/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2007,2008 �yvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2008 Peter Hettkamp * * peter.hettkamp@htp-tel.de * * * * Copyright (C) 2009 SoftPLC Corporation. http://softplc.com * * Dick Hollenbeck <dick@softplc.com> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ /* The specification for SVF is available here: * http://www.asset-intertech.com/support/svf.pdf * Below, this document is refered to as the "SVF spec". * * The specification for XSVF is available here: * http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf * Below, this document is refered to as the "XSVF spec". */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "xsvf.h" #include "jtag.h" /* XSVF commands, from appendix B of xapp503.pdf */ #define XCOMPLETE 0x00 #define XTDOMASK 0x01 #define XSIR 0x02 #define XSDR 0x03 #define XRUNTEST 0x04 #define XREPEAT 0x07 #define XSDRSIZE 0x08 #define XSDRTDO 0x09 #define XSETSDRMASKS 0x0A #define XSDRINC 0x0B #define XSDRB 0x0C #define XSDRC 0x0D #define XSDRE 0x0E #define XSDRTDOB 0x0F #define XSDRTDOC 0x10 #define XSDRTDOE 0x11 #define XSTATE 0x12 #define XENDIR 0x13 #define XENDDR 0x14 #define XSIR2 0x15 #define XCOMMENT 0x16 #define XWAIT 0x17 /* XWAITSTATE is not in the xilinx XSVF spec, but the svf2xsvf.py translator * generates this. Arguably it is needed because the XSVF XRUNTEST command * was ill conceived and does not directly flow out of the SVF RUNTEST command. * This XWAITSTATE does map directly from the SVF RUNTEST command. */ #define XWAITSTATE 0x18 /* Lattice has extended the SVF file format, and Dick Hollenbeck's python based * SVF2XSVF converter supports these 3 additional XSVF opcodes, LCOUNT, LDELAY, LSDR. * Here is an example of usage of the 3 lattice opcode extensions: ! Set the maximum loop count to 25. LCOUNT 25; ! Step to DRPAUSE give 5 clocks and wait for 1.00e + 000 SEC. LDELAY DRPAUSE 5 TCK 1.00E-003 SEC; ! Test for the completed status. Match means pass. ! Loop back to LDELAY line if not match and loop count less than 25. LSDR 1 TDI (0) TDO (1); */ #define LCOUNT 0x19 #define LDELAY 0x1A #define LSDR 0x1B #define XTRST 0x1C /* XSVF valid state values for the XSTATE command, from appendix B of xapp503.pdf */ #define XSV_RESET 0x00 #define XSV_IDLE 0x01 #define XSV_DRSELECT 0x02 #define XSV_DRCAPTURE 0x03 #define XSV_DRSHIFT 0x04 #define XSV_DREXIT1 0x05 #define XSV_DRPAUSE 0x06 #define XSV_DREXIT2 0x07 #define XSV_DRUPDATE 0x08 #define XSV_IRSELECT 0x09 #define XSV_IRCAPTURE 0x0A #define XSV_IRSHIFT 0x0B #define XSV_IREXIT1 0x0C #define XSV_IRPAUSE 0x0D #define XSV_IREXIT2 0x0E #define XSV_IRUPDATE 0x0F /* arguments to XTRST */ #define XTRST_ON 0 #define XTRST_OFF 1 #define XTRST_Z 2 #define XTRST_ABSENT 3 #define XSTATE_MAX_PATH 12 static int handle_xsvf_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int xsvf_fd = 0; /* map xsvf tap state to an openocd "tap_state_t" */ static tap_state_t xsvf_to_tap(int xsvf_state) { tap_state_t ret; switch (xsvf_state) { case XSV_RESET: ret = TAP_RESET; break; case XSV_IDLE: ret = TAP_IDLE; break; case XSV_DRSELECT: ret = TAP_DRSELECT; break; case XSV_DRCAPTURE: ret = TAP_DRCAPTURE; break; case XSV_DRSHIFT: ret = TAP_DRSHIFT; break; case XSV_DREXIT1: ret = TAP_DREXIT1; break; case XSV_DRPAUSE: ret = TAP_DRPAUSE; break; case XSV_DREXIT2: ret = TAP_DREXIT2; break; case XSV_DRUPDATE: ret = TAP_DRUPDATE; break; case XSV_IRSELECT: ret = TAP_IRSELECT; break; case XSV_IRCAPTURE: ret = TAP_IRCAPTURE; break; case XSV_IRSHIFT: ret = TAP_IRSHIFT; break; case XSV_IREXIT1: ret = TAP_IREXIT1; break; case XSV_IRPAUSE: ret = TAP_IRPAUSE; break; case XSV_IREXIT2: ret = TAP_IREXIT2; break; case XSV_IRUPDATE: ret = TAP_IRUPDATE; break; default: LOG_ERROR("UNKNOWN XSVF STATE 0x%02X", xsvf_state); exit(1); } return ret; } int xsvf_register_commands(struct command_context_s *cmd_ctx) { register_command(cmd_ctx, NULL, "xsvf", handle_xsvf_command, COMMAND_EXEC, "run xsvf <file> [virt2] [quiet]"); return ERROR_OK; } static int xsvf_read_buffer(int num_bits, int fd, uint8_t* buf) { int num_bytes; for (num_bytes = (num_bits + 7) / 8; num_bytes > 0; num_bytes--) { /* reverse the order of bytes as they are read sequentially from file */ if (read(fd, buf + num_bytes - 1, 1) < 0) return ERROR_XSVF_EOF; } return ERROR_OK; } static int handle_xsvf_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { uint8_t *dr_out_buf = NULL; /* from host to device (TDI) */ uint8_t *dr_in_buf = NULL; /* from device to host (TDO) */ uint8_t *dr_in_mask = NULL; int xsdrsize = 0; int xruntest = 0; /* number of TCK cycles OR microseconds */ int xrepeat = 0; /* number of retries */ tap_state_t xendir = TAP_IDLE; /* see page 8 of the SVF spec, initial xendir to be TAP_IDLE */ tap_state_t xenddr = TAP_IDLE; uint8_t opcode; uint8_t uc; long file_offset = 0; int loop_count = 0; tap_state_t loop_state = TAP_IDLE; int loop_clocks = 0; int loop_usecs = 0; int do_abort = 0; int unsupported = 0; int tdo_mismatch = 0; int result; int verbose = 1; char* filename; int runtest_requires_tck = 0; /* a flag telling whether to clock TCK during waits, or simply sleep, controled by virt2 */ /* use NULL to indicate a "plain" xsvf file which accounts for additional devices in the scan chain, otherwise the device that should be affected */ jtag_tap_t *tap = NULL; if (argc < 2) { command_print(cmd_ctx, "usage: xsvf <device#|plain> <file> [<variant>] [quiet]"); return ERROR_FAIL; } filename = args[1]; /* we mess with args starting point below, snapshot filename here */ if (strcmp(args[0], "plain") != 0) { tap = jtag_tap_by_string(args[0]); if (!tap) { command_print(cmd_ctx, "Tap: %s unknown", args[0]); return ERROR_FAIL; } } if ((xsvf_fd = open(filename, O_RDONLY)) < 0) { command_print(cmd_ctx, "file \"%s\" not found", filename); return ERROR_FAIL; } /* if this argument is present, then interpret xruntest counts as TCK cycles rather than as usecs */ if ((argc > 2) && (strcmp(args[2], "virt2") == 0)) { runtest_requires_tck = 1; --argc; ++args; } if ((argc > 2) && (strcmp(args[2], "quiet") == 0)) { verbose = 0; } LOG_USER("xsvf processing file: \"%s\"", filename); while (read(xsvf_fd, &opcode, 1) > 0) { /* record the position of the just read opcode within the file */ file_offset = lseek(xsvf_fd, 0, SEEK_CUR) - 1; switch (opcode) { case XCOMPLETE: LOG_DEBUG("XCOMPLETE"); result = jtag_execute_queue(); if (result != ERROR_OK) { tdo_mismatch = 1; break; } break; case XTDOMASK: LOG_DEBUG("XTDOMASK"); if (dr_in_mask && (xsvf_read_buffer(xsdrsize, xsvf_fd, dr_in_mask) != ERROR_OK)) do_abort = 1; break; case XRUNTEST: { uint8_t xruntest_buf[4]; if (read(xsvf_fd, xruntest_buf, 4) < 0) { do_abort = 1; break; } xruntest = be_to_h_u32(xruntest_buf); LOG_DEBUG("XRUNTEST %d 0x%08X", xruntest, xruntest); } break; case XREPEAT: { uint8_t myrepeat; if (read(xsvf_fd, &myrepeat, 1) < 0) do_abort = 1; else { xrepeat = myrepeat; LOG_DEBUG("XREPEAT %d", xrepeat); } } break; case XSDRSIZE: { uint8_t xsdrsize_buf[4]; if (read(xsvf_fd, xsdrsize_buf, 4) < 0) { do_abort = 1; break; } xsdrsize = be_to_h_u32(xsdrsize_buf); LOG_DEBUG("XSDRSIZE %d", xsdrsize); if (dr_out_buf) free(dr_out_buf); if (dr_in_buf) free(dr_in_buf); if (dr_in_mask) free(dr_in_mask); dr_out_buf = malloc((xsdrsize + 7) / 8); dr_in_buf = malloc((xsdrsize + 7) / 8); dr_in_mask = malloc((xsdrsize + 7) / 8); } break; case XSDR: /* these two are identical except for the dr_in_buf */ case XSDRTDO: { int limit = xrepeat; int matched = 0; int attempt; const char* op_name = (opcode == XSDR ? "XSDR" : "XSDRTDO"); if (xsvf_read_buffer(xsdrsize, xsvf_fd, dr_out_buf) != ERROR_OK) { do_abort = 1; break; } if (opcode == XSDRTDO) { if (xsvf_read_buffer(xsdrsize, xsvf_fd, dr_in_buf) != ERROR_OK) { do_abort = 1; break; } } if (limit < 1) limit = 1; LOG_DEBUG("%s %d", op_name, xsdrsize); for (attempt = 0; attempt < limit; ++attempt) { scan_field_t field; if (attempt > 0) { /* perform the XC9500 exception handling sequence shown in xapp067.pdf and illustrated in psuedo code at end of this file. We start from state DRPAUSE: go to Exit2-DR go to Shift-DR go to Exit1-DR go to Update-DR go to Run-Test/Idle This sequence should be harmless for other devices, and it will be skipped entirely if xrepeat is set to zero. */ static tap_state_t exception_path[] = { TAP_DREXIT2, TAP_DRSHIFT, TAP_DREXIT1, TAP_DRUPDATE, TAP_IDLE, }; jtag_add_pathmove(DIM(exception_path), exception_path); if (verbose) LOG_USER("%s mismatch, xsdrsize=%d retry=%d", op_name, xsdrsize, attempt); } field.tap = tap; field.num_bits = xsdrsize; field.out_value = dr_out_buf; field.in_value = calloc(CEIL(field.num_bits, 8), 1); if (tap == NULL) jtag_add_plain_dr_scan(1, &field, jtag_set_end_state(TAP_DRPAUSE)); else jtag_add_dr_scan(1, &field, jtag_set_end_state(TAP_DRPAUSE)); jtag_check_value_mask(&field, dr_in_buf, dr_in_mask); free(field.in_value); /* LOG_DEBUG("FLUSHING QUEUE"); */ result = jtag_execute_queue(); if (result == ERROR_OK) { matched = 1; break; } } if (!matched) { LOG_USER("%s mismatch", op_name); tdo_mismatch = 1; break; } /* See page 19 of XSVF spec regarding opcode "XSDR" */ if (xruntest) { jtag_add_statemove(TAP_IDLE); if (runtest_requires_tck) jtag_add_clocks(xruntest); else jtag_add_sleep(xruntest); } else if (xendir != TAP_DRPAUSE) /* we are already in TAP_DRPAUSE */ jtag_add_statemove(xenddr); } break; case XSETSDRMASKS: LOG_ERROR("unsupported XSETSDRMASKS\n"); unsupported = 1; break; case XSDRINC: LOG_ERROR("unsupported XSDRINC\n"); unsupported = 1; break; case XSDRB: LOG_ERROR("unsupported XSDRB\n"); unsupported = 1; break; case XSDRC: LOG_ERROR("unsupported XSDRC\n"); unsupported = 1; break; case XSDRE: LOG_ERROR("unsupported XSDRE\n"); unsupported = 1; break; case XSDRTDOB: LOG_ERROR("unsupported XSDRTDOB\n"); unsupported = 1; break; case XSDRTDOC: LOG_ERROR("unsupported XSDRTDOC\n"); unsupported = 1; break; case XSDRTDOE: LOG_ERROR("unsupported XSDRTDOE\n"); unsupported = 1; break; case XSTATE: { tap_state_t mystate; uint8_t uc; if (read(xsvf_fd, &uc, 1) < 0) { do_abort = 1; break; } mystate = xsvf_to_tap(uc); LOG_DEBUG("XSTATE 0x%02X %s", uc, tap_state_name(mystate)); /* there is no need for the lookahead code that was here since we queue up the jtag commands anyway. This is a simple way to handle the XSTATE. */ if (jtag_add_statemove(mystate) != ERROR_OK) { /* For special states known as stable states (Test-Logic-Reset, Run-Test/Idle, Pause-DR, Pause- IR), an XSVF interpreter follows predefined TAP state paths when the starting state is a stable state and when the XSTATE specifies a new stable state (see the STATE command in the [Ref 5] for the TAP state paths between stable states). For non-stable states, XSTATE should specify a state that is only one TAP state transition distance from the current TAP state to avoid undefined TAP state paths. A sequence of multiple XSTATE commands can be issued to transition the TAP through a specific state path. */ LOG_ERROR("XSTATE %s is not reachable from current state %s in one clock cycle", tap_state_name(mystate), tap_state_name(cmd_queue_cur_state) ); } } break; case XENDIR: if (read(xsvf_fd, &uc, 1) < 0) { do_abort = 1; break; } /* see page 22 of XSVF spec */ if (uc == 0) xendir = TAP_IDLE; else if (uc == 1) xendir = TAP_IRPAUSE; else { LOG_ERROR("illegial XENDIR argument: 0x%02X", uc); unsupported = 1; break; } LOG_DEBUG("XENDIR 0x%02X %s", uc, tap_state_name(xendir)); break; case XENDDR: if (read(xsvf_fd, &uc, 1) < 0) { do_abort = 1; break; } /* see page 22 of XSVF spec */ if (uc == 0) xenddr = TAP_IDLE; else if (uc == 1) xenddr = TAP_DRPAUSE; else { LOG_ERROR("illegial XENDDR argument: 0x%02X", uc); unsupported = 1; break; } LOG_DEBUG("XENDDR %02X %s", uc, tap_state_name(xenddr)); break; case XSIR: case XSIR2: { uint8_t short_buf[2]; uint8_t* ir_buf; int bitcount; tap_state_t my_end_state = xruntest ? TAP_IDLE : xendir; if (opcode == XSIR) { /* one byte bitcount */ if (read(xsvf_fd, short_buf, 1) < 0) { do_abort = 1; break; } bitcount = short_buf[0]; LOG_DEBUG("XSIR %d", bitcount); } else { if (read(xsvf_fd, short_buf, 2) < 0) { do_abort = 1; break; } bitcount = be_to_h_u16(short_buf); LOG_DEBUG("XSIR2 %d", bitcount); } ir_buf = malloc((bitcount + 7) / 8); if (xsvf_read_buffer(bitcount, xsvf_fd, ir_buf) != ERROR_OK) do_abort = 1; else { scan_field_t field; field.tap = tap; field.num_bits = bitcount; field.out_value = ir_buf; field.in_value = NULL; if (tap == NULL) jtag_add_plain_ir_scan(1, &field, my_end_state); else jtag_add_ir_scan(1, &field, my_end_state); if (xruntest) { if (runtest_requires_tck) jtag_add_clocks(xruntest); else jtag_add_sleep(xruntest); } /* Note that an -irmask of non-zero in your config file * can cause this to fail. Setting -irmask to zero cand work * around the problem. */ /* LOG_DEBUG("FLUSHING QUEUE"); */ result = jtag_execute_queue(); if (result != ERROR_OK) { tdo_mismatch = 1; } } free(ir_buf); } break; case XCOMMENT: { unsigned int ndx = 0; char comment[128]; do { if (read(xsvf_fd, &uc, 1) < 0) { do_abort = 1; break; } if (ndx < sizeof(comment)-1) comment[ndx++] = uc; } while (uc != 0); comment[sizeof(comment)-1] = 0; /* regardless, terminate */ if (verbose) LOG_USER("# %s", comment); } break; case XWAIT: { /* expected in stream: XWAIT <uint8_t wait_state> <uint8_t end_state> <uint32_t usecs> */ uint8_t wait; uint8_t end; uint8_t delay_buf[4]; tap_state_t wait_state; tap_state_t end_state; int delay; if (read(xsvf_fd, &wait, 1) < 0 || read(xsvf_fd, &end, 1) < 0 || read(xsvf_fd, delay_buf, 4) < 0) { do_abort = 1; break; } wait_state = xsvf_to_tap(wait); end_state = xsvf_to_tap(end); delay = be_to_h_u32(delay_buf); LOG_DEBUG("XWAIT %s %s usecs:%d", tap_state_name(wait_state), tap_state_name(end_state), delay); if (runtest_requires_tck && wait_state == TAP_IDLE) { jtag_add_runtest(delay, end_state); } else { jtag_add_statemove(wait_state); jtag_add_sleep(delay); jtag_add_statemove(end_state); } } break; case XWAITSTATE: { /* expected in stream: XWAITSTATE <uint8_t wait_state> <uint8_t end_state> <uint32_t clock_count> <uint32_t usecs> */ uint8_t clock_buf[4]; uint8_t usecs_buf[4]; uint8_t wait; uint8_t end; tap_state_t wait_state; tap_state_t end_state; int clock_count; int usecs; if (read(xsvf_fd, &wait, 1) < 0 || read(xsvf_fd, &end, 1) < 0 || read(xsvf_fd, clock_buf, 4) < 0 || read(xsvf_fd, usecs_buf, 4) < 0) { do_abort = 1; break; } wait_state = xsvf_to_tap(wait); end_state = xsvf_to_tap(end); clock_count = be_to_h_u32(clock_buf); usecs = be_to_h_u32(usecs_buf); LOG_DEBUG("XWAITSTATE %s %s clocks:%i usecs:%i", tap_state_name(wait_state), tap_state_name(end_state), clock_count, usecs); /* the following states are 'stable', meaning that they have a transition * in the state diagram back to themselves. This is necessary because we will * be issuing a number of clocks in this state. This set of allowed states is also * determined by the SVF RUNTEST command's allowed states. */ if (wait_state != TAP_IRPAUSE && wait_state != TAP_DRPAUSE && wait_state != TAP_RESET && wait_state != TAP_IDLE) { LOG_ERROR("illegal XWAITSTATE wait_state: \"%s\"", tap_state_name(wait_state)); unsupported = 1; } jtag_add_statemove(wait_state); jtag_add_clocks(clock_count); jtag_add_sleep(usecs); jtag_add_statemove(end_state); } break; case LCOUNT: { /* expected in stream: LCOUNT <uint32_t loop_count> */ uint8_t count_buf[4]; if (read(xsvf_fd, count_buf, 4) < 0) { do_abort = 1; break; } loop_count = be_to_h_u32(count_buf); LOG_DEBUG("LCOUNT %d", loop_count); } break; case LDELAY: { /* expected in stream: LDELAY <uint8_t wait_state> <uint32_t clock_count> <uint32_t usecs_to_sleep> */ uint8_t state; uint8_t clock_buf[4]; uint8_t usecs_buf[4]; if (read(xsvf_fd, &state, 1) < 0 || read(xsvf_fd, clock_buf, 4) < 0 || read(xsvf_fd, usecs_buf, 4) < 0) { do_abort = 1; break; } loop_state = xsvf_to_tap(state); loop_clocks = be_to_h_u32(clock_buf); loop_usecs = be_to_h_u32(usecs_buf); LOG_DEBUG("LDELAY %s clocks:%d usecs:%d", tap_state_name(loop_state), loop_clocks, loop_usecs); } break; /* LSDR is more like XSDRTDO than it is like XSDR. It uses LDELAY which * comes with clocks !AND! sleep requirements. */ case LSDR: { int limit = loop_count; int matched = 0; int attempt; LOG_DEBUG("LSDR"); if (xsvf_read_buffer(xsdrsize, xsvf_fd, dr_out_buf) != ERROR_OK || xsvf_read_buffer(xsdrsize, xsvf_fd, dr_in_buf) != ERROR_OK) { do_abort = 1; break; } if (limit < 1) limit = 1; for (attempt = 0; attempt < limit; ++attempt) { scan_field_t field; jtag_add_statemove(loop_state); jtag_add_clocks(loop_clocks); jtag_add_sleep(loop_usecs); field.tap = tap; field.num_bits = xsdrsize; field.out_value = dr_out_buf; field.in_value = calloc(CEIL(field.num_bits, 8), 1); if (attempt > 0 && verbose) LOG_USER("LSDR retry %d", attempt); if (tap == NULL) jtag_add_plain_dr_scan(1, &field, jtag_set_end_state(TAP_DRPAUSE)); else jtag_add_dr_scan(1, &field, jtag_set_end_state(TAP_DRPAUSE)); jtag_check_value_mask(&field, dr_in_buf, dr_in_mask); free(field.in_value); /* LOG_DEBUG("FLUSHING QUEUE"); */ result = jtag_execute_queue(); if (result == ERROR_OK) { matched = 1; break; } } if (!matched) { LOG_USER("LSDR mismatch"); tdo_mismatch = 1; break; } } break; case XTRST: { uint8_t trst_mode; if (read(xsvf_fd, &trst_mode, 1) < 0) { do_abort = 1; break; } switch (trst_mode) { case XTRST_ON: jtag_add_reset(1, 0); break; case XTRST_OFF: case XTRST_Z: jtag_add_reset(0, 0); break; case XTRST_ABSENT: break; default: LOG_ERROR("XTRST mode argument (0x%02X) out of range", trst_mode); do_abort = 1; } } break; default: LOG_ERROR("unknown xsvf command (0x%02X)\n", uc); unsupported = 1; } if (do_abort || unsupported || tdo_mismatch) { LOG_DEBUG("xsvf failed, setting taps to reasonable state"); /* upon error, return the TAPs to a reasonable state */ jtag_add_statemove(TAP_IDLE); jtag_execute_queue(); break; } } if (tdo_mismatch) { command_print(cmd_ctx, "TDO mismatch, somewhere near offset %lu in xsvf file, aborting", file_offset); return ERROR_FAIL; } if (unsupported) { off_t offset = lseek(xsvf_fd, 0, SEEK_CUR) - 1; command_print(cmd_ctx, "unsupported xsvf command (0x%02X) at offset %jd, aborting", uc, (intmax_t)offset); return ERROR_FAIL; } if (do_abort) { command_print(cmd_ctx, "premature end of xsvf file detected, aborting"); return ERROR_FAIL; } if (dr_out_buf) free(dr_out_buf); if (dr_in_buf) free(dr_in_buf); if (dr_in_mask) free(dr_in_mask); close(xsvf_fd); command_print(cmd_ctx, "XSVF file programmed successfully"); return ERROR_OK; } #if 0 /* this comment style used to try and keep uncrustify from adding * at begin of line */ PSUEDO-Code from Xilinx Appnote XAPP067.pdf: the following pseudo code clarifies the intent of the xrepeat support. The flow given is for the entire processing of an SVF file, not an XSVF file. No idea if this is just for the XC9500/XL/XV devices or all Xilinx parts. "Pseudo-Code Algorithm for SVF-Based ISP" 1. Go to Test-Logic-Reset state 2. Go to Run-Test Idle state 3. Read SVF record 4. if SIR record then go to Shift-IR state Scan in <TDI value> 5. else if SDR record then set <repeat count> to 0 store <TDI value> as <current TDI value> store <TDO value> as <current TDO value> 6. go to Shift-DR state scan in <current TDI value> if <current TDO value> is specified then if <current TDO value> does not equal <actual TDO value> then if <repeat count> > 32 then LOG ERROR go to Run-Test Idle state go to Step 3 end if go to Pause-DR go to Exit2-DR go to Shift-DR go to Exit1-DR go to Update-DR go to Run-Test/Idle increment <repeat count> by 1 pause <current pause time> microseconds go to Step 6) end if else go to Run-Test Idle state go to Step 3 endif else if RUNTEST record then pause tester for <TCK value> microseconds store <TCK value> as <current pause time> end if #endif