		lastSrst = current;
	}

	if (!prevSrstAsserted && srstAsserted)
	{
		runSrstAsserted = 1;
	}

	prevSrstAsserted = srstAsserted;
	prevPowerdropout = powerDropout;

	if (srstDeasserted || powerRestored)
	{
		/* Other than logging the event we can't do anything here.
		 * Issuing a reset is a particularly bad idea as we might
		 * be inside a reset already.
		 */
	}

	return ERROR_OK;
}

static int backoff_times = 0;
static int backoff_count = 0;

/* process target state changes */
static int handle_target(void *priv)
{
	Jim_Interp *interp = (Jim_Interp *)priv;
	int retval = ERROR_OK;

	if (!is_jtag_poll_safe())
	{
		/* polling is disabled currently */
		return ERROR_OK;
	}

	/* we do not want to recurse here... */
	static int recursive = 0;
	if (! recursive)
	{
		recursive = 1;
		sense_handler();
		/* danger! running these procedures can trigger srst assertions and power dropouts.
		 * We need to avoid an infinite loop/recursion here and we do that by
		 * clearing the flags after running these events.
		 */
		int did_something = 0;
		if (runSrstAsserted)
		{
			LOG_INFO("srst asserted detected, running srst_asserted proc.");
			Jim_Eval(interp, "srst_asserted");
			did_something = 1;
		}
		if (runSrstDeasserted)
		{
			Jim_Eval(interp, "srst_deasserted");
			did_something = 1;
		}
		if (runPowerDropout)
		{
			LOG_INFO("Power dropout detected, running power_dropout proc.");
			Jim_Eval(interp, "power_dropout");
			did_something = 1;
		}
		if (runPowerRestore)
		{
			Jim_Eval(interp, "power_restore");
			did_something = 1;
		}

		if (did_something)
		{
			/* clear detect flags */
			sense_handler();
		}

		/* clear action flags */

		runSrstAsserted = 0;
		runSrstDeasserted = 0;
		runPowerRestore = 0;
		runPowerDropout = 0;

		recursive = 0;
	}

	if (backoff_times > backoff_count)
	{
		/* do not poll this time as we failed previously */
		backoff_count++;
		return ERROR_OK;
	}
	backoff_count = 0;

	/* Poll targets for state changes unless that's globally disabled.
	 * Skip targets that are currently disabled.
	 */
	for (struct target *target = all_targets;
			is_jtag_poll_safe() && target;
			target = target->next)
	{
		if (!target->tap->enabled)
			continue;

		/* only poll target if we've got power and srst isn't asserted */
		if (!powerDropout && !srstAsserted)
		{
			/* polling may fail silently until the target has been examined */
			if ((retval = target_poll(target)) != ERROR_OK)
			{
				/* 100ms polling interval. Increase interval between polling up to 5000ms */
				if (backoff_times * polling_interval < 5000)
				{
					backoff_times *= 2;
					backoff_times++;
				}
				LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);

				/* Tell GDB to halt the debugger. This allows the user to
				 * run monitor commands to handle the situation.
				 */
				target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
				return retval;
			}
			/* Since we succeeded, we reset backoff count */
			if (backoff_times > 0)
			{
				LOG_USER("Polling succeeded again");
			}
			backoff_times = 0;
		}
	}

	return retval;
}

COMMAND_HANDLER(handle_reg_command)
{
	struct target *target;
	struct reg *reg = NULL;
	unsigned count = 0;
	char *value;

	LOG_DEBUG("-");

	target = get_current_target(CMD_CTX);

	/* list all available registers for the current target */
	if (CMD_ARGC == 0)
	{
		struct reg_cache *cache = target->reg_cache;

		count = 0;
		while (cache)
		{
			unsigned i;

			command_print(CMD_CTX, "===== %s", cache->name);

			for (i = 0, reg = cache->reg_list;
					i < cache->num_regs;
					i++, reg++, count++)
			{
				/* only print cached values if they are valid */
				if (reg->valid) {
					value = buf_to_str(reg->value,
							reg->size, 16);
					command_print(CMD_CTX,
							"(%i) %s (/%" PRIu32 "): 0x%s%s",
							count, reg->name,
							reg->size, value,
							reg->dirty
								? " (dirty)"
								: "");
					free(value);
				} else {
					command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
							  count, reg->name,
							  reg->size) ;
				}
			}
			cache = cache->next;
		}

		return ERROR_OK;
	}

	/* access a single register by its ordinal number */
	if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
	{
		unsigned num;
		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);

		struct reg_cache *cache = target->reg_cache;
		count = 0;
		while (cache)
		{
			unsigned i;
			for (i = 0; i < cache->num_regs; i++)
			{
				if (count++ == num)
				{
					reg = &cache->reg_list[i];
					break;
				}
			}
			if (reg)
				break;
			cache = cache->next;
		}

		if (!reg)
		{
			command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
			return ERROR_OK;
		}
	} else /* access a single register by its name */
	{
		reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);

		if (!reg)
		{
			command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
			return ERROR_OK;
		}
	}

	/* display a register */
	if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
	{
		if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
			reg->valid = 0;

		if (reg->valid == 0)
		{
			reg->type->get(reg);
		}
		value = buf_to_str(reg->value, reg->size, 16);
		command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
		free(value);
		return ERROR_OK;
	}

	/* set register value */
	if (CMD_ARGC == 2)
	{
		uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
		str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);

		reg->type->set(reg, buf);

		value = buf_to_str(reg->value, reg->size, 16);
		command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
		free(value);

		free(buf);

		return ERROR_OK;
	}

	command_print(CMD_CTX, "usage: reg <#|name> [value]");

	return ERROR_OK;
}

COMMAND_HANDLER(handle_poll_command)
{
	int retval = ERROR_OK;
	struct target *target = get_current_target(CMD_CTX);

	if (CMD_ARGC == 0)
	{
		command_print(CMD_CTX, "background polling: %s",
				jtag_poll_get_enabled() ? "on" : "off");
		command_print(CMD_CTX, "TAP: %s (%s)",
				target->tap->dotted_name,
				target->tap->enabled ? "enabled" : "disabled");
		if (!target->tap->enabled)
			return ERROR_OK;
		if ((retval = target_poll(target)) != ERROR_OK)
			return retval;
		if ((retval = target_arch_state(target)) != ERROR_OK)
			return retval;
	}
	else if (CMD_ARGC == 1)
	{
		bool enable;
		COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
		jtag_poll_set_enabled(enable);
	}
	else
	{
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	return retval;
}

COMMAND_HANDLER(handle_wait_halt_command)
{
	if (CMD_ARGC > 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	unsigned ms = 5000;
	if (1 == CMD_ARGC)
	{
		int retval = parse_uint(CMD_ARGV[0], &ms);
		if (ERROR_OK != retval)
		{
			command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
			return ERROR_COMMAND_SYNTAX_ERROR;
		}
		// convert seconds (given) to milliseconds (needed)
		ms *= 1000;
	}

	struct target *target = get_current_target(CMD_CTX);
	return target_wait_state(target, TARGET_HALTED, ms);
}

/* wait for target state to change. The trick here is to have a low
 * latency for short waits and not to suck up all the CPU time
 * on longer waits.
 *
 * After 500ms, keep_alive() is invoked
 */
int target_wait_state(struct target *target, enum target_state state, int ms)
{
	int retval;
	long long then = 0, cur;
	int once = 1;

	for (;;)
	{
		if ((retval = target_poll(target)) != ERROR_OK)
			return retval;
		if (target->state == state)
		{
			break;
		}
		cur = timeval_ms();
		if (once)
		{
			once = 0;
			then = timeval_ms();
			LOG_DEBUG("waiting for target %s...",
				Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
		}

		if (cur-then > 500)
		{
			keep_alive();
		}

		if ((cur-then) > ms)
		{
			LOG_ERROR("timed out while waiting for target %s",
				Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
			return ERROR_FAIL;
		}
	}

	return ERROR_OK;
}

COMMAND_HANDLER(handle_halt_command)
{
	LOG_DEBUG("-");

	struct target *target = get_current_target(CMD_CTX);
	int retval = target_halt(target);
	if (ERROR_OK != retval)
		return retval;

	if (CMD_ARGC == 1)
	{
		unsigned wait_local;
		retval = parse_uint(CMD_ARGV[0], &wait_local);
		if (ERROR_OK != retval)
			return ERROR_COMMAND_SYNTAX_ERROR;
		if (!wait_local)
			return ERROR_OK;
	}

	return CALL_COMMAND_HANDLER(handle_wait_halt_command);
}

COMMAND_HANDLER(handle_soft_reset_halt_command)
{
	struct target *target = get_current_target(CMD_CTX);

	LOG_USER("requesting target halt and executing a soft reset");

	target->type->soft_reset_halt(target);

	return ERROR_OK;
}

COMMAND_HANDLER(handle_reset_command)
{
	if (CMD_ARGC > 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	enum target_reset_mode reset_mode = RESET_RUN;
	if (CMD_ARGC == 1)
	{
		const Jim_Nvp *n;
		n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
		if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
			return ERROR_COMMAND_SYNTAX_ERROR;
		}
		reset_mode = n->value;
	}

	/* reset *all* targets */
	return target_process_reset(CMD_CTX, reset_mode);
}


COMMAND_HANDLER(handle_resume_command)
{
	int current = 1;
	if (CMD_ARGC > 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct target *target = get_current_target(CMD_CTX);
	target_handle_event(target, TARGET_EVENT_OLD_pre_resume);

	/* with no CMD_ARGV, resume from current pc, addr = 0,
	 * with one arguments, addr = CMD_ARGV[0],
	 * handle breakpoints, not debugging */
	uint32_t addr = 0;
	if (CMD_ARGC == 1)
	{
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
		current = 0;
	}

	return target_resume(target, current, addr, 1, 0);
}

COMMAND_HANDLER(handle_step_command)
{
	if (CMD_ARGC > 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	LOG_DEBUG("-");

	/* with no CMD_ARGV, step from current pc, addr = 0,
	 * with one argument addr = CMD_ARGV[0],
	 * handle breakpoints, debugging */
	uint32_t addr = 0;
	int current_pc = 1;
	if (CMD_ARGC == 1)
	{
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
		current_pc = 0;
	}

	struct target *target = get_current_target(CMD_CTX);

	return target->type->step(target, current_pc, addr, 1);
}

static void handle_md_output(struct command_context *cmd_ctx,
		struct target *target, uint32_t address, unsigned size,
		unsigned count, const uint8_t *buffer)
{
	const unsigned line_bytecnt = 32;
	unsigned line_modulo = line_bytecnt / size;

	char output[line_bytecnt * 4 + 1];
	unsigned output_len = 0;

	const char *value_fmt;
	switch (size) {
	case 4: value_fmt = "%8.8x "; break;
	case 2: value_fmt = "%4.4x "; break;
	case 1: value_fmt = "%2.2x "; break;
	default:
		/* "can't happen", caller checked */
		LOG_ERROR("invalid memory read size: %u", size);
		return;
	}

	for (unsigned i = 0; i < count; i++)
	{
		if (i % line_modulo == 0)
		{
			output_len += snprintf(output + output_len,
					sizeof(output) - output_len,
					"0x%8.8x: ",
					(unsigned)(address + (i*size)));
		}

		uint32_t value = 0;
		const uint8_t *value_ptr = buffer + i * size;
		switch (size) {
		case 4: value = target_buffer_get_u32(target, value_ptr); break;
		case 2: value = target_buffer_get_u16(target, value_ptr); break;
		case 1: value = *value_ptr;
		}
		output_len += snprintf(output + output_len,
				sizeof(output) - output_len,
				value_fmt, value);

		if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
		{
			command_print(cmd_ctx, "%s", output);
			output_len = 0;
		}
	}
}

COMMAND_HANDLER(handle_md_command)
{
	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	unsigned size = 0;
	switch (CMD_NAME[2]) {
	case 'w': size = 4; break;
	case 'h': size = 2; break;
	case 'b': size = 1; break;
	default: return ERROR_COMMAND_SYNTAX_ERROR;
	}

	bool physical=strcmp(CMD_ARGV[0], "phys")==0;
	int (*fn)(struct target *target,
			uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
	if (physical)
	{
		CMD_ARGC--;
		CMD_ARGV++;
		fn=target_read_phys_memory;
	} else
	{
		fn=target_read_memory;
	}
	if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
	{
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	uint32_t address;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);

	unsigned count = 1;
	if (CMD_ARGC == 2)
		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);

	uint8_t *buffer = calloc(count, size);

	struct target *target = get_current_target(CMD_CTX);
	int retval = fn(target, address, size, count, buffer);
	if (ERROR_OK == retval)
		handle_md_output(CMD_CTX, target, address, size, count, buffer);

	free(buffer);

	return retval;
}

typedef int (*target_write_fn)(struct target *target,
		uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);

static int target_write_memory_fast(struct target *target,
		uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
	return target_write_buffer(target, address, size * count, buffer);
}

static int target_fill_mem(struct target *target,
		uint32_t address,
		target_write_fn fn,
		unsigned data_size,
		/* value */
		uint32_t b,
		/* count */
		unsigned c)
{
	/* We have to write in reasonably large chunks to be able
	 * to fill large memory areas with any sane speed */
	const unsigned chunk_size = 16384;
	uint8_t *target_buf = malloc(chunk_size * data_size);
	if (target_buf == NULL)
	{
		LOG_ERROR("Out of memory");
		return ERROR_FAIL;
	}

	for (unsigned i = 0; i < chunk_size; i ++)
	{
		switch (data_size)
		{
		case 4:
			target_buffer_set_u32(target, target_buf + i*data_size, b);
			break;
		case 2:
			target_buffer_set_u16(target, target_buf + i*data_size, b);
			break;
		case 1:
			target_buffer_set_u8(target, target_buf + i*data_size, b);
			break;
		default:
			exit(-1);
		}
	}

	int retval = ERROR_OK;

	for (unsigned x = 0; x < c; x += chunk_size)
	{
		unsigned current;
		current = c - x;
		if (current > chunk_size)
		{
			current = chunk_size;
		}
		retval = fn(target, address + x * data_size, data_size, current, target_buf);
		if (retval != ERROR_OK)
		{
			break;
		}
		/* avoid GDB timeouts */
		keep_alive();
	}
	free(target_buf);

	return retval;
}


COMMAND_HANDLER(handle_mw_command)
{
	if (CMD_ARGC < 2)
	{
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	bool physical=strcmp(CMD_ARGV[0], "phys")==0;
	target_write_fn fn;
	if (physical)
	{
		CMD_ARGC--;
		CMD_ARGV++;
		fn=target_write_phys_memory;
	} else
	{
		fn = target_write_memory_fast;
	}
	if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
		return ERROR_COMMAND_SYNTAX_ERROR;

	uint32_t address;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);

	uint32_t value;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);

	unsigned count = 1;
	if (CMD_ARGC == 3)
		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);

	struct target *target = get_current_target(CMD_CTX);
	unsigned wordsize;
	switch (CMD_NAME[2])
	{
		case 'w':
			wordsize = 4;
			break;
		case 'h':
			wordsize = 2;
			break;
		case 'b':
			wordsize = 1;
			break;
		default:
			return ERROR_COMMAND_SYNTAX_ERROR;
	}

	return target_fill_mem(target, address, fn, wordsize, value, count);
}

static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
		uint32_t *min_address, uint32_t *max_address)
{
	if (CMD_ARGC < 1 || CMD_ARGC > 5)
		return ERROR_COMMAND_SYNTAX_ERROR;

	/* a base address isn't always necessary,
	 * default to 0x0 (i.e. don't relocate) */
	if (CMD_ARGC >= 2)
	{
		uint32_t addr;
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
		image->base_address = addr;
		image->base_address_set = 1;
	}
	else
		image->base_address_set = 0;

	image->start_address_set = 0;

	if (CMD_ARGC >= 4)
	{
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
	}
	if (CMD_ARGC == 5)
	{
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
		// use size (given) to find max (required)
		*max_address += *min_address;
	}

	if (*min_address > *max_address)
		return ERROR_COMMAND_SYNTAX_ERROR;

	return ERROR_OK;
}

COMMAND_HANDLER(handle_load_image_command)
{
	uint8_t *buffer;
	size_t buf_cnt;
	uint32_t image_size;
	uint32_t min_address = 0;
	uint32_t max_address = 0xffffffff;
	int i;
	struct image image;

	int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
			&image, &min_address, &max_address);
	if (ERROR_OK != retval)
		return retval;

	struct target *target = get_current_target(CMD_CTX);

	struct duration bench;
	duration_start(&bench);

	if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
	{
		return ERROR_OK;
	}

	image_size = 0x0;
	retval = ERROR_OK;
	for (i = 0; i < image.num_sections; i++)
	{
		buffer = malloc(image.sections[i].size);
		if (buffer == NULL)
		{
			command_print(CMD_CTX,
						  "error allocating buffer for section (%d bytes)",
						  (int)(image.sections[i].size));
			break;
		}

		if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
		{
			free(buffer);
			break;
		}

		uint32_t offset = 0;
		uint32_t length = buf_cnt;

		/* DANGER!!! beware of unsigned comparision here!!! */

		if ((image.sections[i].base_address + buf_cnt >= min_address)&&
				(image.sections[i].base_address < max_address))
		{
			if (image.sections[i].base_address < min_address)
			{
				/* clip addresses below */
				offset += min_address-image.sections[i].base_address;
				length -= offset;
			}

			if (image.sections[i].base_address + buf_cnt > max_address)
			{
				length -= (image.sections[i].base_address + buf_cnt)-max_address;
			}

			if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
			{
				free(buffer);
				break;
			}
			image_size += length;
			command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
						  (unsigned int)length,
						  image.sections[i].base_address + offset);
		}

		free(buffer);
	}

	if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
	{
		command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
				"in %fs (%0.3f KiB/s)", image_size,
				duration_elapsed(&bench), duration_kbps(&bench, image_size));
	}

	image_close(&image);

	return retval;

}

COMMAND_HANDLER(handle_dump_image_command)
{
	struct fileio fileio;

	uint8_t buffer[560];
	int retvaltemp;


	struct target *target = get_current_target(CMD_CTX);

	if (CMD_ARGC != 3)
	{
		command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
		return ERROR_OK;
	}

	uint32_t address;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
	uint32_t size;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);

	if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
	{
		return ERROR_OK;
	}

	struct duration bench;
	duration_start(&bench);

	int retval = ERROR_OK;
	while (size > 0)
	{
		size_t size_written;
		uint32_t this_run_size = (size > 560) ? 560 : size;
		retval = target_read_buffer(target, address, this_run_size, buffer);
		if (retval != ERROR_OK)
		{
			break;
		}

		retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
		if (retval != ERROR_OK)
		{
			break;
		}

		size -= this_run_size;
		address += this_run_size;
	}

	if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
		return retvaltemp;

	if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
	{
		command_print(CMD_CTX,
				"dumped %ld bytes in %fs (%0.3f KiB/s)", (long)fileio.size,
				duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
	}

	return retval;
}

static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
{
	uint8_t *buffer;
	size_t buf_cnt;
	uint32_t image_size;
	int i;
	int retval;
	uint32_t checksum = 0;
	uint32_t mem_checksum = 0;

	struct image image;

	struct target *target = get_current_target(CMD_CTX);

	if (CMD_ARGC < 1)
	{
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	if (!target)
	{
		LOG_ERROR("no target selected");
		return ERROR_FAIL;
	}

	struct duration bench;
	duration_start(&bench);

	if (CMD_ARGC >= 2)
	{
		uint32_t addr;
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
		image.base_address = addr;
		image.base_address_set = 1;
	}
	else
	{
		image.base_address_set = 0;
		image.base_address = 0x0;
	}

	image.start_address_set = 0;

	if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
	{
		return retval;
	}

	image_size = 0x0;
	int diffs = 0;
	retval = ERROR_OK;
	for (i = 0; i < image.num_sections; i++)
	{
		buffer = malloc(image.sections[i].size);
		if (buffer == NULL)
		{
			command_print(CMD_CTX,
						  "error allocating buffer for section (%d bytes)",
						  (int)(image.sections[i].size));
			break;
		}
		if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
		{
			free(buffer);
			break;
		}

		if (verify)
		{
			/* calculate checksum of image */
			retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
			if (retval != ERROR_OK)
			{
				free(buffer);
				break;
			}

			retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
			if (retval != ERROR_OK)
			{
				free(buffer);
				break;
			}

			if (checksum != mem_checksum)
			{
				/* failed crc checksum, fall back to a binary compare */
				uint8_t *data;

				if (diffs == 0)
				{
					LOG_ERROR("checksum mismatch - attempting binary compare");
				}

				data = (uint8_t*)malloc(buf_cnt);

				/* Can we use 32bit word accesses? */
				int size = 1;
				int count = buf_cnt;
				if ((count % 4) == 0)
				{
					size *= 4;
					count /= 4;
				}
				retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
				if (retval == ERROR_OK)
				{
					uint32_t t;
					for (t = 0; t < buf_cnt; t++)
					{
						if (data[t] != buffer[t])
						{
							command_print(CMD_CTX,
										  "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
										  diffs,
										  (unsigned)(t + image.sections[i].base_address),
										  data[t],
										  buffer[t]);
							if (diffs++ >= 127)
							{
								command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
								free(data);
								free(buffer);
								goto done;
							}
						}
						keep_alive();
					}
				}
				free(data);
			}
		} else
		{
			command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
						  image.sections[i].base_address,
						  buf_cnt);
		}

		free(buffer);
		image_size += buf_cnt;
	}
	if (diffs > 0)
	{
		command_print(CMD_CTX, "No more differences found.");
	}
done:
	if (diffs > 0)
	{
		retval = ERROR_FAIL;
	}
	if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
	{
		command_print(CMD_CTX, "verified %" PRIu32 " bytes "
				"in %fs (%0.3f KiB/s)", image_size,
				duration_elapsed(&bench), duration_kbps(&bench, image_size));
	}

	image_close(&image);

	return retval;
}

COMMAND_HANDLER(handle_verify_image_command)
{
	return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
}

COMMAND_HANDLER(handle_test_image_command)
{
	return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
}

static int handle_bp_command_list(struct command_context *cmd_ctx)
{
	struct target *target = get_current_target(cmd_ctx);
	struct breakpoint *breakpoint = target->breakpoints;
	while (breakpoint)
	{
		if (breakpoint->type == BKPT_SOFT)
		{
			char* buf = buf_to_str(breakpoint->orig_instr,
					breakpoint->length, 16);
			command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
					breakpoint->address,
					breakpoint->length,
					breakpoint->set, buf);
			free(buf);
		}
		else
		{
			command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
						  breakpoint->address,
						  breakpoint->length, breakpoint->set);
		}

		breakpoint = breakpoint->next;
	}
	return ERROR_OK;
}

static int handle_bp_command_set(struct command_context *cmd_ctx,
		uint32_t addr, uint32_t length, int hw)
{
	struct target *target = get_current_target(cmd_ctx);
	int retval = breakpoint_add(target, addr, length, hw);
	if (ERROR_OK == retval)
		command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
	else
		LOG_ERROR("Failure setting breakpoint");
	return retval;
}

COMMAND_HANDLER(handle_bp_command)
{
	if (CMD_ARGC == 0)
		return handle_bp_command_list(CMD_CTX);

	if (CMD_ARGC < 2 || CMD_ARGC > 3)
	{
		command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	uint32_t addr;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
	uint32_t length;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);

	int hw = BKPT_SOFT;
	if (CMD_ARGC == 3)
	{
		if (strcmp(CMD_ARGV[2], "hw") == 0)
			hw = BKPT_HARD;
		else
			return ERROR_COMMAND_SYNTAX_ERROR;
	}

	return handle_bp_command_set(CMD_CTX, addr, length, hw);
}

COMMAND_HANDLER(handle_rbp_command)
{
	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	uint32_t addr;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);

	struct target *target = get_current_target(CMD_CTX);
	breakpoint_remove(target, addr);

	return ERROR_OK;
}

COMMAND_HANDLER(handle_wp_command)
{
	struct target *target = get_current_target(CMD_CTX);

	if (CMD_ARGC == 0)
	{
		struct watchpoint *watchpoint = target->watchpoints;

		while (watchpoint)
		{
			command_print(CMD_CTX, "address: 0x%8.8" PRIx32
					", len: 0x%8.8" PRIx32
					", r/w/a: %i, value: 0x%8.8" PRIx32
					", mask: 0x%8.8" PRIx32,
					watchpoint->address,
					watchpoint->length,
					(int)watchpoint->rw,
					watchpoint->value,
					watchpoint->mask);
			watchpoint = watchpoint->next;
		}
		return ERROR_OK;
	}

	enum watchpoint_rw type = WPT_ACCESS;
	uint32_t addr = 0;
	uint32_t length = 0;
	uint32_t data_value = 0x0;
	uint32_t data_mask = 0xffffffff;

	switch (CMD_ARGC)
	{
	case 5:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
		// fall through
	case 4:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
		// fall through
	case 3:
		switch (CMD_ARGV[2][0])
		{
		case 'r':
			type = WPT_READ;
			break;
		case 'w':
			type = WPT_WRITE;
			break;
		case 'a':
			type = WPT_ACCESS;
			break;
		default:
			LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
			return ERROR_COMMAND_SYNTAX_ERROR;
		}
		// fall through
	case 2:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
		break;

	default:
		command_print(CMD_CTX, "usage: wp [address length "
				"[(r|w|a) [value [mask]]]]");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	int retval = watchpoint_add(target, addr, length, type,
			data_value, data_mask);
	if (ERROR_OK != retval)
		LOG_ERROR("Failure setting watchpoints");

	return retval;
}

COMMAND_HANDLER(handle_rwp_command)
{
	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	uint32_t addr;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);

	struct target *target = get_current_target(CMD_CTX);
	watchpoint_remove(target, addr);

	return ERROR_OK;
}


/**
 * Translate a virtual address to a physical address.
 *
 * The low-level target implementation must have logged a detailed error
 * which is forwarded to telnet/GDB session.
 */
COMMAND_HANDLER(handle_virt2phys_command)
{
	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	uint32_t va;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
	uint32_t pa;

	struct target *target = get_current_target(CMD_CTX);
	int retval = target->type->virt2phys(target, va, &pa);
	if (retval == ERROR_OK)
		command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);

	return retval;
}

static void writeData(FILE *f, const void *data, size_t len)
{
	size_t written = fwrite(data, 1, len, f);
	if (written != len)
		LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
}

static void writeLong(FILE *f, int l)
{
	int i;
	for (i = 0; i < 4; i++)
	{
		char c = (l >> (i*8))&0xff;
		writeData(f, &c, 1);
	}

}

static void writeString(FILE *f, char *s)
{
	writeData(f, s, strlen(s));
}

/* Dump a gmon.out histogram file. */
static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
{
	uint32_t i;
	FILE *f = fopen(filename, "w");
	if (f == NULL)
		return;
	writeString(f, "gmon");
	writeLong(f, 0x00000001); /* Version */
	writeLong(f, 0); /* padding */
	writeLong(f, 0); /* padding */
	writeLong(f, 0); /* padding */

	uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
	writeData(f, &zero, 1);

	/* figure out bucket size */
	uint32_t min = samples[0];
	uint32_t max = samples[0];
	for (i = 0; i < sampleNum; i++)
	{
		if (min > samples[i])
		{
			min = samples[i];
		}
		if (max < samples[i])
		{
			max = samples[i];
		}
	}

	int addressSpace = (max-min + 1);

	static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
	uint32_t length = addressSpace;
	if (length > maxBuckets)
	{
		length = maxBuckets;
	}
	int *buckets = malloc(sizeof(int)*length);
	if (buckets == NULL)
	{
		fclose(f);
		return;
	}
	memset(buckets, 0, sizeof(int)*length);
	for (i = 0; i < sampleNum;i++)
	{
		uint32_t address = samples[i];
		long long a = address-min;
		long long b = length-1;
		long long c = addressSpace-1;
		int index_t = (a*b)/c; /* danger!!!! int32 overflows */
		buckets[index_t]++;
	}

	/* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
	writeLong(f, min); 			/* low_pc */
	writeLong(f, max);			/* high_pc */
	writeLong(f, length);		/* # of samples */
	writeLong(f, 64000000); 	/* 64MHz */
	writeString(f, "seconds");
	for (i = 0; i < (15-strlen("seconds")); i++)
		writeData(f, &zero, 1);
	writeString(f, "s");

	/*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */

	char *data = malloc(2*length);
	if (data != NULL)
	{
		for (i = 0; i < length;i++)
		{
			int val;
			val = buckets[i];
			if (val > 65535)
			{
				val = 65535;
			}
			data[i*2]=val&0xff;
			data[i*2 + 1]=(val >> 8)&0xff;
		}
		free(buckets);
		writeData(f, data, length * 2);
		free(data);
	} else
	{
		free(buckets);
	}

	fclose(f);
}

/* profiling samples the CPU PC as quickly as OpenOCD is able,
 * which will be used as a random sampling of PC */
COMMAND_HANDLER(handle_profile_command)
{
	struct target *target = get_current_target(CMD_CTX);
	struct timeval timeout, now;

	gettimeofday(&timeout, NULL);
	if (CMD_ARGC != 2)
	{
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	unsigned offset;
	COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);

	timeval_add_time(&timeout, offset, 0);

	/**
	 * @todo: Some cores let us sample the PC without the
	 * annoying halt/resume step; for example, ARMv7 PCSR.
	 * Provide a way to use that more efficient mechanism.
	 */

	command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");

	static const int maxSample = 10000;
	uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
	if (samples == NULL)
		return ERROR_OK;

	int numSamples = 0;
	/* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
	struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);

	for (;;)
	{
		int retval;
		target_poll(target);
		if (target->state == TARGET_HALTED)
		{
			uint32_t t=*((uint32_t *)reg->value);
			samples[numSamples++]=t;
			retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
			target_poll(target);
			alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
		} else if (target->state == TARGET_RUNNING)
		{
			/* We want to quickly sample the PC. */
			if ((retval = target_halt(target)) != ERROR_OK)
			{
				free(samples);
				return retval;
			}
		} else
		{
			command_print(CMD_CTX, "Target not halted or running");
			retval = ERROR_OK;
			break;
		}
		if (retval != ERROR_OK)
		{
			break;
		}

		gettimeofday(&now, NULL);
		if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
		{
			command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
			if ((retval = target_poll(target)) != ERROR_OK)
			{
				free(samples);
				return retval;
			}
			if (target->state == TARGET_HALTED)
			{
				target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
			}
			if ((retval = target_poll(target)) != ERROR_OK)
			{
				free(samples);
				return retval;
			}
			writeGmon(samples, numSamples, CMD_ARGV[1]);
			command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
			break;
		}
	}
	free(samples);

	return ERROR_OK;
}

static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
{
	char *namebuf;
	Jim_Obj *nameObjPtr, *valObjPtr;
	int result;

	namebuf = alloc_printf("%s(%d)", varname, idx);
	if (!namebuf)
		return JIM_ERR;

	nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
	valObjPtr = Jim_NewIntObj(interp, val);
	if (!nameObjPtr || !valObjPtr)
	{
		free(namebuf);
		return JIM_ERR;
	}

	Jim_IncrRefCount(nameObjPtr);
	Jim_IncrRefCount(valObjPtr);
	result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
	Jim_DecrRefCount(interp, nameObjPtr);
	Jim_DecrRefCount(interp, valObjPtr);
	free(namebuf);
	/* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
	return result;
}

static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	struct command_context *context;
	struct target *target;

	context = current_command_context(interp);
	assert (context != NULL);

	target = get_current_target(context);
	if (target == NULL)
	{
		LOG_ERROR("mem2array: no current target");
		return JIM_ERR;
	}

	return 	target_mem2array(interp, target, argc-1, argv + 1);
}

static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
{
	long l;
	uint32_t width;
	int len;
	uint32_t addr;
	uint32_t count;
	uint32_t v;
	const char *varname;
	int  n, e, retval;
	uint32_t i;

	/* argv[1] = name of array to receive the data
	 * argv[2] = desired width
	 * argv[3] = memory address
	 * argv[4] = count of times to read
	 */
	if (argc != 4) {
		Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
		return JIM_ERR;
	}
	varname = Jim_GetString(argv[0], &len);
	/* given "foo" get space for worse case "foo(%d)" .. add 20 */

	e = Jim_GetLong(interp, argv[1], &l);
	width = l;
	if (e != JIM_OK) {
		return e;
	}

	e = Jim_GetLong(interp, argv[2], &l);
	addr = l;
	if (e != JIM_OK) {
		return e;
	}
	e = Jim_GetLong(interp, argv[3], &l);
	len = l;
	if (e != JIM_OK) {
		return e;
	}
	switch (width) {
		case 8:
			width = 1;
			break;
		case 16:
			width = 2;
			break;
		case 32:
			width = 4;
			break;
		default:
			Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
			Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
			return JIM_ERR;
	}
	if (len == 0) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
		return JIM_ERR;
	}
	if ((addr + (len * width)) < addr) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
		return JIM_ERR;
	}
	/* absurd transfer size? */
	if (len > 65536) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
		return JIM_ERR;
	}

	if ((width == 1) ||
		((width == 2) && ((addr & 1) == 0)) ||
		((width == 4) && ((addr & 3) == 0))) {
		/* all is well */
	} else {
		char buf[100];
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
				addr,
				width);
		Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
		return JIM_ERR;
	}

	/* Transfer loop */

	/* index counter */
	n = 0;

	size_t buffersize = 4096;
	uint8_t *buffer = malloc(buffersize);
	if (buffer == NULL)
		return JIM_ERR;

	/* assume ok */
	e = JIM_OK;
	while (len) {
		/* Slurp... in buffer size chunks */

		count = len; /* in objects.. */
		if (count > (buffersize/width)) {
			count = (buffersize/width);
		}

		retval = target_read_memory(target, addr, width, count, buffer);
		if (retval != ERROR_OK) {
			/* BOO !*/
			LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
					  (unsigned int)addr,
					  (int)width,
					  (int)count);
			Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
			Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
			e = JIM_ERR;
			len = 0;
		} else {
			v = 0; /* shut up gcc */
			for (i = 0 ;i < count ;i++, n++) {
				switch (width) {
					case 4:
						v = target_buffer_get_u32(target, &buffer[i*width]);
						break;
					case 2:
						v = target_buffer_get_u16(target, &buffer[i*width]);
						break;
					case 1:
						v = buffer[i] & 0x0ff;
						break;
				}
				new_int_array_element(interp, varname, n, v);
			}
			len -= count;
		}
	}

	free(buffer);

	Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));

	return JIM_OK;
}

static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
{
	char *namebuf;
	Jim_Obj *nameObjPtr, *valObjPtr;
	int result;
	long l;

	namebuf = alloc_printf("%s(%d)", varname, idx);
	if (!namebuf)
		return JIM_ERR;

	nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
	if (!nameObjPtr)
	{
		free(namebuf);
		return JIM_ERR;
	}

	Jim_IncrRefCount(nameObjPtr);
	valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
	Jim_DecrRefCount(interp, nameObjPtr);
	free(namebuf);
	if (valObjPtr == NULL)
		return JIM_ERR;

	result = Jim_GetLong(interp, valObjPtr, &l);
	/* printf("%s(%d) => 0%08x\n", varname, idx, val); */
	*val = l;
	return result;
}

static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	struct command_context *context;
	struct target *target;

	context = current_command_context(interp);
	assert (context != NULL);

	target = get_current_target(context);
	if (target == NULL) {
		LOG_ERROR("array2mem: no current target");
		return JIM_ERR;
	}

	return target_array2mem(interp,target, argc-1, argv + 1);
}

static int target_array2mem(Jim_Interp *interp, struct target *target,
		int argc, Jim_Obj *const *argv)
{
	long l;
	uint32_t width;
	int len;
	uint32_t addr;
	uint32_t count;
	uint32_t v;
	const char *varname;
	int  n, e, retval;
	uint32_t i;

	/* argv[1] = name of array to get the data
	 * argv[2] = desired width
	 * argv[3] = memory address
	 * argv[4] = count to write
	 */
	if (argc != 4) {
		Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
		return JIM_ERR;
	}
	varname = Jim_GetString(argv[0], &len);
	/* given "foo" get space for worse case "foo(%d)" .. add 20 */

	e = Jim_GetLong(interp, argv[1], &l);
	width = l;
	if (e != JIM_OK) {
		return e;
	}

	e = Jim_GetLong(interp, argv[2], &l);
	addr = l;
	if (e != JIM_OK) {
		return e;
	}
	e = Jim_GetLong(interp, argv[3], &l);
	len = l;
	if (e != JIM_OK) {
		return e;
	}
	switch (width) {
		case 8:
			width = 1;
			break;
		case 16:
			width = 2;
			break;
		case 32:
			width = 4;
			break;
		default:
			Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
			Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
			return JIM_ERR;
	}
	if (len == 0) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
		return JIM_ERR;
	}
	if ((addr + (len * width)) < addr) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
		return JIM_ERR;
	}
	/* absurd transfer size? */
	if (len > 65536) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
		return JIM_ERR;
	}

	if ((width == 1) ||
		((width == 2) && ((addr & 1) == 0)) ||
		((width == 4) && ((addr & 3) == 0))) {
		/* all is well */
	} else {
		char buf[100];
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
				(unsigned int)addr,
				(int)width);
		Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
		return JIM_ERR;
	}

	/* Transfer loop */

	/* index counter */
	n = 0;
	/* assume ok */
	e = JIM_OK;

	size_t buffersize = 4096;
	uint8_t *buffer = malloc(buffersize);
	if (buffer == NULL)
		return JIM_ERR;

	while (len) {
		/* Slurp... in buffer size chunks */

		count = len; /* in objects.. */
		if (count > (buffersize/width)) {
			count = (buffersize/width);
		}

		v = 0; /* shut up gcc */
		for (i = 0 ;i < count ;i++, n++) {
			get_int_array_element(interp, varname, n, &v);
			switch (width) {
			case 4:
				target_buffer_set_u32(target, &buffer[i*width], v);
				break;
			case 2:
				target_buffer_set_u16(target, &buffer[i*width], v);
				break;
			case 1:
				buffer[i] = v & 0x0ff;
				break;
			}
		}
		len -= count;

		retval = target_write_memory(target, addr, width, count, buffer);
		if (retval != ERROR_OK) {
			/* BOO !*/
			LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
					  (unsigned int)addr,
					  (int)width,
					  (int)count);
			Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
			Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
			e = JIM_ERR;
			len = 0;
		}
	}

	free(buffer);

	Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));

	return JIM_OK;
}

/* FIX? should we propagate errors here rather than printing them
 * and continuing?
 */
void target_handle_event(struct target *target, enum target_event e)
{
	struct target_event_action *teap;

	for (teap = target->event_action; teap != NULL; teap = teap->next) {
		if (teap->event == e) {
			LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
					   target->target_number,
					   target_name(target),
					   target_type_name(target),
					   e,
					   Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
					   Jim_GetString(teap->body, NULL));
			if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
			{
				Jim_PrintErrorMessage(teap->interp);
			}
		}
	}
}

/**
 * Returns true only if the target has a handler for the specified event.
 */
bool target_has_event_action(struct target *target, enum target_event event)
{
	struct target_event_action *teap;

	for (teap = target->event_action; teap != NULL; teap = teap->next) {
		if (teap->event == event)
			return true;
	}
	return false;
}

enum target_cfg_param {
	TCFG_TYPE,
	TCFG_EVENT,
	TCFG_WORK_AREA_VIRT,
	TCFG_WORK_AREA_PHYS,
	TCFG_WORK_AREA_SIZE,
	TCFG_WORK_AREA_BACKUP,
	TCFG_ENDIAN,
	TCFG_VARIANT,
	TCFG_CHAIN_POSITION,
};

static Jim_Nvp nvp_config_opts[] = {
	{ .name = "-type",             .value = TCFG_TYPE },
	{ .name = "-event",            .value = TCFG_EVENT },
	{ .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
	{ .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
	{ .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
	{ .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
	{ .name = "-endian" ,          .value = TCFG_ENDIAN },
	{ .name = "-variant",          .value = TCFG_VARIANT },
	{ .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },

	{ .name = NULL, .value = -1 }
};

static int target_configure(Jim_GetOptInfo *goi, struct target *target)
{
	Jim_Nvp *n;
	Jim_Obj *o;
	jim_wide w;
	char *cp;
	int e;

	/* parse config or cget options ... */
	while (goi->argc > 0) {
		Jim_SetEmptyResult(goi->interp);
		/* Jim_GetOpt_Debug(goi); */

		if (target->type->target_jim_configure) {
			/* target defines a configure function */
			/* target gets first dibs on parameters */
			e = (*(target->type->target_jim_configure))(target, goi);
			if (e == JIM_OK) {
				/* more? */
				continue;
			}
			if (e == JIM_ERR) {
				/* An error */
				return e;
			}
			/* otherwise we 'continue' below */
		}
		e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
		if (e != JIM_OK) {
			Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
			return e;
		}
		switch (n->value) {
		case TCFG_TYPE:
			/* not setable */
			if (goi->isconfigure) {
				Jim_SetResult_sprintf(goi->interp,
						"not settable: %s", n->name);
				return JIM_ERR;
			} else {
			no_params:
				if (goi->argc != 0) {
					Jim_WrongNumArgs(goi->interp,
							goi->argc, goi->argv,
							"NO PARAMS");
					return JIM_ERR;
				}
			}
			Jim_SetResultString(goi->interp,
					target_type_name(target), -1);
			/* loop for more */
			break;
		case TCFG_EVENT:
			if (goi->argc == 0) {
				Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
				return JIM_ERR;
			}

			e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
			if (e != JIM_OK) {
				Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
				return e;
			}

			if (goi->isconfigure) {
				if (goi->argc != 1) {
					Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
					return JIM_ERR;
				}
			} else {
				if (goi->argc != 0) {
					Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
					return JIM_ERR;
				}
			}

			{
				struct target_event_action *teap;

				teap = target->event_action;
				/* replace existing? */
				while (teap) {
					if (teap->event == (enum target_event)n->value) {
						break;
					}
					teap = teap->next;
				}

				if (goi->isconfigure) {
					bool replace = true;
					if (teap == NULL) {
						/* create new */
						teap = calloc(1, sizeof(*teap));
						replace = false;
					}
					teap->event = n->value;
					teap->interp = goi->interp;
					Jim_GetOpt_Obj(goi, &o);
					if (teap->body) {
						Jim_DecrRefCount(teap->interp, teap->body);
					}
					teap->body  = Jim_DuplicateObj(goi->interp, o);
					/*
					 * FIXME:
					 *     Tcl/TK - "tk events" have a nice feature.
					 *     See the "BIND" command.
					 *    We should support that here.
					 *     You can specify %X and %Y in the event code.
					 *     The idea is: %T - target name.
					 *     The idea is: %N - target number
					 *     The idea is: %E - event name.
					 */
					Jim_IncrRefCount(teap->body);

					if (!replace)
					{
						/* add to head of event list */
						teap->next = target->event_action;
						target->event_action = teap;
					}
					Jim_SetEmptyResult(goi->interp);
				} else {
					/* get */
					if (teap == NULL) {
						Jim_SetEmptyResult(goi->interp);
					} else {
						Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
					}
				}
			}
			/* loop for more */
			break;

		case TCFG_WORK_AREA_VIRT:
			if (goi->isconfigure) {
				target_free_all_working_areas(target);
				e = Jim_GetOpt_Wide(goi, &w);
				if (e != JIM_OK) {
					return e;
				}
				target->working_area_virt = w;
				target->working_area_virt_spec = true;
			} else {
				if (goi->argc != 0) {
					goto no_params;
				}
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
			/* loop for more */
			break;

		case TCFG_WORK_AREA_PHYS:
			if (goi->isconfigure) {
				target_free_all_working_areas(target);
				e = Jim_GetOpt_Wide(goi, &w);
				if (e != JIM_OK) {
					return e;
				}
				target->working_area_phys = w;
				target->working_area_phys_spec = true;
			} else {
				if (goi->argc != 0) {
					goto no_params;
				}
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
			/* loop for more */
			break;

		case TCFG_WORK_AREA_SIZE:
			if (goi->isconfigure) {
				target_free_all_working_areas(target);
				e = Jim_GetOpt_Wide(goi, &w);
				if (e != JIM_OK) {
					return e;
				}
				target->working_area_size = w;
			} else {
				if (goi->argc != 0) {
					goto no_params;
				}
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
			/* loop for more */
			break;

		case TCFG_WORK_AREA_BACKUP:
			if (goi->isconfigure) {
				target_free_all_working_areas(target);
				e = Jim_GetOpt_Wide(goi, &w);
				if (e != JIM_OK) {
					return e;
				}
				/* make this exactly 1 or 0 */
				target->backup_working_area = (!!w);
			} else {
				if (goi->argc != 0) {
					goto no_params;
				}
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
			/* loop for more e*/
			break;

		case TCFG_ENDIAN:
			if (goi->isconfigure) {
				e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
				if (e != JIM_OK) {
					Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
					return e;
				}
				target->endianness = n->value;
			} else {
				if (goi->argc != 0) {
					goto no_params;
				}
			}
			n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
			if (n->name == NULL) {
				target->endianness = TARGET_LITTLE_ENDIAN;
				n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
			}
			Jim_SetResultString(goi->interp, n->name, -1);
			/* loop for more */
			break;

		case TCFG_VARIANT:
			if (goi->isconfigure) {
				if (goi->argc < 1) {
					Jim_SetResult_sprintf(goi->interp,
										   "%s ?STRING?",
										   n->name);
					return JIM_ERR;
				}
				if (target->variant) {
					free((void *)(target->variant));
				}
				e = Jim_GetOpt_String(goi, &cp, NULL);
				target->variant = strdup(cp);
			} else {
				if (goi->argc != 0) {
					goto no_params;
				}
			}
			Jim_SetResultString(goi->interp, target->variant,-1);
			/* loop for more */
			break;
		case TCFG_CHAIN_POSITION:
			if (goi->isconfigure) {
				Jim_Obj *o_t;
				struct jtag_tap *tap;
				target_free_all_working_areas(target);
				e = Jim_GetOpt_Obj(goi, &o_t);
				if (e != JIM_OK) {
					return e;
				}
				tap = jtag_tap_by_jim_obj(goi->interp, o_t);
				if (tap == NULL) {
					return JIM_ERR;
				}
				/* make this exactly 1 or 0 */
				target->tap = tap;
			} else {
				if (goi->argc != 0) {
					goto no_params;
				}
			}
			Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
			/* loop for more e*/
			break;
		}
	} /* while (goi->argc) */


		/* done - we return */
	return JIM_OK;
}

static int
jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	Jim_GetOptInfo goi;

	Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
	goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
	int need_args = 1 + goi.isconfigure;
	if (goi.argc < need_args)
	{
		Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
			goi.isconfigure
				? "missing: -option VALUE ..."
				: "missing: -option ...");
		return JIM_ERR;
	}
	struct target *target = Jim_CmdPrivData(goi.interp);
	return target_configure(&goi, target);
}

static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	const char *cmd_name = Jim_GetString(argv[0], NULL);

	Jim_GetOptInfo goi;
	Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);

	if (goi.argc < 2 || goi.argc > 4)
	{
		Jim_SetResult_sprintf(goi.interp,
				"usage: %s [phys] <address> <data> [<count>]", cmd_name);
		return JIM_ERR;
	}

	target_write_fn fn;
	fn = target_write_memory_fast;

	int e;
	if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
	{
		/* consume it */
		struct Jim_Obj *obj;
		e = Jim_GetOpt_Obj(&goi, &obj);
		if (e != JIM_OK)
			return e;

		fn = target_write_phys_memory;
	}

	jim_wide a;
	e = Jim_GetOpt_Wide(&goi, &a);
	if (e != JIM_OK)
		return e;

	jim_wide b;
	e = Jim_GetOpt_Wide(&goi, &b);
	if (e != JIM_OK)
		return e;

	jim_wide c = 1;
	if (goi.argc == 1)
	{
		e = Jim_GetOpt_Wide(&goi, &c);
		if (e != JIM_OK)
			return e;
	}

	/* all args must be consumed */
	if (goi.argc != 0)
	{
		return JIM_ERR;
	}

	struct target *target = Jim_CmdPrivData(goi.interp);
	unsigned data_size;
	if (strcasecmp(cmd_name, "mww") == 0) {
		data_size = 4;
	}
	else if (strcasecmp(cmd_name, "mwh") == 0) {
		data_size = 2;
	}
	else if (strcasecmp(cmd_name, "mwb") == 0) {
		data_size = 1;
	} else {
		LOG_ERROR("command '%s' unknown: ", cmd_name);
		return JIM_ERR;
	}

	return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
}

static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	const char *cmd_name = Jim_GetString(argv[0], NULL);

	Jim_GetOptInfo goi;
	Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);

	if ((goi.argc < 1) || (goi.argc > 3))
	{
		Jim_SetResult_sprintf(goi.interp,
				"usage: %s [phys] <address> [<count>]", cmd_name);
		return JIM_ERR;
	}

	int (*fn)(struct target *target,
			uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
	fn=target_read_memory;

	int e;
	if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
	{
		/* consume it */
		struct Jim_Obj *obj;
		e = Jim_GetOpt_Obj(&goi, &obj);
		if (e != JIM_OK)
			return e;

		fn=target_read_phys_memory;
	}

	jim_wide a;
	e = Jim_GetOpt_Wide(&goi, &a);
	if (e != JIM_OK) {
		return JIM_ERR;
	}
	jim_wide c;
	if (goi.argc == 1) {
		e = Jim_GetOpt_Wide(&goi, &c);
		if (e != JIM_OK) {
			return JIM_ERR;
		}
	} else {
		c = 1;
	}

	/* all args must be consumed */
	if (goi.argc != 0)
	{
		return JIM_ERR;
	}

	jim_wide b = 1; /* shut up gcc */
	if (strcasecmp(cmd_name, "mdw") == 0)
		b = 4;
	else if (strcasecmp(cmd_name, "mdh") == 0)
		b = 2;
	else if (strcasecmp(cmd_name, "mdb") == 0)
		b = 1;
	else {
		LOG_ERROR("command '%s' unknown: ", cmd_name);
		return JIM_ERR;
	}

	/* convert count to "bytes" */
	c = c * b;

	struct target *target = Jim_CmdPrivData(goi.interp);
	uint8_t  target_buf[32];
	jim_wide x, y, z;
	while (c > 0) {
		y = c;
		if (y > 16) {
			y = 16;
		}
		e = fn(target, a, b, y / b, target_buf);
		if (e != ERROR_OK) {
			Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
			return JIM_ERR;
		}

		Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
		switch (b) {
		case 4:
			for (x = 0; x < 16 && x < y; x += 4)
			{
				z = target_buffer_get_u32(target, &(target_buf[ x ]));
				Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
			}
			for (; (x < 16) ; x += 4) {
				Jim_fprintf(interp, interp->cookie_stdout, "         ");
			}
			break;
		case 2:
			for (x = 0; x < 16 && x < y; x += 2)
			{
				z = target_buffer_get_u16(target, &(target_buf[ x ]));
				Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
			}
			for (; (x < 16) ; x += 2) {
				Jim_fprintf(interp, interp->cookie_stdout, "     ");
			}
			break;
		case 1:
		default:
			for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
				z = target_buffer_get_u8(target, &(target_buf[ x ]));
				Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
			}
			for (; (x < 16) ; x += 1) {
				Jim_fprintf(interp, interp->cookie_stdout, "   ");
			}
			break;
		}
		/* ascii-ify the bytes */
		for (x = 0 ; x < y ; x++) {
			if ((target_buf[x] >= 0x20) &&
				(target_buf[x] <= 0x7e)) {
				/* good */
			} else {
				/* smack it */
				target_buf[x] = '.';
			}
		}
		/* space pad  */
		while (x < 16) {
			target_buf[x] = ' ';
			x++;
		}
		/* terminate */
		target_buf[16] = 0;
		/* print - with a newline */
		Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
		/* NEXT... */
		c -= 16;
		a += 16;
	}
	return JIM_OK;
}

static int jim_target_mem2array(Jim_Interp *interp,
		int argc, Jim_Obj *const *argv)
{
	struct target *target = Jim_CmdPrivData(interp);
	return target_mem2array(interp, target, argc - 1, argv + 1);
}

static int jim_target_array2mem(Jim_Interp *interp,
		int argc, Jim_Obj *const *argv)
{
	struct target *target = Jim_CmdPrivData(interp);
	return target_array2mem(interp, target, argc - 1, argv + 1);
}

static int jim_target_tap_disabled(Jim_Interp *interp)
{
	Jim_SetResult_sprintf(interp, "[TAP is disabled]");
	return JIM_ERR;
}

static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1)
	{
		Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
		return JIM_ERR;
	}
	struct target *target = Jim_CmdPrivData(interp);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);

	int e = target->type->examine(target);
	if (e != ERROR_OK)
	{
		Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
		return JIM_ERR;
	}
	return JIM_OK;
}

static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1)
	{
		Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
		return JIM_ERR;
	}
	struct target *target = Jim_CmdPrivData(interp);

	if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
		return JIM_ERR;

	return JIM_OK;
}

static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1)
	{
		Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
		return JIM_ERR;
	}
	struct target *target = Jim_CmdPrivData(interp);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);

	int e;
	if (!(target_was_examined(target))) {
		e = ERROR_TARGET_NOT_EXAMINED;
	} else {
		e = target->type->poll(target);
	}
	if (e != ERROR_OK)
	{
		Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
		return JIM_ERR;
	}
	return JIM_OK;
}

static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	Jim_GetOptInfo goi;
	Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);

	if (goi.argc != 2)
	{
		Jim_WrongNumArgs(interp, 0, argv,
				"([tT]|[fF]|assert|deassert) BOOL");
		return JIM_ERR;
	}

	Jim_Nvp *n;
	int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
	if (e != JIM_OK)
	{
		Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
		return e;
	}
	/* the halt or not param */
	jim_wide a;
	e = Jim_GetOpt_Wide(&goi, &a);
	if (e != JIM_OK)
		return e;

	struct target *target = Jim_CmdPrivData(goi.interp);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);
	if (!(target_was_examined(target)))
	{
		LOG_ERROR("Target not examined yet");
		return ERROR_TARGET_NOT_EXAMINED;
	}
	if (!target->type->assert_reset || !target->type->deassert_reset)
	{
		Jim_SetResult_sprintf(interp,
				"No target-specific reset for %s",
				target_name(target));
		return JIM_ERR;
	}
	/* determine if we should halt or not. */
	target->reset_halt = !!a;
	/* When this happens - all workareas are invalid. */
	target_free_all_working_areas_restore(target, 0);

	/* do the assert */
	if (n->value == NVP_ASSERT) {
		e = target->type->assert_reset(target);
	} else {
		e = target->type->deassert_reset(target);
	}
	return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
}

static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1) {
		Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
		return JIM_ERR;
	}
	struct target *target = Jim_CmdPrivData(interp);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);
	int e = target->type->halt(target);
	return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
}

static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	Jim_GetOptInfo goi;
	Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);

	/* params:  <name>  statename timeoutmsecs */
	if (goi.argc != 2)
	{
		const char *cmd_name = Jim_GetString(argv[0], NULL);
		Jim_SetResult_sprintf(goi.interp,
				"%s <state_name> <timeout_in_msec>", cmd_name);
		return JIM_ERR;
	}

	Jim_Nvp *n;
	int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
	if (e != JIM_OK) {
		Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
		return e;
	}
	jim_wide a;
	e = Jim_GetOpt_Wide(&goi, &a);
	if (e != JIM_OK) {
		return e;
	}
	struct target *target = Jim_CmdPrivData(interp);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);

	e = target_wait_state(target, n->value, a);
	if (e != ERROR_OK)
	{
		Jim_SetResult_sprintf(goi.interp,
				"target: %s wait %s fails (%d) %s",
				target_name(target), n->name,
				e, target_strerror_safe(e));
		return JIM_ERR;
	}
	return JIM_OK;
}
/* List for human, Events defined for this target.
 * scripts/programs should use 'name cget -event NAME'
 */
static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	struct command_context *cmd_ctx = current_command_context(interp);
	assert (cmd_ctx != NULL);

	struct target *target = Jim_CmdPrivData(interp);
	struct target_event_action *teap = target->event_action;
	command_print(cmd_ctx, "Event actions for target (%d) %s\n",
				   target->target_number,
				   target_name(target));
	command_print(cmd_ctx, "%-25s | Body", "Event");
	command_print(cmd_ctx, "------------------------- | "
			"----------------------------------------");
	while (teap)
	{
		Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
		command_print(cmd_ctx, "%-25s | %s",
				opt->name, Jim_GetString(teap->body, NULL));
		teap = teap->next;
	}
	command_print(cmd_ctx, "***END***");
	return JIM_OK;
}
static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1)
	{
		Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
		return JIM_ERR;
	}
	struct target *target = Jim_CmdPrivData(interp);
	Jim_SetResultString(interp, target_state_name(target), -1);
	return JIM_OK;
}
static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	Jim_GetOptInfo goi;
	Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
	if (goi.argc != 1)
	{
		const char *cmd_name = Jim_GetString(argv[0], NULL);
		Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
		return JIM_ERR;
	}
	Jim_Nvp *n;
	int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
	if (e != JIM_OK)
	{
		Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
		return e;
	}
	struct target *target = Jim_CmdPrivData(interp);
	target_handle_event(target, n->value);
	return JIM_OK;
}

static const struct command_registration target_instance_command_handlers[] = {
	{
		.name = "configure",
		.mode = COMMAND_CONFIG,
		.jim_handler = jim_target_configure,
		.help  = "configure a new target for use",
		.usage = "[target_attribute ...]",
	},
	{
		.name = "cget",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_configure,
		.help  = "returns the specified target attribute",
		.usage = "target_attribute",
	},
	{
		.name = "mww",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_mw,
		.help = "Write 32-bit word(s) to target memory",
		.usage = "address data [count]",
	},
	{
		.name = "mwh",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_mw,
		.help = "Write 16-bit half-word(s) to target memory",
		.usage = "address data [count]",
	},
	{
		.name = "mwb",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_mw,
		.help = "Write byte(s) to target memory",
		.usage = "address data [count]",
	},
	{
		.name = "mdw",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_md,
		.help = "Display target memory as 32-bit words",
		.usage = "address [count]",
	},
	{
		.name = "mdh",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_md,
		.help = "Display target memory as 16-bit half-words",
		.usage = "address [count]",
	},
	{
		.name = "mdb",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_md,
		.help = "Display target memory as 8-bit bytes",
		.usage = "address [count]",
	},
	{
		.name = "array2mem",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_array2mem,
		.help = "Writes Tcl array of 8/16/32 bit numbers "
			"to target memory",
		.usage = "arrayname bitwidth address count",
	},
	{
		.name = "mem2array",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_mem2array,
		.help = "Loads Tcl array of 8/16/32 bit numbers "
			"from target memory",
		.usage = "arrayname bitwidth address count",
	},
	{
		.name = "eventlist",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_event_list,
		.help = "displays a table of events defined for this target",
	},
	{
		.name = "curstate",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_current_state,
		.help = "displays the current state of this target",
	},
	{
		.name = "arp_examine",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_examine,
		.help = "used internally for reset processing",
	},
	{
		.name = "arp_halt_gdb",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_halt_gdb,
		.help = "used internally for reset processing to halt GDB",
	},
	{
		.name = "arp_poll",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_poll,
		.help = "used internally for reset processing",
	},
	{
		.name = "arp_reset",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_reset,
		.help = "used internally for reset processing",
	},
	{
		.name = "arp_halt",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_halt,
		.help = "used internally for reset processing",
	},
	{
		.name = "arp_waitstate",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_wait_state,
		.help = "used internally for reset processing",
	},
	{
		.name = "invoke-event",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_invoke_event,
		.help = "invoke handler for specified event",
		.usage = "event_name",
	},
	COMMAND_REGISTRATION_DONE
};

static int target_create(Jim_GetOptInfo *goi)
{
	Jim_Obj *new_cmd;
	Jim_Cmd *cmd;
	const char *cp;
	char *cp2;
	int e;
	int x;
	struct target *target;
	struct command_context *cmd_ctx;

	cmd_ctx = current_command_context(goi->interp);
	assert (cmd_ctx != NULL);

	if (goi->argc < 3) {
		Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
		return JIM_ERR;
	}

	/* COMMAND */
	Jim_GetOpt_Obj(goi, &new_cmd);
	/* does this command exist? */
	cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
	if (cmd) {
		cp = Jim_GetString(new_cmd, NULL);
		Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
		return JIM_ERR;
	}

	/* TYPE */
	e = Jim_GetOpt_String(goi, &cp2, NULL);
	cp = cp2;
	/* now does target type exist */
	for (x = 0 ; target_types[x] ; x++) {
		if (0 == strcmp(cp, target_types[x]->name)) {
			/* found */
			break;
		}
	}
	if (target_types[x] == NULL) {
		Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
		for (x = 0 ; target_types[x] ; x++) {
			if (target_types[x + 1]) {
				Jim_AppendStrings(goi->interp,
								   Jim_GetResult(goi->interp),
								   target_types[x]->name,
								   ", ", NULL);
			} else {
				Jim_AppendStrings(goi->interp,
								   Jim_GetResult(goi->interp),
								   " or ",
								   target_types[x]->name,NULL);
			}
		}
		return JIM_ERR;
	}

	/* Create it */
	target = calloc(1,sizeof(struct target));
	/* set target number */
	target->target_number = new_target_number();

	/* allocate memory for each unique target type */
	target->type = (struct target_type*)calloc(1,sizeof(struct target_type));

	memcpy(target->type, target_types[x], sizeof(struct target_type));

	/* will be set by "-endian" */
	target->endianness = TARGET_ENDIAN_UNKNOWN;

	target->working_area        = 0x0;
	target->working_area_size   = 0x0;
	target->working_areas       = NULL;
	target->backup_working_area = 0;

	target->state               = TARGET_UNKNOWN;
	target->debug_reason        = DBG_REASON_UNDEFINED;
	target->reg_cache           = NULL;
	target->breakpoints         = NULL;
	target->watchpoints         = NULL;
	target->next                = NULL;
	target->arch_info           = NULL;

	target->display             = 1;

	target->halt_issued			= false;

	/* initialize trace information */
	target->trace_info = malloc(sizeof(struct trace));
	target->trace_info->num_trace_points         = 0;
	target->trace_info->trace_points_size        = 0;
	target->trace_info->trace_points             = NULL;
	target->trace_info->trace_history_size       = 0;
	target->trace_info->trace_history            = NULL;
	target->trace_info->trace_history_pos        = 0;
	target->trace_info->trace_history_overflowed = 0;

	target->dbgmsg          = NULL;
	target->dbg_msg_enabled = 0;

	target->endianness = TARGET_ENDIAN_UNKNOWN;

	/* Do the rest as "configure" options */
	goi->isconfigure = 1;
	e = target_configure(goi, target);

	if (target->tap == NULL)
	{
		Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
		e = JIM_ERR;
	}

	if (e != JIM_OK) {
		free(target->type);
		free(target);
		return e;
	}

	if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
		/* default endian to little if not specified */
		target->endianness = TARGET_LITTLE_ENDIAN;
	}

	/* incase variant is not set */
	if (!target->variant)
		target->variant = strdup("");

	cp = Jim_GetString(new_cmd, NULL);
	target->cmd_name = strdup(cp);

	/* create the target specific commands */
	if (target->type->commands) {
		e = register_commands(cmd_ctx, NULL, target->type->commands);
		if (ERROR_OK != e)
			LOG_ERROR("unable to register '%s' commands", cp);
	}
	if (target->type->target_create) {
		(*(target->type->target_create))(target, goi->interp);
	}

	/* append to end of list */
	{
		struct target **tpp;
		tpp = &(all_targets);
		while (*tpp) {
			tpp = &((*tpp)->next);
		}
		*tpp = target;
	}

	/* now - create the new target name command */
	const const struct command_registration target_subcommands[] = {
		{
			.chain = target_instance_command_handlers,
		},
		{
			.chain = target->type->commands,
		},
		COMMAND_REGISTRATION_DONE
	};
	const const struct command_registration target_commands[] = {
		{
			.name = cp,
			.mode = COMMAND_ANY,
			.help = "target command group",
			.chain = target_subcommands,
		},
		COMMAND_REGISTRATION_DONE
	};
	e = register_commands(cmd_ctx, NULL, target_commands);
	if (ERROR_OK != e)
		return JIM_ERR;

	struct command *c = command_find_in_context(cmd_ctx, cp);
	assert(c);
	command_set_handler_data(c, target);

	return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
}

static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1)
	{
		Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
		return JIM_ERR;
	}
	struct command_context *cmd_ctx = current_command_context(interp);
	assert (cmd_ctx != NULL);

	Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
	return JIM_OK;
}

static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1)
	{
		Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
		return JIM_ERR;
	}
	Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
	for (unsigned x = 0; NULL != target_types[x]; x++)
	{
		Jim_ListAppendElement(interp, Jim_GetResult(interp),
			Jim_NewStringObj(interp, target_types[x]->name, -1));
	}
	return JIM_OK;
}

static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1)
	{
		Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
		return JIM_ERR;
	}
	Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
	struct target *target = all_targets;
	while (target)
	{
		Jim_ListAppendElement(interp, Jim_GetResult(interp),
			Jim_NewStringObj(interp, target_name(target), -1));
		target = target->next;
	}
	return JIM_OK;
}

static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	Jim_GetOptInfo goi;
	Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
	if (goi.argc < 3)
	{
		Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
			"<name> <target_type> [<target_options> ...]");
		return JIM_ERR;
	}
	return target_create(&goi);
}

static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	Jim_GetOptInfo goi;
	Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);

	/* It's OK to remove this mechanism sometime after August 2010 or so */
	LOG_WARNING("don't use numbers as target identifiers; use names");
	if (goi.argc != 1)
	{
		Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
		return JIM_ERR;
	}
	jim_wide w;
	int e = Jim_GetOpt_Wide(&goi, &w);
	if (e != JIM_OK)
		return JIM_ERR;

	struct target *target;
	for (target = all_targets; NULL != target; target = target->next)
	{
		if (target->target_number != w)
			continue;

		Jim_SetResultString(goi.interp, target_name(target), -1);
		return JIM_OK;
	}
	Jim_SetResult_sprintf(goi.interp,
			"Target: number %d does not exist", (int)(w));
	return JIM_ERR;
}

static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1)
	{
		Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
		return JIM_ERR;
	}
	unsigned count = 0;
	struct target *target = all_targets;
	while (NULL != target)
	{
		target = target->next;
		count++;
	}
	Jim_SetResult(interp, Jim_NewIntObj(interp, count));
	return JIM_OK;
}

static const struct command_registration target_subcommand_handlers[] = {
	{
		.name = "init",
		.mode = COMMAND_CONFIG,
		.handler = handle_target_init_command,
		.help = "initialize targets",
	},
	{
		.name = "create",
		/* REVISIT this should be COMMAND_CONFIG ... */
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_create,
		.usage = "name type '-chain-position' name [options ...]",
		.help = "Creates and selects a new target",
	},
	{
		.name = "current",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_current,
		.help = "Returns the currently selected target",
	},
	{
		.name = "types",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_types,
		.help = "Returns the available target types as "
				"a list of strings",
	},
	{
		.name = "names",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_names,
		.help = "Returns the names of all targets as a list of strings",
	},
	{
		.name = "number",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_number,
		.usage = "number",
		.help = "Returns the name of the numbered target "
			"(DEPRECATED)",
	},
	{
		.name = "count",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_count,
		.help = "Returns the number of targets as an integer "
			"(DEPRECATED)",
	},
	COMMAND_REGISTRATION_DONE
};

struct FastLoad
{
	uint32_t address;
	uint8_t *data;
	int length;

};

static int fastload_num;
static struct FastLoad *fastload;

static void free_fastload(void)
{
	if (fastload != NULL)
	{
		int i;
		for (i = 0; i < fastload_num; i++)
		{
			if (fastload[i].data)
				free(fastload[i].data);
		}
		free(fastload);
		fastload = NULL;
	}
}




COMMAND_HANDLER(handle_fast_load_image_command)
{
	uint8_t *buffer;
	size_t buf_cnt;
	uint32_t image_size;
	uint32_t min_address = 0;
	uint32_t max_address = 0xffffffff;
	int i;

	struct image image;

	int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
			&image, &min_address, &max_address);
	if (ERROR_OK != retval)
		return retval;

	struct duration bench;
	duration_start(&bench);

	if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
	{
		return ERROR_OK;
	}

	image_size = 0x0;
	retval = ERROR_OK;
	fastload_num = image.num_sections;
	fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
	if (fastload == NULL)
	{
		image_close(&image);
		return ERROR_FAIL;
	}
	memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
	for (i = 0; i < image.num_sections; i++)
	{
		buffer = malloc(image.sections[i].size);
		if (buffer == NULL)
		{
			command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
						  (int)(image.sections[i].size));
			break;
		}

		if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
		{
			free(buffer);
			break;
		}

		uint32_t offset = 0;
		uint32_t length = buf_cnt;


		/* DANGER!!! beware of unsigned comparision here!!! */

		if ((image.sections[i].base_address + buf_cnt >= min_address)&&
				(image.sections[i].base_address < max_address))
		{
			if (image.sections[i].base_address < min_address)
			{
				/* clip addresses below */
				offset += min_address-image.sections[i].base_address;
				length -= offset;
			}

			if (image.sections[i].base_address + buf_cnt > max_address)
			{
				length -= (image.sections[i].base_address + buf_cnt)-max_address;
			}

			fastload[i].address = image.sections[i].base_address + offset;
			fastload[i].data = malloc(length);
			if (fastload[i].data == NULL)
			{
				free(buffer);
				break;
			}
			memcpy(fastload[i].data, buffer + offset, length);
			fastload[i].length = length;

			image_size += length;
			command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
						  (unsigned int)length,
						  ((unsigned int)(image.sections[i].base_address + offset)));
		}

		free(buffer);
	}

	if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
	{
		command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
				"in %fs (%0.3f KiB/s)", image_size,
				duration_elapsed(&bench), duration_kbps(&bench, image_size));

		command_print(CMD_CTX,
				"WARNING: image has not been loaded to target!"
				"You can issue a 'fast_load' to finish loading.");
	}

	image_close(&image);

	if (retval != ERROR_OK)
	{
		free_fastload();
	}

	return retval;
}

COMMAND_HANDLER(handle_fast_load_command)
{
	if (CMD_ARGC > 0)
		return ERROR_COMMAND_SYNTAX_ERROR;
	if (fastload == NULL)
	{
		LOG_ERROR("No image in memory");
		return ERROR_FAIL;
	}
	int i;
	int ms = timeval_ms();
	int size = 0;
	int retval = ERROR_OK;
	for (i = 0; i < fastload_num;i++)
	{
		struct target *target = get_current_target(CMD_CTX);
		command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
					  (unsigned int)(fastload[i].address),
					  (unsigned int)(fastload[i].length));
		if (retval == ERROR_OK)
		{
			retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
		}
		size += fastload[i].length;
	}
	int after = timeval_ms();
	command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
	return retval;
}

static const struct command_registration target_command_handlers[] = {
	{
		.name = "targets",
		.handler = handle_targets_command,
		.mode = COMMAND_ANY,
		.help = "change current default target (one parameter) "
			"or prints table of all targets (no parameters)",
		.usage = "[target]",
	},
	{
		.name = "target",
		.mode = COMMAND_CONFIG,
		.help = "configure target",

		.chain = target_subcommand_handlers,
	},
	COMMAND_REGISTRATION_DONE
};

int target_register_commands(struct command_context *cmd_ctx)
{
	return register_commands(cmd_ctx, NULL, target_command_handlers);
}

static bool target_reset_nag = true;

bool get_target_reset_nag(void)
{
	return target_reset_nag;
}

COMMAND_HANDLER(handle_target_reset_nag)
{
	return CALL_COMMAND_HANDLER(handle_command_parse_bool,
			&target_reset_nag, "Nag after each reset about options to improve "
			"performance");
}

static const struct command_registration target_exec_command_handlers[] = {
	{
		.name = "fast_load_image",
		.handler = handle_fast_load_image_command,
		.mode = COMMAND_ANY,
		.help = "Load image into server memory for later use by "
			"fast_load; primarily for profiling",
		.usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
			"[min_address [max_length]]",
	},
	{
		.name = "fast_load",
		.handler = handle_fast_load_command,
		.mode = COMMAND_EXEC,
		.help = "loads active fast load image to current target "
			"- mainly for profiling purposes",
	},
	{
		.name = "profile",
		.handler = handle_profile_command,
		.mode = COMMAND_EXEC,
		.help = "profiling samples the CPU PC",
	},
	/** @todo don't register virt2phys() unless target supports it */
	{
		.name = "virt2phys",
		.handler = handle_virt2phys_command,
		.mode = COMMAND_ANY,
		.help = "translate a virtual address into a physical address",
		.usage = "virtual_address",
	},
	{
		.name = "reg",
		.handler = handle_reg_command,
		.mode = COMMAND_EXEC,
		.help = "display or set a register; with no arguments, "
			"displays all registers and their values",
		.usage = "[(register_name|register_number) [value]]",
	},
	{
		.name = "poll",
		.handler = handle_poll_command,
		.mode = COMMAND_EXEC,
		.help = "poll target state; or reconfigure background polling",
		.usage = "['on'|'off']",
	},
	{
		.name = "wait_halt",
		.handler = handle_wait_halt_command,
		.mode = COMMAND_EXEC,
		.help = "wait up to the specified number of milliseconds "
			"(default 5) for a previously requested halt",
		.usage = "[milliseconds]",
	},
	{
		.name = "halt",
		.handler = handle_halt_command,
		.mode = COMMAND_EXEC,
		.help = "request target to halt, then wait up to the specified"
			"number of milliseconds (default 5) for it to complete",
		.usage = "[milliseconds]",
	},
	{
		.name = "resume",
		.handler = handle_resume_command,
		.mode = COMMAND_EXEC,
		.help =	"resume target execution from current PC or address",
		.usage = "[address]",
	},
	{
		.name = "reset",
		.handler = handle_reset_command,
		.mode = COMMAND_EXEC,
		.usage = "[run|halt|init]",
		.help = "Reset all targets into the specified mode."
			"Default reset mode is run, if not given.",
	},
	{
		.name = "soft_reset_halt",
		.handler = handle_soft_reset_halt_command,
		.mode = COMMAND_EXEC,
		.help = "halt the target and do a soft reset",
	},
	{
		.name = "step",
		.handler = handle_step_command,
		.mode = COMMAND_EXEC,
		.help =	"step one instruction from current PC or address",
		.usage = "[address]",
	},
	{
		.name = "mdw",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "display memory words",
		.usage = "['phys'] address [count]",
	},
	{
		.name = "mdh",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "display memory half-words",
		.usage = "['phys'] address [count]",
	},
	{
		.name = "mdb",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "display memory bytes",
		.usage = "['phys'] address [count]",
	},
	{
		.name = "mww",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "write memory word",
		.usage = "['phys'] address value [count]",
	},
	{
		.name = "mwh",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "write memory half-word",
		.usage = "['phys'] address value [count]",
	},
	{
		.name = "mwb",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "write memory byte",
		.usage = "['phys'] address value [count]",
	},
	{
		.name = "bp",
		.handler = handle_bp_command,
		.mode = COMMAND_EXEC,
		.help = "list or set hardware or software breakpoint",
		.usage = "[address length ['hw']]",
	},
	{
		.name = "rbp",
		.handler = handle_rbp_command,
		.mode = COMMAND_EXEC,
		.help = "remove breakpoint",
		.usage = "address",
	},
	{
		.name = "wp",
		.handler = handle_wp_command,
		.mode = COMMAND_EXEC,
		.help = "list (no params) or create watchpoints",
		.usage = "[address length [('r'|'w'|'a') value [mask]]]",
	},
	{
		.name = "rwp",
		.handler = handle_rwp_command,
		.mode = COMMAND_EXEC,
		.help = "remove watchpoint",
		.usage = "address",
	},
	{
		.name = "load_image",
		.handler = handle_load_image_command,
		.mode = COMMAND_EXEC,
		.usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
			"[min_address] [max_length]",
	},
	{
		.name = "dump_image",
		.handler = handle_dump_image_command,
		.mode = COMMAND_EXEC,
		.usage = "filename address size",
	},
	{
		.name = "verify_image",
		.handler = handle_verify_image_command,
		.mode = COMMAND_EXEC,
		.usage = "filename [offset [type]]",
	},
	{
		.name = "test_image",
		.handler = handle_test_image_command,
		.mode = COMMAND_EXEC,
		.usage = "filename [offset [type]]",
	},
	{
		.name = "mem2array",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_mem2array,
		.help = "read 8/16/32 bit memory and return as a TCL array "
			"for script processing",
		.usage = "arrayname bitwidth address count",
	},
	{
		.name = "array2mem",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_array2mem,
		.help = "convert a TCL array to memory locations "
			"and write the 8/16/32 bit values",
		.usage = "arrayname bitwidth address count",
	},
	{
		.name = "reset_nag",
		.handler = handle_target_reset_nag,
		.mode = COMMAND_ANY,
		.help = "Nag after each reset about options that could have been "
				"enabled to improve performance. ",
		.usage = "['enable'|'disable']",
	},
	COMMAND_REGISTRATION_DONE
};
static int target_register_user_commands(struct command_context *cmd_ctx)
{
	int retval = ERROR_OK;
	if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
		return retval;

	if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
		return retval;


	return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
}