\input texinfo @c -*-texinfo-*- @c %**start of header @setfilename openocd.info @settitle Open On-Chip Debugger (OpenOCD) @dircategory Development @direntry @paragraphindent 0 * OpenOCD: (openocd). Open On-Chip Debugger. @end direntry @c %**end of header @include version.texi @copying @itemize @bullet @item Copyright @copyright{} 2008 The OpenOCD Project @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk} @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com} @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com} @end itemize @quotation Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''. @end quotation @end copying @titlepage @title Open On-Chip Debugger (OpenOCD) @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION} @subtitle @value{UPDATED} @page @vskip 0pt plus 1filll @insertcopying @end titlepage @summarycontents @contents @node Top, About, , (dir) @top OpenOCD This manual documents edition @value{EDITION} of the Open On-Chip Debugger (OpenOCD) version @value{VERSION}, @value{UPDATED}. @insertcopying @menu * About:: About OpenOCD * Developers:: OpenOCD Developers * Building:: Building OpenOCD * JTAG Hardware Dongles:: JTAG Hardware Dongles * Running:: Running OpenOCD * Simple Configuration Files:: Simple Configuration Files * Config File Guidelines:: Config File Guidelines * About JIM-Tcl:: About JIM-Tcl * Daemon Configuration:: Daemon Configuration * Interface - Dongle Configuration:: Interface - Dongle Configuration * Reset Configuration:: Reset Configuration * Tap Creation:: Tap Creation * Target Configuration:: Target Configuration * Flash Configuration:: Flash Configuration * General Commands:: General Commands * JTAG Commands:: JTAG Commands * Sample Scripts:: Sample Target Scripts * TFTP:: TFTP * GDB and OpenOCD:: Using GDB and OpenOCD * Tcl Scripting API:: Tcl Scripting API * Upgrading:: Deprecated/Removed Commands * Target Library:: Target Library * FAQ:: Frequently Asked Questions * Tcl Crash Course:: Tcl Crash Course * License:: GNU Free Documentation License @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename @comment case issue with ``Index.html'' and ``index.html'' @comment Occurs when creating ``--html --no-split'' output @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html * OpenOCD Index:: Main Index @end menu @node About @unnumbered About @cindex about The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming and boundary-scan testing for embedded target devices. @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate with the JTAG (IEEE 1149.1) compliant taps on your target board. @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB based, parallel port based, and other standalone boxes that run OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}. @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T, ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged via the GDB protocol. @b{Flash Programing:} Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3, and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included. @node Developers @chapter Developers @cindex developers OpenOCD was created by Dominic Rath as part of a diploma thesis written at the University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}). Others interested in improving the state of free and open debug and testing technology are welcome to participate. Other developers have contributed support for additional targets and flashes as well as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors. The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}. @node Building @chapter Building @cindex building OpenOCD @section Pre-Built Tools If you are interested in getting actual work done rather than building OpenOCD, then check if your interface supplier provides binaries for you. Chances are that that binary is from some SVN version that is more stable than SVN trunk where bleeding edge development takes place. @section Packagers Please Read! You are a @b{PACKAGER} of OpenOCD if you @enumerate @item @b{Sell dongles} and include pre-built binaries @item @b{Supply tools} i.e.: A complete development solution @item @b{Supply IDEs} like Eclipse, or RHIDE, etc. @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro @end enumerate As a @b{PACKAGER} - you are at the top of the food chain. You solve problems for downstream users. What you fix or solve - solves hundreds if not thousands of user questions. If something does not work for you please let us know. That said, would also like you to follow a few suggestions: @enumerate @item @b{Always build with printer ports enabled.} @item @b{Try to use LIBFTDI + LIBUSB where possible. You cover more bases.} @end enumerate @itemize @bullet @item @b{Why YES to LIBFTDI + LIBUSB?} @itemize @bullet @item @b{LESS} work - libusb perhaps already there @item @b{LESS} work - identical code, multiple platforms @item @b{MORE} dongles are supported @item @b{MORE} platforms are supported @item @b{MORE} complete solution @end itemize @item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)? @itemize @bullet @item @b{LESS} speed - some say it is slower @item @b{LESS} complex to distribute (external dependencies) @end itemize @end itemize @section Building From Source You can download the current SVN version with an SVN client of your choice from the following repositories: @uref{svn://svn.berlios.de/openocd/trunk} or @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk} Using the SVN command line client, you can use the following command to fetch the latest version (make sure there is no (non-svn) directory called "openocd" in the current directory): @example svn checkout svn://svn.berlios.de/openocd/trunk openocd @end example Building OpenOCD requires a recent version of the GNU autotools (autoconf >= 2.59 and automake >= 1.9). For building on Windows, you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin paths, resulting in obscure dependency errors (This is an observation I've gathered from the logs of one user - correct me if I'm wrong). You further need the appropriate driver files, if you want to build support for a FTDI FT2232 based interface: @itemize @bullet @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/}) @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}) @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec homepage (@uref{http://www.amontec.com}), as the JTAGkey uses a non-standard VID/PID. @end itemize libftdi is supported under Windows. Do not use versions earlier than 0.14. In general, the D2XX driver provides superior performance (several times as fast), but has the draw-back of being binary-only - though that isn't that bad, as it isn't a kernel module, only a user space library. To build OpenOCD (on both Linux and Cygwin), use the following commands: @example ./bootstrap @end example Bootstrap generates the configure script, and prepares building on your system. @example ./configure [options, see below] @end example Configure generates the Makefiles used to build OpenOCD. @example make make install @end example Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional. The configure script takes several options, specifying which JTAG interfaces should be included (among other things): @itemize @bullet @item @option{--enable-parport} - Enable building the PC parallel port driver. @item @option{--enable-parport_ppdev} - Enable use of ppdev (/dev/parportN) for parport. @item @option{--enable-parport_giveio} - Enable use of giveio for parport instead of ioperm. @item @option{--enable-amtjtagaccel} - Enable building the Amontec JTAG-Accelerator driver. @item @option{--enable-ecosboard} - Enable building support for eCosBoard based JTAG debugger. @item @option{--enable-ioutil} - Enable ioutil functions - useful for standalone OpenOCD implementations. @item @option{--enable-httpd} - Enable builtin httpd server - useful for standalone OpenOCD implementations. @item @option{--enable-ep93xx} - Enable building support for EP93xx based SBCs. @item @option{--enable-at91rm9200} - Enable building support for AT91RM9200 based SBCs. @item @option{--enable-gw16012} - Enable building support for the Gateworks GW16012 JTAG programmer. @item @option{--enable-ft2232_ftd2xx} - Numerous USB type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source). @item @option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin). @item @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked. @item @option{--with-ftd2xx-linux-tardir=PATH} - Linux only. Equivalent of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file. @item @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally. @item @option{--enable-presto_libftdi} - Enable building support for ASIX Presto programmer using the libftdi driver. @item @option{--enable-presto_ftd2xx} - Enable building support for ASIX Presto programmer using the FTD2XX driver. @item @option{--enable-usbprog} - Enable building support for the USBprog JTAG programmer. @item @option{--enable-oocd_trace} - Enable building support for the OpenOCD+trace ETM capture device. @item @option{--enable-jlink} - Enable building support for the Segger J-Link JTAG programmer. @item @option{--enable-vsllink} - Enable building support for the Versaloon-Link JTAG programmer. @item @option{--enable-rlink} - Enable building support for the Raisonance RLink JTAG programmer. @item @option{--enable-arm-jtag-ew} - Enable building support for the Olimex ARM-JTAG-EW programmer. @item @option{--enable-dummy} - Enable building the dummy port driver. @end itemize @section Parallel Port Dongles If you want to access the parallel port using the PPDEV interface you have to specify both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since the @option{--enable-parport_ppdev} option actually is an option to the parport driver (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info). The same is true for the @option{--enable-parport_giveio} option, you have to use both the @option{--enable-parport} AND the @option{--enable-parport_giveio} option if you want to use giveio instead of ioperm parallel port access method. @section FT2232C Based USB Dongles There are 2 methods of using the FTD2232, either (1) using the FTDICHIP.COM closed source driver, or (2) the open (and free) driver libftdi. Some claim the (closed) FTDICHIP.COM solution is faster. The FTDICHIP drivers come as either a (win32) ZIP file, or a (Linux) TAR.GZ file. You must unpack them ``some where'' convient. As of this writing (12/26/2008) FTDICHIP does not supply means to install these files ``in an appropriate place'' As a result, there are two ``./configure'' options that help. Below is an example build process: 1) Check out the latest version of ``openocd'' from SVN. 2) Download & unpack either the Windows or Linux FTD2xx drivers (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}). @example /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents. /home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents. @end example 3) Configure with these options: @example Cygwin FTDICHIP solution: ./configure --prefix=/home/duane/mytools \ --enable-ft2232_ftd2xx \ --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32 Linux FTDICHIP solution: ./configure --prefix=/home/duane/mytools \ --enable-ft2232_ftd2xx \ --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16 Cygwin/Linux LIBFTDI solution: Assumes: 1a) For Windows: The Windows port of LIBUSB is in place. 1b) For Linux: libusb has been built/installed and is in place. 2) And libftdi has been built and installed Note: libftdi - relies upon libusb. ./configure --prefix=/home/duane/mytools \ --enable-ft2232_libftdi @end example 4) Then just type ``make'', and perhaps ``make install''. @section Miscellaneous Configure Options @itemize @bullet @item @option{--disable-option-checking} - Ignore unrecognized @option{--enable} and @option{--with} options. @item @option{--enable-gccwarnings} - Enable extra gcc warnings during build. Default is enabled. @item @option{--enable-release} - Enable building of an OpenOCD release, generally this is for developers. It simply omits the svn version string when the openocd @option{-v} is executed. @end itemize @node JTAG Hardware Dongles @chapter JTAG Hardware Dongles @cindex dongles @cindex FTDI @cindex wiggler @cindex zy1000 @cindex printer port @cindex USB Adapter @cindex rtck Defined: @b{dongle}: A small device that plugins into a computer and serves as an adapter .... [snip] In the OpenOCD case, this generally refers to @b{a small adapater} one attaches to your computer via USB or the Parallel Printer Port. The execption being the Zylin ZY1000 which is a small box you attach via an ethernet cable. The Zylin ZY1000 has the advantage that it does not require any drivers to be installed on the developer PC. It also has a built in web interface. It supports RTCK/RCLK or adaptive clocking and has a built in relay to power cycle targets remotely. @section Choosing a Dongle There are three things you should keep in mind when choosing a dongle. @enumerate @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it? @item @b{Connection} Printer Ports - Does your computer have one? @item @b{Connection} Is that long printer bit-bang cable practical? @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking'' @end enumerate @section Stand alone Systems @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a dongle, but a standalone box. The ZY1000 has the advantage that it does not require any drivers installed on the developer PC. It also has a built in web interface. It supports RTCK/RCLK or adaptive clocking and has a built in relay to power cycle targets remotely. @section USB FT2232 Based There are many USB JTAG dongles on the market, many of them are based on a chip from ``Future Technology Devices International'' (FTDI) known as the FTDI FT2232. See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm} As of 28/Nov/2008, the following are supported: @itemize @bullet @item @b{usbjtag} @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html} @item @b{jtagkey} @* See: @url{http://www.amontec.com/jtagkey.shtml} @item @b{oocdlink} @* See: @url{http://www.oocdlink.com} By Joern Kaipf @item @b{signalyzer} @* See: @url{http://www.signalyzer.com} @item @b{evb_lm3s811} @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in. @item @b{olimex-jtag} @* See: @url{http://www.olimex.com} @item @b{flyswatter} @* See: @url{http://www.tincantools.com} @item @b{turtelizer2} @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html} @item @b{comstick} @* Link: @url{http://www.hitex.com/index.php?id=383} @item @b{stm32stick} @* Link @url{http://www.hitex.com/stm32-stick} @item @b{axm0432_jtag} @* Axiom AXM-0432 Link @url{http://www.axman.com} @end itemize @section USB JLINK based There are several OEM versions of the Segger @b{JLINK} adapter. It is an example of a micro controller based JTAG adapter, it uses an AT91SAM764 internally. @itemize @bullet @item @b{ATMEL SAMICE} Only works with ATMEL chips! @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892} @item @b{SEGGER JLINK} @* Link: @url{http://www.segger.com/jlink.html} @item @b{IAR J-Link} @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php} @end itemize @section USB RLINK based Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported. @itemize @bullet @item @b{Raisonance RLink} @* Link: @url{http://www.raisonance.com/products/RLink.php} @item @b{STM32 Primer} @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php} @item @b{STM32 Primer2} @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php} @end itemize @section USB Other @itemize @bullet @item @b{USBprog} @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604 @item @b{USB - Presto} @* Link: @url{http://tools.asix.net/prg_presto.htm} @item @b{Versaloon-Link} @* Link: @url{http://www.simonqian.com/en/Versaloon} @item @b{ARM-JTAG-EW} @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html} @end itemize @section IBM PC Parallel Printer Port Based The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5 and the MacGraigor Wiggler. There are many clones and variations of these on the market. @itemize @bullet @item @b{Wiggler} - There are many clones of this. @* Link: @url{http://www.macraigor.com/wiggler.htm} @item @b{DLC5} - From XILINX - There are many clones of this @* Link: Search the web for: ``XILINX DLC5'' - it is no longer produced, PDF schematics are easily found and it is easy to make. @item @b{Amontec - JTAG Accelerator} @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml} @item @b{GW16402} @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php} @item @b{Wiggler2} @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag} @item @b{Wiggler_ntrst_inverted} @* Yet another variation - See the source code, src/jtag/parport.c @item @b{old_amt_wiggler} @* Unknown - probably not on the market today @item @b{arm-jtag} @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone] @item @b{chameleon} @* Link: @url{http://www.amontec.com/chameleon.shtml} @item @b{Triton} @* Unknown. @item @b{Lattice} @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf} @item @b{flashlink} @* From ST Microsystems, link: @url{http://www.st.com/stonline/products/literature/um/7889.pdf} Title: FlashLINK JTAG programing cable for PSD and uPSD @end itemize @section Other... @itemize @bullet @item @b{ep93xx} @* An EP93xx based Linux machine using the GPIO pins directly. @item @b{at91rm9200} @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip. @end itemize @node Running @chapter Running @cindex running OpenOCD @cindex --configfile @cindex --debug_level @cindex --logfile @cindex --search The @option{--help} option shows: @verbatim bash$ openocd --help --help | -h display this help --version | -v display OpenOCD version --file | -f use configuration file --search | -s dir to search for config files and scripts --debug | -d set debug level <0-3> --log_output | -l redirect log output to file --command | -c run --pipe | -p use pipes when talking to gdb @end verbatim By default OpenOCD reads the file configuration file ``openocd.cfg'' in the current directory. To specify a different (or multiple) configuration file, you can use the ``-f'' option. For example: @example openocd -f config1.cfg -f config2.cfg -f config3.cfg @end example Once started, OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other). If you are having problems, you can enable internal debug messages via the ``-d'' option. Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch. To enable debug output (when reporting problems or working on OpenOCD itself), use the @option{-d} command line switch. This sets the @option{debug_level} to "3", outputting the most information, including debug messages. The default setting is "2", outputting only informational messages, warnings and errors. You can also change this setting from within a telnet or gdb session using @option{debug_level } @xref{debug_level}. You can redirect all output from the daemon to a file using the @option{-l } switch. Search paths for config/script files can be added to OpenOCD by using the @option{-s } switch. The current directory and the OpenOCD target library is in the search path by default. For details on the @option{-p} option. @xref{Connecting to GDB}. Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection with the target. In general, it is possible for the JTAG controller to be unresponsive until the target is set up correctly via e.g. GDB monitor commands in a GDB init script. @node Simple Configuration Files @chapter Simple Configuration Files @cindex configuration @section Outline There are 4 basic ways of ``configurating'' OpenOCD to run, they are: @enumerate @item A small openocd.cfg file which ``sources'' other configuration files @item A monolithic openocd.cfg file @item Many -f filename options on the command line @item Your Mixed Solution @end enumerate @section Small configuration file method This is the preferred method. It is simple and works well for many people. The developers of OpenOCD would encourage you to use this method. If you create a new configuration please email new configurations to the development list. Here is an example of an openocd.cfg file for an ATMEL at91sam7x256 @example source [find interface/signalyzer.cfg] # Change the default telnet port... telnet_port 4444 # GDB connects here gdb_port 3333 # GDB can also flash my flash! gdb_memory_map enable gdb_flash_program enable source [find target/sam7x256.cfg] @end example There are many example configuration scripts you can work with. You should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You should find: @enumerate @item @b{board} - eval board level configurations @item @b{interface} - specific dongle configurations @item @b{target} - the target chips @item @b{tcl} - helper scripts @item @b{xscale} - things specific to the xscale. @end enumerate Look first in the ``boards'' area, then the ``targets'' area. Often a board configuration is a good example to work from. @section Many -f filename options Some believe this is a wonderful solution, others find it painful. You can use a series of ``-f filename'' options on the command line, OpenOCD will read each filename in sequence, for example: @example openocd -f file1.cfg -f file2.cfg -f file2.cfg @end example You can also intermix various commands with the ``-c'' command line option. @section Monolithic file The ``Monolithic File'' dispenses with all ``source'' statements and puts everything in one self contained (monolithic) file. This is not encouraged. Please try to ``source'' various files or use the multiple -f technique. @section Advice for you Often, one uses a ``mixed approach''. Where possible, please try to ``source'' common things, and if needed cut/paste parts of the standard distribution configuration files as needed. @b{REMEMBER:} The ``important parts'' of your configuration file are: @enumerate @item @b{Interface} - Defines the dongle @item @b{Taps} - Defines the JTAG Taps @item @b{GDB Targets} - What GDB talks to @item @b{Flash Programing} - Very Helpful @end enumerate Some key things you should look at and understand are: @enumerate @item The reset configuration of your debug environment as a whole @item Is there a ``work area'' that OpenOCD can use? @* For ARM - work areas mean up to 10x faster downloads. @item For MMU/MPU based ARM chips (i.e.: ARM9 and later) will that work area still be available? @item For complex targets (multiple chips) the JTAG SPEED becomes an issue. @end enumerate @node Config File Guidelines @chapter Config File Guidelines This section/chapter is aimed at developers and integrators of OpenOCD. These are guidelines for creating new boards and new target configurations as of 28/Nov/2008. However, you, the user of OpenOCD, should be somewhat familiar with this section as it should help explain some of the internals of what you might be looking at. The user should find the following directories under @t{$(INSTALLDIR)/lib/openocd} : @itemize @bullet @item @b{interface} @*Think JTAG Dongle. Files that configure the JTAG dongle go here. @item @b{board} @* Think Circuit Board, PWA, PCB, they go by many names. Board files contain initialization items that are specific to a board - for example: The SDRAM initialization sequence for the board, or the type of external flash and what address it is found at. Any initialization sequence to enable that external flash or SDRAM should be found in the board file. Boards may also contain multiple targets, i.e.: Two CPUs, or a CPU and an FPGA or CPLD. @item @b{target} @* Think chip. The ``target'' directory represents a JTAG tap (or chip) OpenOCD should control, not a board. Two common types of targets are ARM chips and FPGA or CPLD chips. @end itemize @b{If needed...} The user in their ``openocd.cfg'' file or the board file might override a specific feature in any of the above files by setting a variable or two before sourcing the target file. Or adding various commands specific to their situation. @section Interface Config Files The user should be able to source one of these files via a command like this: @example source [find interface/FOOBAR.cfg] Or: openocd -f interface/FOOBAR.cfg @end example A preconfigured interface file should exist for every interface in use today, that said, perhaps some interfaces have only been used by the sole developer who created it. @b{FIXME/NOTE:} We need to add support for a variable like Tcl variable tcl_platform(platform), it should be called jim_platform (because it is jim, not real tcl) and it should contain 1 of 3 words: ``linux'', ``cygwin'' or ``mingw'' Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface} @section Board Config Files @b{Note: BOARD directory NEW as of 28/nov/2008} The user should be able to source one of these files via a command like this: @example source [find board/FOOBAR.cfg] Or: openocd -f board/FOOBAR.cfg @end example The board file should contain one or more @t{source [find target/FOO.cfg]} statements along with any board specific things. In summary the board files should contain (if present) @enumerate @item External flash configuration (i.e.: the flash on CS0) @item SDRAM configuration (size, speed, etc. @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash) @item Multiple TARGET source statements @item All things that are not ``inside a chip'' @item Things inside a chip go in a 'target' file @end enumerate @section Target Config Files The user should be able to source one of these files via a command like this: @example source [find target/FOOBAR.cfg] Or: openocd -f target/FOOBAR.cfg @end example In summary the target files should contain @enumerate @item Set defaults @item Create taps @item Reset configuration @item Work areas @item CPU/Chip/CPU-Core specific features @item On-Chip flash @end enumerate @subsection Important variable names By default, the end user should never need to set these variables. However, if the user needs to override a setting they only need to set the variable in a simple way. @itemize @bullet @item @b{CHIPNAME} @* This gives a name to the overall chip, and is used as part of the tap identifier dotted name. @item @b{ENDIAN} @* By default little - unless the chip or board is not normally used that way. @item @b{CPUTAPID} @* When OpenOCD examines the JTAG chain, it will attempt to identify every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts to verify the tap id number verses configuration file and may issue an error or warning like this. The hope is that this will help to pinpoint problems in OpenOCD configurations. @example Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3) Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3 @end example @item @b{_TARGETNAME} @* By convention, this variable is created by the target configuration script. The board configuration file may make use of this variable to configure things like a ``reset init'' script, or other things specific to that board and that target. If the chip has 2 targets, use the names @b{_TARGETNAME0}, @b{_TARGETNAME1}, ... etc. @b{Remember:} The ``board file'' may include multiple targets. At no time should the name ``target0'' (the default target name if none was specified) be used. The name ``target0'' is a hard coded name - the next target on the board will be some other number. The user (or board file) should reasonably be able to: @example source [find target/FOO.cfg] $_TARGETNAME configure ... FOO specific parameters source [find target/BAR.cfg] $_TARGETNAME configure ... BAR specific parameters @end example @end itemize @subsection Tcl Variables Guide Line The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not. Thus the rule we follow in OpenOCD is this: Variables that begin with a leading underscore are temporary in nature, and can be modified and used at will within a ?TARGET? configuration file. @b{EXAMPLE:} The user should be able to do this: @example # Board has 3 chips, # PXA270 #1 network side, big endian # PXA270 #2 video side, little endian # Xilinx Glue logic set CHIPNAME network set ENDIAN big source [find target/pxa270.cfg] # variable: _TARGETNAME = network.cpu # other commands can refer to the "network.cpu" tap. $_TARGETNAME configure .... params for this CPU.. set ENDIAN little set CHIPNAME video source [find target/pxa270.cfg] # variable: _TARGETNAME = video.cpu # other commands can refer to the "video.cpu" tap. $_TARGETNAME configure .... params for this CPU.. unset ENDIAN set CHIPNAME xilinx source [find target/spartan3.cfg] # Since $_TARGETNAME is temporal.. # these names still work! network.cpu configure ... params video.cpu configure ... params @end example @subsection Default Value Boiler Plate Code All target configuration files should start with this (or a modified form) @example # SIMPLE example if @{ [info exists CHIPNAME] @} @{ set _CHIPNAME $CHIPNAME @} else @{ set _CHIPNAME sam7x256 @} if @{ [info exists ENDIAN] @} @{ set _ENDIAN $ENDIAN @} else @{ set _ENDIAN little @} if @{ [info exists CPUTAPID ] @} @{ set _CPUTAPID $CPUTAPID @} else @{ set _CPUTAPID 0x3f0f0f0f @} @end example @subsection Creating Taps After the ``defaults'' are choosen [see above] the taps are created. @b{SIMPLE example:} such as an Atmel AT91SAM7X256 @example # for an ARM7TDMI. set _TARGETNAME [format "%s.cpu" $_CHIPNAME] jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID @end example @b{COMPLEX example:} This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown: @enumerate @item @b{Unform tap names} - See: Tap Naming Convention @item @b{_TARGETNAME} is created at the end where used. @end enumerate @example if @{ [info exists FLASHTAPID ] @} @{ set _FLASHTAPID $FLASHTAPID @} else @{ set _FLASHTAPID 0x25966041 @} jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID if @{ [info exists CPUTAPID ] @} @{ set _CPUTAPID $CPUTAPID @} else @{ set _CPUTAPID 0x25966041 @} jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID if @{ [info exists BSTAPID ] @} @{ set _BSTAPID $BSTAPID @} else @{ set _BSTAPID 0x1457f041 @} jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID set _TARGETNAME [format "%s.cpu" $_CHIPNAME] @end example @b{Tap Naming Convention} See the command ``jtag newtap'' for detail, but in brief the names you should use are: @itemize @bullet @item @b{tap} @item @b{cpu} @item @b{flash} @item @b{bs} @item @b{jrc} @item @b{unknownN} - it happens :-( @end itemize @subsection Reset Configuration Some chips have specific ways the TRST and SRST signals are managed. If these are @b{CHIP SPECIFIC} they go here, if they are @b{BOARD SPECIFIC} they go in the board file. @subsection Work Areas Work areas are small RAM areas used by OpenOCD to speed up downloads, and to download small snippets of code to program flash chips. If the chip includes a form of ``on-chip-ram'' - and many do - define a reasonable work area and use the ``backup'' option. @b{PROBLEMS:} On more complex chips, this ``work area'' may become inaccessible if/when the application code enables or disables the MMU. @subsection ARM Core Specific Hacks If the chip has a DCC, enable it. If the chip is an ARM9 with some special high speed download features - enable it. If the chip has an ARM ``vector catch'' feature - by default enable it for Undefined Instructions, Data Abort, and Prefetch Abort, if the user is really writing a handler for those situations - they can easily disable it. Experiance has shown the ``vector catch'' is helpful - for common programing errors. If present, the MMU, the MPU and the CACHE should be disabled. @subsection Internal Flash Configuration This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in. @b{Never ever} in the ``target configuration file'' define any type of flash that is external to the chip. (For example the BOOT flash on Chip Select 0). The BOOT flash information goes in a board file - not the TARGET (chip) file. Examples: @itemize @bullet @item at91sam7x256 - has 256K flash YES enable it. @item str912 - has flash internal YES enable it. @item imx27 - uses boot flash on CS0 - it goes in the board file. @item pxa270 - again - CS0 flash - it goes in the board file. @end itemize @node About JIM-Tcl @chapter About JIM-Tcl @cindex JIM Tcl @cindex tcl OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can learn more about JIM here: @url{http://jim.berlios.de} @itemize @bullet @item @b{JIM vs. Tcl} @* JIM-TCL is a stripped down version of the well known Tcl language, which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far fewer features. JIM-Tcl is a single .C file and a single .H file and impliments the basic Tcl command set along. In contrast: Tcl 8.6 is a 4.2 MB .zip file containing 1540 files. @item @b{Missing Features} @* Our practice has been: Add/clone the real Tcl feature if/when needed. We welcome JIM Tcl improvements, not bloat. @item @b{Scripts} @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's command interpreter today (28/nov/2008) is a mixture of (newer) JIM-Tcl commands, and (older) the orginal command interpreter. @item @b{Commands} @* At the OpenOCD telnet command line (or via the GDB mon command) one can type a Tcl for() loop, set variables, etc. @item @b{Historical Note} @* JIM-Tcl was introduced to OpenOCD in spring 2008. @item @b{Need a crash course in Tcl?} @* See: @xref{Tcl Crash Course}. @end itemize @node Daemon Configuration @chapter Daemon Configuration The commands here are commonly found in the openocd.cfg file and are used to specify what TCP/IP ports are used, and how GDB should be supported. @section init @cindex init This command terminates the configuration stage and enters the normal command mode. This can be useful to add commands to the startup scripts and commands such as resetting the target, programming flash, etc. To reset the CPU upon startup, add "init" and "reset" at the end of the config script or at the end of the OpenOCD command line using the @option{-c} command line switch. If this command does not appear in any startup/configuration file OpenOCD executes the command for you after processing all configuration files and/or command line options. @b{NOTE:} This command normally occurs at or near the end of your openocd.cfg file to force OpenOCD to ``initialize'' and make the targets ready. For example: If your openocd.cfg file needs to read/write memory on your target - the init command must occur before the memory read/write commands. @section TCP/IP Ports @itemize @bullet @item @b{telnet_port} <@var{number}> @cindex telnet_port @*Intended for a human. Port on which to listen for incoming telnet connections. @item @b{tcl_port} <@var{number}> @cindex tcl_port @*Intended as a machine interface. Port on which to listen for incoming Tcl syntax. This port is intended as a simplified RPC connection that can be used by clients to issue commands and get the output from the Tcl engine. @item @b{gdb_port} <@var{number}> @cindex gdb_port @*First port on which to listen for incoming GDB connections. The GDB port for the first target will be gdb_port, the second target will listen on gdb_port + 1, and so on. @end itemize @section GDB Items @itemize @bullet @item @b{gdb_breakpoint_override} <@var{hard|soft|disable}> @cindex gdb_breakpoint_override @anchor{gdb_breakpoint_override} @*Force breakpoint type for gdb 'break' commands. The raison d'etre for this option is to support GDB GUI's without a hard/soft breakpoint concept where the default OpenOCD and GDB behaviour is not sufficient. Note that GDB will use hardware breakpoints if the memory map has been set up for flash regions. This option replaces older arm7_9 target commands that addressed the same issue. @item @b{gdb_detach} <@var{resume|reset|halt|nothing}> @cindex gdb_detach @*Configures what OpenOCD will do when GDB detaches from the daemon. Default behaviour is <@var{resume}> @item @b{gdb_memory_map} <@var{enable|disable}> @cindex gdb_memory_map @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to GDB when requested. GDB will then know when to set hardware breakpoints, and program flash using the GDB load command. @option{gdb_flash_program enable} must also be enabled for flash programming to work. Default behaviour is <@var{enable}> @xref{gdb_flash_program}. @item @b{gdb_flash_program} <@var{enable|disable}> @cindex gdb_flash_program @anchor{gdb_flash_program} @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a vFlash packet is received. Default behaviour is <@var{enable}> @comment END GDB Items @end itemize @node Interface - Dongle Configuration @chapter Interface - Dongle Configuration Interface commands are normally found in an interface configuration file which is sourced by your openocd.cfg file. These commands tell OpenOCD what type of JTAG dongle you have and how to talk to it. @section Simple Complete Interface Examples @b{A Turtelizer FT2232 Based JTAG Dongle} @verbatim #interface interface ft2232 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A" ft2232_layout turtelizer2 ft2232_vid_pid 0x0403 0xbdc8 @end verbatim @b{A SEGGER Jlink} @verbatim # jlink interface interface jlink @end verbatim @b{A Raisonance RLink} @verbatim # rlink interface interface rlink @end verbatim @b{Parallel Port} @verbatim interface parport parport_port 0xc8b8 parport_cable wiggler jtag_speed 0 @end verbatim @b{ARM-JTAG-EW} @verbatim interface arm-jtag-ew @end verbatim @section Interface Command The interface command tells OpenOCD what type of JTAG dongle you are using. Depending on the type of dongle, you may need to have one or more additional commands. @itemize @bullet @item @b{interface} <@var{name}> @cindex interface @*Use the interface driver <@var{name}> to connect to the target. Currently supported interfaces are @itemize @minus @item @b{parport} @* PC parallel port bit-banging (Wigglers, PLD download cable, ...) @item @b{amt_jtagaccel} @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP mode parallel port @item @b{ft2232} @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only FTD2XX driver. The FTD2XX is superior in performance, but not available on every platform. The libftdi uses libusb, and should be portable to all systems that provide libusb. @item @b{ep93xx} @*Cirrus Logic EP93xx based single-board computer bit-banging (in development) @item @b{presto} @* ASIX PRESTO USB JTAG programmer. @item @b{usbprog} @* usbprog is a freely programmable USB adapter. @item @b{gw16012} @* Gateworks GW16012 JTAG programmer. @item @b{jlink} @* Segger jlink USB adapter @item @b{rlink} @* Raisonance RLink USB adapter @item @b{vsllink} @* vsllink is part of Versaloon which is a versatile USB programmer. @item @b{arm-jtag-ew} @* Olimex ARM-JTAG-EW USB adapter @comment - End parameters @end itemize @comment - End Interface @end itemize @subsection parport options @itemize @bullet @item @b{parport_port} <@var{number}> @cindex parport_port @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the @file{/dev/parport} device When using PPDEV to access the parallel port, use the number of the parallel port: @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified you may encounter a problem. @item @b{parport_cable} <@var{name}> @cindex parport_cable @*The layout of the parallel port cable used to connect to the target. Currently supported cables are @itemize @minus @item @b{wiggler} @cindex wiggler The original Wiggler layout, also supported by several clones, such as the Olimex ARM-JTAG @item @b{wiggler2} @cindex wiggler2 Same as original wiggler except an led is fitted on D5. @item @b{wiggler_ntrst_inverted} @cindex wiggler_ntrst_inverted Same as original wiggler except TRST is inverted. @item @b{old_amt_wiggler} @cindex old_amt_wiggler The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new version available from the website uses the original Wiggler layout ('@var{wiggler}') @item @b{chameleon} @cindex chameleon The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target. @item @b{dlc5} @cindex dlc5 The Xilinx Parallel cable III. @item @b{triton} @cindex triton The parallel port adapter found on the 'Karo Triton 1 Development Board'. This is also the layout used by the HollyGates design (see @uref{http://www.lartmaker.nl/projects/jtag/}). @item @b{flashlink} @cindex flashlink The ST Parallel cable. @item @b{arm-jtag} @cindex arm-jtag Same as original wiggler except SRST and TRST connections reversed and TRST is also inverted. @item @b{altium} @cindex altium Altium Universal JTAG cable. @end itemize @item @b{parport_write_on_exit} <@var{on}|@var{off}> @cindex parport_write_on_exit @*This will configure the parallel driver to write a known value to the parallel interface on exiting OpenOCD @end itemize @subsection amt_jtagaccel options @itemize @bullet @item @b{parport_port} <@var{number}> @cindex parport_port @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the @file{/dev/parport} device @end itemize @subsection ft2232 options @itemize @bullet @item @b{ft2232_device_desc} <@var{description}> @cindex ft2232_device_desc @*The USB device description of the FTDI FT2232 device. If not specified, the FTDI default value is used. This setting is only valid if compiled with FTD2XX support. @b{TODO:} Confirm the following: On Windows the name needs to end with a ``space A''? Or not? It has to do with the FTD2xx driver. When must this be added and when must it not be added? Why can't the code in the interface or in OpenOCD automatically add this if needed? -- Duane. @item @b{ft2232_serial} <@var{serial-number}> @cindex ft2232_serial @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default values are used. @item @b{ft2232_layout} <@var{name}> @cindex ft2232_layout @*The layout of the FT2232 GPIO signals used to control output-enables and reset signals. Valid layouts are @itemize @minus @item @b{usbjtag} "USBJTAG-1" layout described in the original OpenOCD diploma thesis @item @b{jtagkey} Amontec JTAGkey and JTAGkey-Tiny @item @b{signalyzer} Signalyzer @item @b{olimex-jtag} Olimex ARM-USB-OCD @item @b{m5960} American Microsystems M5960 @item @b{evb_lm3s811} Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or SRST signals on external connector @item @b{comstick} Hitex STR9 comstick @item @b{stm32stick} Hitex STM32 Performance Stick @item @b{flyswatter} Tin Can Tools Flyswatter @item @b{turtelizer2} egnite Software turtelizer2 @item @b{oocdlink} OOCDLink @item @b{axm0432_jtag} Axiom AXM-0432 @end itemize @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}> @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g. @example ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003 @end example @item @b{ft2232_latency} <@var{ms}> @*On some systems using FT2232 based JTAG interfaces the FT_Read function call in ft2232_read() fails to return the expected number of bytes. This can be caused by USB communication delays and has proved hard to reproduce and debug. Setting the FT2232 latency timer to a larger value increases delays for short USB packets but it also reduces the risk of timeouts before receiving the expected number of bytes. The OpenOCD default value is 2 and for some systems a value of 10 has proved useful. @end itemize @subsection ep93xx options @cindex ep93xx options Currently, there are no options available for the ep93xx interface. @section JTAG Speed @itemize @bullet @item @b{jtag_khz} <@var{reset speed kHz}> @cindex jtag_khz It is debatable if this command belongs here - or in a board configuration file. In fact, in some situations the JTAG speed is changed during the target initialisation process (i.e.: (1) slow at reset, (2) program the CPU clocks, (3) run fast) Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz. Not all interfaces support ``rtck''. If the interface device can not support the rate asked for, or can not translate from kHz to jtag_speed, then an error is returned. Make sure the JTAG clock is no more than @math{1/6th CPU-Clock}. This is especially true for synthesized cores (-S). Also see RTCK. @b{NOTE: Script writers} If the target chip requires/uses RTCK - please use the command: 'jtag_rclk FREQ'. This Tcl proc (in startup.tcl) attempts to enable RTCK, if that fails it falls back to the specified frequency. @example # Fall back to 3mhz if RCLK is not supported jtag_rclk 3000 @end example @item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above. @cindex jtag_speed @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum speed. The actual effect of this option depends on the JTAG interface used. The speed used during reset can be adjusted using setting jtag_speed during pre_reset and post_reset events. @itemize @minus @item wiggler: maximum speed / @var{number} @item ft2232: 6MHz / (@var{number}+1) @item amt jtagaccel: 8 / 2**@var{number} @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK @item rlink: 24MHz / @var{number}, but only for certain values of @var{number} @comment end speed list. @end itemize @comment END command list @end itemize @node Reset Configuration @chapter Reset Configuration @cindex Reset Configuration Every system configuration may require a different reset configuration. This can also be quite confusing. Please see the various board files for example. @section jtag_nsrst_delay <@var{ms}> @cindex jtag_nsrst_delay @*How long (in milliseconds) OpenOCD should wait after deasserting nSRST before starting new JTAG operations. @section jtag_ntrst_delay <@var{ms}> @cindex jtag_ntrst_delay @*Same @b{jtag_nsrst_delay}, but for nTRST The jtag_n[st]rst_delay options are useful if reset circuitry (like a big resistor/capacitor, reset supervisor, or on-chip features). This keeps the signal asserted for some time after the external reset got deasserted. @section reset_config @b{Note:} To maintainers and integrators: Where exactly the ``reset configuration'' goes is a good question. It touches several things at once. In the end, if you have a board file - the board file should define it and assume 100% that the DONGLE supports anything. However, that does not mean the target should not also make not of something the silicon vendor has done inside the chip. @i{Grr.... nothing is every pretty.} @* @b{Problems:} @enumerate @item Every JTAG Dongle is slightly different, some dongles implement reset differently. @item Every board is also slightly different; some boards tie TRST and SRST together. @item Every chip is slightly different; some chips internally tie the two signals together. @item Some may not implement all of the signals the same way. @item Some signals might be push-pull, others open-drain/collector. @end enumerate @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then reset the TAP via TRST and send commands through the JTAG tap to halt the CPU at the reset vector before the 1st instruction is executed, and finally release the SRST signal. @*Depending on your board vendor, chip vendor, etc., these signals may have slightly different names. OpenOCD defines these signals in these terms: @itemize @bullet @item @b{TRST} - is Tap Reset - and should reset only the TAP. @item @b{SRST} - is System Reset - typically equal to a reset push button. @end itemize The Command: @itemize @bullet @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}] @cindex reset_config @* The @t{reset_config} command tells OpenOCD the reset configuration of your combination of Dongle, Board, and Chips. If the JTAG interface provides SRST, but the target doesn't connect that signal properly, then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only}, @option{srst_only} or @option{trst_and_srst}. [@var{combination}] is an optional value specifying broken reset signal implementations. @option{srst_pulls_trst} states that the test logic is reset together with the reset of the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says that the system is reset together with the test logic (only hypothetical, I haven't seen hardware with such a bug, and can be worked around). @option{combined} implies both @option{srst_pulls_trst} and @option{trst_pulls_srst}. The default behaviour if no option given is @option{separate}. The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the reset lines to be specified. Possible values are @option{trst_push_pull} (default) and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain} (default) and @option{srst_push_pull} for the system reset. These values only affect JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator. @comment - end command @end itemize @node Tap Creation @chapter Tap Creation @cindex tap creation @cindex tap configuration In order for OpenOCD to control a target, a JTAG tap must be defined/created. Commands to create taps are normally found in a configuration file and are not normally typed by a human. When a tap is created a @b{dotted.name} is created for the tap. Other commands use that dotted.name to manipulate or refer to the tap. Tap Uses: @itemize @bullet @item @b{Debug Target} A tap can be used by a GDB debug target @item @b{Flash Programing} Some chips program the flash via JTAG @item @b{Boundry Scan} Some chips support boundary scan. @end itemize @section jtag newtap @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}} @cindex jtag_device @cindex jtag newtap @cindex tap @cindex tap order @cindex tap geometry @comment START options @itemize @bullet @item @b{CHIPNAME} @* is a symbolic name of the chip. @item @b{TAPNAME} @* is a symbol name of a tap present on the chip. @item @b{Required configparams} @* Every tap has 3 required configparams, and several ``optional parameters'', the required parameters are: @comment START REQUIRED @itemize @bullet @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits. @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01. @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For some devices, there are bits in the IR that aren't used. This lets you mask them off when doing comparisons. In general, this should just be all ones for the size of the IR. @comment END REQUIRED @end itemize An example of a FOOBAR Tap @example jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55 @end example Creates the tap ``foobar.tap'' with the instruction register (IR) is 7 bits long, during Capture-IR 0x42 is loaded into the IR, and bits [6,4,2,0] are checked. @item @b{Optional configparams} @comment START Optional @itemize @bullet @item @b{-expected-id NUMBER} @* By default it is zero. If non-zero represents the expected tap ID used when the JTAG chain is examined. See below. @item @b{-disable} @item @b{-enable} @* By default not specified the tap is enabled. Some chips have a JTAG route controller (JRC) that is used to enable and/or disable specific JTAG taps. You can later enable or disable any JTAG tap via the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable DOTTED.NAME} @comment END Optional @end itemize @comment END OPTIONS @end itemize @b{Notes:} @comment START NOTES @itemize @bullet @item @b{Technically} @* newtap is a sub command of the ``jtag'' command @item @b{Big Picture Background} @*GDB Talks to OpenOCD using the GDB protocol via TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to control the JTAG chain on your board. Your board has one or more chips in a @i{daisy chain configuration}. Each chip may have one or more JTAG taps. GDB ends up talking via OpenOCD to one of the taps. @item @b{NAME Rules} @*Names follow ``C'' symbol name rules (start with alpha ...) @item @b{TAPNAME - Conventions} @itemize @bullet @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap. @item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp} @item @b{flash} - if the chip has a flash tap, example: str912.flash @item @b{bs} - for boundary scan if this is a seperate tap. @item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards) @item @b{unknownN} - where N is a number if you have no idea what the tap is for @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap. @item @b{When in doubt} - use the chip maker's name in their data sheet. @end itemize @item @b{DOTTED.NAME} @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a dot (period); for example: @b{xilinx.tap}, @b{str912.flash}, @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in numerous other places to refer to various taps. @item @b{ORDER} @* The order this command appears via the config files is important. @item @b{Multi Tap Example} @* This example is based on the ST Microsystems STR912. See the ST document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page: 28/102, Figure 3: JTAG chaining inside the STR91xFA}. @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf} @*@b{checked: 28/nov/2008} The diagram shows that the TDO pin connects to the flash tap, flash TDI connects to the CPU debug tap, CPU TDI connects to the boundary scan tap which then connects to the TDI pin. @example # The order is... # create tap: 'str912.flash' jtag newtap str912 flash ... params ... # create tap: 'str912.cpu' jtag newtap str912 cpu ... params ... # create tap: 'str912.bs' jtag newtap str912 bs ... params ... @end example @item @b{Note: Deprecated} - Index Numbers @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this feature is still present, however its use is highly discouraged and should not be counted upon. @item @b{Multiple chips} @* If your board has multiple chips, you should be able to @b{source} two configuration files, in the proper order, and have the taps created in the proper order. @comment END NOTES @end itemize @comment at command level @comment DOCUMENT old command @section jtag_device - REMOVED @example @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}> @end example @cindex jtag_device @* @b{Removed: 28/nov/2008} This command has been removed and replaced by the ``jtag newtap'' command. The documentation remains here so that one can easily convert the old syntax to the new syntax. About the old syntax: The old syntax is positional, i.e.: The 3rd parameter is the ``irmask''. The new syntax requires named prefixes, and supports additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the @b{jtag newtap} command for details. @example OLD: jtag_device 8 0x01 0xe3 0xfe NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3 @end example @section Enable/Disable Taps @b{Note:} These commands are intended to be used as a machine/script interface. Humans might find the ``scan_chain'' command more helpful when querying the state of the JTAG taps. @b{By default, all taps are enabled} @itemize @bullet @item @b{jtag tapenable} @var{DOTTED.NAME} @item @b{jtag tapdisable} @var{DOTTED.NAME} @item @b{jtag tapisenabled} @var{DOTTED.NAME} @end itemize @cindex tap enable @cindex tap disable @cindex JRC @cindex route controller These commands are used when your target has a JTAG route controller that effectively adds or removes a tap from the JTAG chain in a non-standard way. The ``standard way'' to remove a tap would be to place the tap in bypass mode. But with the advent of modern chips, this is not always a good solution. Some taps operate slowly, others operate fast, and there are other JTAG clock synchronisation problems one must face. To solve that problem, the JTAG route controller was introduced. Rather than ``bypass'' the tap, the tap is completely removed from the circuit and skipped. From OpenOCD's point of view, a JTAG tap is in one of 3 states: @itemize @bullet @item @b{Enabled - Not In ByPass} and has a variable bit length @item @b{Enabled - In ByPass} and has a length of exactly 1 bit. @item @b{Disabled} and has a length of ZERO and is removed from the circuit. @end itemize The IEEE JTAG definition has no concept of a ``disabled'' tap. @b{Historical note:} this feature was added 28/nov/2008 @b{jtag tapisenabled DOTTED.NAME} This command returns 1 if the named tap is currently enabled, 0 if not. This command exists so that scripts that manipulate a JRC (like the OMAP3530 has) can determine if OpenOCD thinks a tap is presently enabled or disabled. @page @node Target Configuration @chapter Target Configuration This chapter discusses how to create a GDB debug target. Before creating a ``target'' a JTAG tap DOTTED.NAME must exist first. @section targets [NAME] @b{Note:} This command name is PLURAL - not singular. With NO parameter, this plural @b{targets} command lists all known targets in a human friendly form. With a parameter, this plural @b{targets} command sets the current target to the given name. (i.e.: If there are multiple debug targets) Example: @verbatim (gdb) mon targets CmdName Type Endian ChainPos State -- ---------- ---------- ---------- -------- ---------- 0: target0 arm7tdmi little 0 halted @end verbatim @section target COMMANDS @b{Note:} This command name is SINGULAR - not plural. It is used to manipulate specific targets, to create targets and other things. Once a target is created, a TARGETNAME (object) command is created; see below for details. The TARGET command accepts these sub-commands: @itemize @bullet @item @b{create} .. parameters .. @* creates a new target, see below for details. @item @b{types} @* Lists all supported target types (perhaps some are not yet in this document). @item @b{names} @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage: @verbatim foreach t [target names] { puts [format "Target: %s\n" $t] } @end verbatim @item @b{current} @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way. By default, commands like: ``mww'' (used to write memory) operate on the current target. @item @b{number} @b{NUMBER} @* Internally OpenOCD maintains a list of targets - in numerical index (0..N-1) this command returns the name of the target at index N. Example usage: @verbatim set thename [target number $x] puts [format "Target %d is: %s\n" $x $thename] @end verbatim @item @b{count} @* Returns the number of targets known to OpenOCD (see number above) Example: @verbatim set c [target count] for { set x 0 } { $x < $c } { incr x } { # Assuming you have created this function print_target_details $x } @end verbatim @end itemize @section TARGETNAME (object) commands @b{Use:} Once a target is created, an ``object name'' that represents the target is created. By convention, the target name is identical to the tap name. In a multiple target system, one can preceed many common commands with a specific target name and effect only that target. @example str912.cpu mww 0x1234 0x42 omap3530.cpu mww 0x5555 123 @end example @b{Model:} The Tcl/Tk language has the concept of object commands. A good example is a on screen button, once a button is created a button has a name (a path in Tk terms) and that name is useable as a 1st class command. For example in Tk, one can create a button and later configure it like this: @example # Create button .foobar -background red -command @{ foo @} # Modify .foobar configure -foreground blue # Query set x [.foobar cget -background] # Report puts [format "The button is %s" $x] @end example In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk button. Commands available as a ``target object'' are: @comment START targetobj commands. @itemize @bullet @item @b{configure} - configure the target; see Target Config/Cget Options below @item @b{cget} - query the target configuration; see Target Config/Cget Options below @item @b{curstate} - current target state (running, halt, etc. @item @b{eventlist} @* Intended for a human to see/read the currently configure target events. @item @b{Various Memory Commands} See the ``mww'' command elsewhere. @comment start memory @itemize @bullet @item @b{mww} ... @item @b{mwh} ... @item @b{mwb} ... @item @b{mdw} ... @item @b{mdh} ... @item @b{mdb} ... @comment end memory @end itemize @item @b{Memory To Array, Array To Memory} @* These are aimed at a machine interface to memory @itemize @bullet @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT} @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT} @* Where: @* @b{ARRAYNAME} is the name of an array variable @* @b{WIDTH} is 8/16/32 - indicating the memory access size @* @b{ADDRESS} is the target memory address @* @b{COUNT} is the number of elements to process @end itemize @item @b{Used during ``reset''} @* These commands are used internally by the OpenOCD scripts to deal with odd reset situations and are not documented here. @itemize @bullet @item @b{arp_examine} @item @b{arp_poll} @item @b{arp_reset} @item @b{arp_halt} @item @b{arp_waitstate} @end itemize @item @b{invoke-event} @b{EVENT-NAME} @* Invokes the specific event manually for the target @end itemize @section Target Events At various times, certain things can happen, or you want them to happen. Examples: @itemize @bullet @item What should happen when GDB connects? Should your target reset? @item When GDB tries to flash the target, do you need to enable the flash via a special command? @item During reset, do you need to write to certain memory location to reconfigure the SDRAM? @end itemize All of the above items are handled by target events. To specify an event action, either during target creation, or later via ``$_TARGETNAME configure'' see this example. Syntactially, the option is: ``-event NAME BODY'' where NAME is a target event name, and BODY is a Tcl procedure or string of commands to execute. The programmers model is the ``-command'' option used in Tcl/Tk buttons and events. Below are two identical examples, the first creates and invokes small procedure. The second inlines the procedure. @example proc my_attach_proc @{ @} @{ puts "RESET...." reset halt @} mychip.cpu configure -event gdb-attach my_attach_proc mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @} @end example @section Current Events The following events are available: @itemize @bullet @item @b{debug-halted} @* The target has halted for debug reasons (i.e.: breakpoint) @item @b{debug-resumed} @* The target has resumed (i.e.: gdb said run) @item @b{early-halted} @* Occurs early in the halt process @item @b{examine-end} @* Currently not used (goal: when JTAG examine completes) @item @b{examine-start} @* Currently not used (goal: when JTAG examine starts) @item @b{gdb-attach} @* When GDB connects @item @b{gdb-detach} @* When GDB disconnects @item @b{gdb-end} @* When the taret has halted and GDB is not doing anything (see early halt) @item @b{gdb-flash-erase-start} @* Before the GDB flash process tries to erase the flash @item @b{gdb-flash-erase-end} @* After the GDB flash process has finished erasing the flash @item @b{gdb-flash-write-start} @* Before GDB writes to the flash @item @b{gdb-flash-write-end} @* After GDB writes to the flash @item @b{gdb-start} @* Before the taret steps, gdb is trying to start/resume the target @item @b{halted} @* The target has halted @item @b{old-gdb_program_config} @* DO NOT USE THIS: Used internally @item @b{old-pre_resume} @* DO NOT USE THIS: Used internally @item @b{reset-assert-pre} @* Before reset is asserted on the tap. @item @b{reset-assert-post} @* Reset is now asserted on the tap. @item @b{reset-deassert-pre} @* Reset is about to be released on the tap @item @b{reset-deassert-post} @* Reset has been released on the tap @item @b{reset-end} @* Currently not used. @item @b{reset-halt-post} @* Currently not usd @item @b{reset-halt-pre} @* Currently not used @item @b{reset-init} @* Currently not used @item @b{reset-start} @* Currently not used @item @b{reset-wait-pos} @* Currently not used @item @b{reset-wait-pre} @* Currently not used @item @b{resume-start} @* Before any target is resumed @item @b{resume-end} @* After all targets have resumed @item @b{resume-ok} @* Success @item @b{resumed} @* Target has resumed @item @b{tap-enable} @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example: @example jtag configure DOTTED.NAME -event tap-enable @{ puts "Enabling CPU" ... @} @end example @item @b{tap-disable} @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example: @example jtag configure DOTTED.NAME -event tap-disable @{ puts "Disabling CPU" ... @} @end example @end itemize @section target create @cindex target @cindex target creation @example @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}> @end example @*This command creates a GDB debug target that refers to a specific JTAG tap. @comment START params @itemize @bullet @item @b{NAME} @* Is the name of the debug target. By convention it should be the tap DOTTED.NAME, this name is also used to create the target object command. @item @b{TYPE} @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are: @comment START types @itemize @minus @item @b{arm7tdmi} @item @b{arm720t} @item @b{arm9tdmi} @item @b{arm920t} @item @b{arm922t} @item @b{arm926ejs} @item @b{arm966e} @item @b{cortex_m3} @item @b{feroceon} @item @b{xscale} @item @b{arm11} @item @b{mips_m4k} @comment end TYPES @end itemize @item @b{PARAMS} @*PARAMs are various target configuration parameters. The following ones are mandatory: @comment START mandatory @itemize @bullet @item @b{-endian big|little} @item @b{-chain-position DOTTED.NAME} @comment end MANDATORY @end itemize @comment END params @end itemize @section Target Config/Cget Options These options can be specified when the target is created, or later via the configure option or to query the target via cget. @itemize @bullet @item @b{-type} - returns the target type @item @b{-event NAME BODY} see Target events @item @b{-work-area-virt [ADDRESS]} specify/set the work area @item @b{-work-area-phys [ADDRESS]} specify/set the work area @item @b{-work-area-size [ADDRESS]} specify/set the work area @item @b{-work-area-backup [0|1]} does the work area get backed up @item @b{-endian [big|little]} @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about @item @b{-chain-position DOTTED.NAME} the tap name this target refers to. @end itemize Example: @example for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{ set name [target number $x] set y [$name cget -endian] set z [$name cget -type] puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z] @} @end example @section Target Variants @itemize @bullet @item @b{arm7tdmi} @* Unknown (please write me) @item @b{arm720t} @* Unknown (please write me) (similar to arm7tdmi) @item @b{arm9tdmi} @* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t} This enables the hardware single-stepping support found on these cores. @item @b{arm920t} @* None. @item @b{arm966e} @* None (this is also used as the ARM946) @item @b{cortex_m3} @* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will be detected and the normal reset behaviour used. @item @b{xscale} @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}. @item @b{arm11} @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176} @item @b{mips_m4k} @* Use variant @option{ejtag_srst} when debugging targets that do not provide a functional SRST line on the EJTAG connector. This causes OpenOCD to instead use an EJTAG software reset command to reset the processor. You still need to enable @option{srst} on the reset configuration command to enable OpenOCD hardware reset functionality. @comment END variants @end itemize @section working_area - Command Removed @cindex working_area @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead} @* This documentation remains because there are existing scripts that still use this that need to be converted. @example working_area target# address size backup| [virtualaddress] @end example @* The target# is a the 0 based target numerical index. This command specifies a working area for the debugger to use. This may be used to speed-up downloads to target memory and flash operations, or to perform otherwise unavailable operations (some coprocessor operations on ARM7/9 systems, for example). The last parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use a working_area that doesn't need to be backed up, as performing a backup slows down operation. @node Flash Configuration @chapter Flash programming @cindex Flash Configuration @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI flash that a micro may boot from. Perhaps you, the reader, would like to contribute support for this. Flash Steps: @enumerate @item Configure via the command @b{flash bank} @* Normally this is done in a configuration file. @item Operate on the flash via @b{flash SOMECOMMAND} @* Often commands to manipulate the flash are typed by a human, or run via a script in some automated way. For example: To program the boot flash on your board. @item GDB Flashing @* Flashing via GDB requires the flash be configured via ``flash bank'', and the GDB flash features be enabled. See the daemon configuration section for more details. @end enumerate @section Flash commands @cindex Flash commands @subsection flash banks @b{flash banks} @cindex flash banks @*List configured flash banks @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks. @subsection flash info @b{flash info} <@var{num}> @cindex flash info @*Print info about flash bank <@option{num}> @subsection flash probe @b{flash probe} <@var{num}> @cindex flash probe @*Identify the flash, or validate the parameters of the configured flash. Operation depends on the flash type. @subsection flash erase_check @b{flash erase_check} <@var{num}> @cindex flash erase_check @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that updates the erase state information displayed by @option{flash info}. That means you have to issue an @option{erase_check} command after erasing or programming the device to get updated information. @subsection flash protect_check @b{flash protect_check} <@var{num}> @cindex flash protect_check @*Check protection state of sectors in flash bank . @option{flash erase_sector} using the same syntax. @subsection flash erase_sector @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}> @cindex flash erase_sector @anchor{flash erase_sector} @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using the CFI driver). @subsection flash erase_address @b{flash erase_address} <@var{address}> <@var{length}> @cindex flash erase_address @*Erase sectors starting at <@var{address}> for <@var{length}> bytes @subsection flash write_bank @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}> @cindex flash write_bank @anchor{flash write_bank} @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at <@option{offset}> bytes from the beginning of the bank. @subsection flash write_image @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}] @cindex flash write_image @anchor{flash write_image} @*Write the image <@var{file}> to the current target's flash bank(s). A relocation [@var{offset}] can be specified and the file [@var{type}] can be specified explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf} (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming if the @option{erase} parameter is given. @subsection flash protect @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}> @cindex flash protect @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to <@var{last}> of @option{flash bank} <@var{num}>. @subsection mFlash commands @cindex mFlash commands @itemize @bullet @item @b{mflash probe} @cindex mflash probe Probe mflash. @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}> @cindex mflash write Write the binary <@var{file}> to mflash bank <@var{num}>, starting at <@var{offset}> bytes from the beginning of the bank. @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}> @cindex mflash dump Dump bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank to a <@var{file}>. @end itemize @section flash bank command The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms) @example @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target#}> [@var{driver_options ...}] @end example @cindex flash bank @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}> and <@var{bus_width}> bytes using the selected flash . @subsection External Flash - cfi options @cindex cfi options CFI flashes are external flash chips - often they are connected to a specific chip select on the CPU. By default, at hard reset, most CPUs have the ablity to ``boot'' from some flash chip - typically attached to the CPU's CS0 pin. For other chip selects: OpenOCD does not know how to configure, or access a specific chip select. Instead you, the human, might need to configure additional chip selects via other commands (like: mww) , or perhaps configure a GPIO pin that controls the ``write protect'' pin on the flash chip. @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}] @*CFI flashes require the number of the target they're connected to as an additional argument. The CFI driver makes use of a working area (specified for the target) to significantly speed up operation. @var{chip_width} and @var{bus_width} are specified in bytes. The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types. @var{x16_as_x8} ??? @subsection Internal Flash (Microcontrollers) @subsubsection lpc2000 options @cindex lpc2000 options @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}> <@var{clock}> [@var{calc_checksum}] @*LPC flashes don't require the chip and bus width to be specified. Additional parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx) or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number of the target this flash belongs to (first is 0), the frequency at which the core is currently running (in kHz - must be an integral number), and the optional keyword @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception vector table. @subsubsection at91sam7 options @cindex at91sam7 options @b{flash bank at91sam7} 0 0 0 0 <@var{target#}> @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after reading the chip-id and type. @subsubsection str7 options @cindex str7 options @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}> @*variant can be either STR71x, STR73x or STR75x. @subsubsection str9 options @cindex str9 options @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}> @*The str9 needs the flash controller to be configured prior to Flash programming, e.g. @example str9x flash_config 0 4 2 0 0x80000 @end example This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively. @subsubsection str9 options (str9xpec driver) @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}> @*Before using the flash commands the turbo mode must be enabled using str9xpec @option{enable_turbo} <@var{num>.} Only use this driver for locking/unlocking the device or configuring the option bytes. Use the standard str9 driver for programming. @xref{STR9 specific commands}. @subsubsection Stellaris (LM3Sxxx) options @cindex Stellaris (LM3Sxxx) options @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}> @*Stellaris flash plugin only require the @var{target#}. @subsubsection stm32x options @cindex stm32x options @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}> @*stm32x flash plugin only require the @var{target#}. @subsubsection aduc702x options @cindex aduc702x options @b{flash bank aduc702x} 0 0 0 0 <@var{target#}> @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target#} argument (all devices in this family have the same memory layout). @subsection mFlash Configuration @cindex mFlash Configuration @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}> <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}> @cindex mflash bank @*Configures a mflash for <@var{soc}> host bank at <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes order. Pin number format is dependent on host GPIO calling convention. If WP or DPD pin was not used, write -1. Currently, mflash bank support s3c2440 and pxa270. (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used. @example mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0 @end example (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51. @example mflash bank pxa270 0x08000000 2 2 43 -1 51 0 @end example @section Microcontroller specific Flash Commands @subsection AT91SAM7 specific commands @cindex AT91SAM7 specific commands The flash configuration is deduced from the chip identification register. The flash controller handles erases automatically on a page (128/265 byte) basis, so erase is not necessary for flash programming. AT91SAM7 processors with less than 512K flash only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes that can be erased separatly. Only an EraseAll command is supported by the controller for each flash plane and this is called with @itemize @bullet @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane} @*bulk erase flash planes first_plane to last_plane. @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}> @cindex at91sam7 gpnvm @*set or clear a gpnvm bit for the processor @end itemize @subsection STR9 specific commands @cindex STR9 specific commands @anchor{STR9 specific commands} These are flash specific commands when using the str9xpec driver. @itemize @bullet @item @b{str9xpec enable_turbo} <@var{num}> @cindex str9xpec enable_turbo @*enable turbo mode, will simply remove the str9 from the chain and talk directly to the embedded flash controller. @item @b{str9xpec disable_turbo} <@var{num}> @cindex str9xpec disable_turbo @*restore the str9 into JTAG chain. @item @b{str9xpec lock} <@var{num}> @cindex str9xpec lock @*lock str9 device. The str9 will only respond to an unlock command that will erase the device. @item @b{str9xpec unlock} <@var{num}> @cindex str9xpec unlock @*unlock str9 device. @item @b{str9xpec options_read} <@var{num}> @cindex str9xpec options_read @*read str9 option bytes. @item @b{str9xpec options_write} <@var{num}> @cindex str9xpec options_write @*write str9 option bytes. @end itemize Note: Before using the str9xpec driver here is some background info to help you better understand how the drivers works. OpenOCD has two flash drivers for the str9. @enumerate @item Standard driver @option{str9x} programmed via the str9 core. Normally used for flash programming as it is faster than the @option{str9xpec} driver. @item Direct programming @option{str9xpec} using the flash controller. This is an ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9 core does not need to be running to program using this flash driver. Typical use for this driver is locking/unlocking the target and programming the option bytes. @end enumerate Before we run any commands using the @option{str9xpec} driver we must first disable the str9 core. This example assumes the @option{str9xpec} driver has been configured for flash bank 0. @example # assert srst, we do not want core running # while accessing str9xpec flash driver jtag_reset 0 1 # turn off target polling poll off # disable str9 core str9xpec enable_turbo 0 # read option bytes str9xpec options_read 0 # re-enable str9 core str9xpec disable_turbo 0 poll on reset halt @end example The above example will read the str9 option bytes. When performing a unlock remember that you will not be able to halt the str9 - it has been locked. Halting the core is not required for the @option{str9xpec} driver as mentioned above, just issue the commands above manually or from a telnet prompt. @subsection STR9 configuration @cindex STR9 configuration @itemize @bullet @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}> <@var{BBADR}> <@var{NBBADR}> @cindex str9x flash_config @*Configure str9 flash controller. @example e.g. str9x flash_config 0 4 2 0 0x80000 This will setup BBSR - Boot Bank Size register NBBSR - Non Boot Bank Size register BBADR - Boot Bank Start Address register NBBADR - Boot Bank Start Address register @end example @end itemize @subsection STR9 option byte configuration @cindex STR9 option byte configuration @itemize @bullet @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}> @cindex str9xpec options_cmap @*configure str9 boot bank. @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}> @cindex str9xpec options_lvdthd @*configure str9 lvd threshold. @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}> @cindex str9xpec options_lvdsel @*configure str9 lvd source. @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}> @cindex str9xpec options_lvdwarn @*configure str9 lvd reset warning source. @end itemize @subsection STM32x specific commands @cindex STM32x specific commands These are flash specific commands when using the stm32x driver. @itemize @bullet @item @b{stm32x lock} <@var{num}> @cindex stm32x lock @*lock stm32 device. @item @b{stm32x unlock} <@var{num}> @cindex stm32x unlock @*unlock stm32 device. @item @b{stm32x options_read} <@var{num}> @cindex stm32x options_read @*read stm32 option bytes. @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}> <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}> @cindex stm32x options_write @*write stm32 option bytes. @item @b{stm32x mass_erase} <@var{num}> @cindex stm32x mass_erase @*mass erase flash memory. @end itemize @subsection Stellaris specific commands @cindex Stellaris specific commands These are flash specific commands when using the Stellaris driver. @itemize @bullet @item @b{stellaris mass_erase} <@var{num}> @cindex stellaris mass_erase @*mass erase flash memory. @end itemize @node General Commands @chapter General Commands @cindex commands The commands documented in this chapter here are common commands that you, as a human, may want to type and see the output of. Configuration type commands are documented elsewhere. Intent: @itemize @bullet @item @b{Source Of Commands} @* OpenOCD commands can occur in a configuration script (discussed elsewhere) or typed manually by a human or supplied programatically, or via one of several TCP/IP Ports. @item @b{From the human} @* A human should interact with the telnet interface (default port: 4444, or via GDB, default port 3333) To issue commands from within a GDB session, use the @option{monitor} command, e.g. use @option{monitor poll} to issue the @option{poll} command. All output is relayed through the GDB session. @item @b{Machine Interface} The Tcl interface's intent is to be a machine interface. The default Tcl port is 5555. @end itemize @section Daemon Commands @subsection sleep [@var{msec}] @cindex sleep @*Wait for n milliseconds before resuming. Useful in connection with script files (@var{script} command and @var{target_script} configuration). @subsection shutdown @cindex shutdown @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other). @subsection debug_level [@var{n}] @cindex debug_level @anchor{debug_level} @*Display or adjust debug level to n<0-3> @subsection fast [@var{enable|disable}] @cindex fast @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory downloads and fast memory access will work if the JTAG interface isn't too fast and the core doesn't run at a too low frequency. Note that this option only changes the default and that the indvidual options, like DCC memory downloads, can be enabled and disabled individually. The target specific "dangerous" optimisation tweaking options may come and go as more robust and user friendly ways are found to ensure maximum throughput and robustness with a minimum of configuration. Typically the "fast enable" is specified first on the command line: @example openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg @end example @subsection log_output <@var{file}> @cindex log_output @*Redirect logging to (default: stderr) @subsection script <@var{file}> @cindex script @*Execute commands from See also: ``source [find FILENAME]'' @section Target state handling @subsection power <@var{on}|@var{off}> @cindex reg @*Turn power switch to target on/off. No arguments: print status. Not all interfaces support this. @subsection reg [@option{#}|@option{name}] [value] @cindex reg @*Access a single register by its number[@option{#}] or by its [@option{name}]. No arguments: list all available registers for the current target. Number or name argument: display a register. Number or name and value arguments: set register value. @subsection poll [@option{on}|@option{off}] @cindex poll @*Poll the target for its current state. If the target is in debug mode, architecture specific information about the current state is printed. An optional parameter allows continuous polling to be enabled and disabled. @subsection halt [@option{ms}] @cindex halt @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds. Default [@option{ms}] is 5 seconds if no arg given. Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}] will stop OpenOCD from waiting. @subsection wait_halt [@option{ms}] @cindex wait_halt @*Wait for the target to enter debug mode. Optional [@option{ms}] is a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no arg is given. @subsection resume [@var{address}] @cindex resume @*Resume the target at its current code position, or at an optional address. OpenOCD will wait 5 seconds for the target to resume. @subsection step [@var{address}] @cindex step @*Single-step the target at its current code position, or at an optional address. @subsection reset [@option{run}|@option{halt}|@option{init}] @cindex reset @*Perform a hard-reset. The optional parameter specifies what should happen after the reset. With no arguments a "reset run" is executed @itemize @minus @item @b{run} @cindex reset run @*Let the target run. @item @b{halt} @cindex reset halt @*Immediately halt the target (works only with certain configurations). @item @b{init} @cindex reset init @*Immediately halt the target, and execute the reset script (works only with certain configurations) @end itemize @subsection soft_reset_halt @cindex reset @*Requesting target halt and executing a soft reset. This is often used when a target cannot be reset and halted. The target, after reset is released begins to execute code. OpenOCD attempts to stop the CPU and then sets the program counter back to the reset vector. Unfortunately the code that was executed may have left the hardware in an unknown state. @section Memory access commands @subsection meminfo display available RAM memory. @subsection Memory peek/poke type commands These commands allow accesses of a specific size to the memory system. Often these are used to configure the current target in some special way. For example - one may need to write certian values to the SDRAM controller to enable SDRAM. @enumerate @item To change the current target see the ``targets'' (plural) command @item In system level scripts these commands are deprecated, please use the TARGET object versions. @end enumerate @itemize @bullet @item @b{mdw} <@var{addr}> [@var{count}] @cindex mdw @*display memory words (32bit) @item @b{mdh} <@var{addr}> [@var{count}] @cindex mdh @*display memory half-words (16bit) @item @b{mdb} <@var{addr}> [@var{count}] @cindex mdb @*display memory bytes (8bit) @item @b{mww} <@var{addr}> <@var{value}> @cindex mww @*write memory word (32bit) @item @b{mwh} <@var{addr}> <@var{value}> @cindex mwh @*write memory half-word (16bit) @item @b{mwb} <@var{addr}> <@var{value}> @cindex mwb @*write memory byte (8bit) @end itemize @section Image loading commands @subsection load_image @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}] @cindex load_image @anchor{load_image} @*Load image <@var{file}> to target memory at <@var{address}> @subsection fast_load_image @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}] @cindex fast_load_image @anchor{fast_load_image} @*Normally you should be using @b{load_image} or GDB load. However, for testing purposes or when I/O overhead is significant(OpenOCD running on an embedded host), storing the image in memory and uploading the image to the target can be a way to upload e.g. multiple debug sessions when the binary does not change. Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host memory, i.e. does not affect target. This approach is also useful when profiling target programming performance as I/O and target programming can easily be profiled separately. @subsection fast_load @b{fast_load} @cindex fast_image @anchor{fast_image} @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image. @subsection dump_image @b{dump_image} <@var{file}> <@var{address}> <@var{size}> @cindex dump_image @anchor{dump_image} @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a (binary) <@var{file}>. @subsection verify_image @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}] @cindex verify_image @*Verify <@var{file}> against target memory starting at <@var{address}>. This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare. @section Breakpoint commands @cindex Breakpoint commands @itemize @bullet @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}] @cindex bp @*set breakpoint
[hw] @item @b{rbp} <@var{addr}> @cindex rbp @*remove breakpoint @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}] @cindex wp @*set watchpoint
[value] [mask] @item @b{rwp} <@var{addr}> @cindex rwp @*remove watchpoint @end itemize @section Misc Commands @cindex Other Target Commands @itemize @item @b{profile} <@var{seconds}> <@var{gmon.out}> Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling. @end itemize @section Target Specific Commands @cindex Target Specific Commands @page @section Architecture Specific Commands @cindex Architecture Specific Commands @subsection ARMV4/5 specific commands @cindex ARMV4/5 specific commands These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems or Intel XScale (XScale isn't supported yet). @itemize @bullet @item @b{armv4_5 reg} @cindex armv4_5 reg @*Display a list of all banked core registers, fetching the current value from every core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current register value. @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}] @cindex armv4_5 core_mode @*Displays the core_mode, optionally changing it to either ARM or Thumb mode. The target is resumed in the currently set @option{core_mode}. @end itemize @subsection ARM7/9 specific commands @cindex ARM7/9 specific commands These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t, ARM920T or ARM926EJ-S. @itemize @bullet @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}> @cindex arm7_9 dbgrq @*Enable use of the DBGRQ bit to force entry into debug mode. This should be safe for all but ARM7TDMI--S cores (like Philips LPC). @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}> @cindex arm7_9 fast_memory_access @anchor{arm7_9 fast_memory_access} @*Allow OpenOCD to read and write memory without checking completion of the operation. This provides a huge speed increase, especially with USB JTAG cables (FT2232), but might be unsafe if used with targets running at very low speeds, like the 32kHz startup clock of an AT91RM9200. @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}> @cindex arm7_9 dcc_downloads @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte) amounts of memory. DCC downloads offer a huge speed increase, but might be potentially unsafe, especially with targets running at very low speeds. This command was introduced with OpenOCD rev. 60. @end itemize @subsection ARM720T specific commands @cindex ARM720T specific commands @itemize @bullet @item @b{arm720t cp15} <@var{num}> [@var{value}] @cindex arm720t cp15 @*display/modify cp15 register <@option{num}> [@option{value}]. @item @b{arm720t md_phys} <@var{addr}> [@var{count}] @cindex arm720t md_phys @*Display memory at physical address addr. @item @b{arm720t mw_phys} <@var{addr}> <@var{value}> @cindex arm720t mw_phys @*Write memory at physical address addr. @item @b{arm720t virt2phys} <@var{va}> @cindex arm720t virt2phys @*Translate a virtual address to a physical address. @end itemize @subsection ARM9TDMI specific commands @cindex ARM9TDMI specific commands @itemize @bullet @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}> @cindex arm9tdmi vector_catch @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following: @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved} @option{irq} @option{fiq}. Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S. @end itemize @subsection ARM966E specific commands @cindex ARM966E specific commands @itemize @bullet @item @b{arm966e cp15} <@var{num}> [@var{value}] @cindex arm966e cp15 @*display/modify cp15 register <@option{num}> [@option{value}]. @end itemize @subsection ARM920T specific commands @cindex ARM920T specific commands @itemize @bullet @item @b{arm920t cp15} <@var{num}> [@var{value}] @cindex arm920t cp15 @*display/modify cp15 register <@option{num}> [@option{value}]. @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}] @cindex arm920t cp15i @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}] @item @b{arm920t cache_info} @cindex arm920t cache_info @*Print information about the caches found. This allows to see whether your target is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache). @item @b{arm920t md_phys} <@var{addr}> [@var{count}] @cindex arm920t md_phys @*Display memory at physical address addr. @item @b{arm920t mw_phys} <@var{addr}> <@var{value}> @cindex arm920t mw_phys @*Write memory at physical address addr. @item @b{arm920t read_cache} <@var{filename}> @cindex arm920t read_cache @*Dump the content of ICache and DCache to a file. @item @b{arm920t read_mmu} <@var{filename}> @cindex arm920t read_mmu @*Dump the content of the ITLB and DTLB to a file. @item @b{arm920t virt2phys} <@var{va}> @cindex arm920t virt2phys @*Translate a virtual address to a physical address. @end itemize @subsection ARM926EJ-S specific commands @cindex ARM926EJ-S specific commands @itemize @bullet @item @b{arm926ejs cp15} <@var{num}> [@var{value}] @cindex arm926ejs cp15 @*display/modify cp15 register <@option{num}> [@option{value}]. @item @b{arm926ejs cache_info} @cindex arm926ejs cache_info @*Print information about the caches found. @item @b{arm926ejs md_phys} <@var{addr}> [@var{count}] @cindex arm926ejs md_phys @*Display memory at physical address addr. @item @b{arm926ejs mw_phys} <@var{addr}> <@var{value}> @cindex arm926ejs mw_phys @*Write memory at physical address addr. @item @b{arm926ejs virt2phys} <@var{va}> @cindex arm926ejs virt2phys @*Translate a virtual address to a physical address. @end itemize @subsection CORTEX_M3 specific commands @cindex CORTEX_M3 specific commands @itemize @bullet @item @b{cortex_m3 maskisr} <@var{on}|@var{off}> @cindex cortex_m3 maskisr @*Enable masking (disabling) interrupts during target step/resume. @end itemize @page @section Debug commands @cindex Debug commands The following commands give direct access to the core, and are most likely only useful while debugging OpenOCD. @itemize @bullet @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}> @cindex arm7_9 write_xpsr @*Immediately write either the current program status register (CPSR) or the saved program status register (SPSR), without changing the register cache (as displayed by the @option{reg} and @option{armv4_5 reg} commands). @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}> <@var{0=cpsr},@var{1=spsr}> @cindex arm7_9 write_xpsr_im8 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write operation (similar to @option{write_xpsr}). @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}> @cindex arm7_9 write_core_reg @*Write a core register, without changing the register cache (as displayed by the @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the encoding of the [M4:M0] bits of the PSR. @end itemize @section Target Requests @cindex Target Requests OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3. See libdcc in the contrib dir for more details. @itemize @bullet @item @b{target_request debugmsgs} <@var{enable}|@var{disable}|@var{charmsg}> @cindex target_request debugmsgs @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running. @var{charmsg} receives messages if Linux kernel ``Kernel low-level debugging via EmbeddedICE DCC channel'' option is enabled. @end itemize @node JTAG Commands @chapter JTAG Commands @cindex JTAG Commands Generally most people will not use the bulk of these commands. They are mostly used by the OpenOCD developers or those who need to directly manipulate the JTAG taps. In general these commands control JTAG taps at a very low level. For example if you need to control a JTAG Route Controller (i.e.: the OMAP3530 on the Beagle Board has one) you might use these commands in a script or an event procedure. @section Commands @cindex Commands @itemize @bullet @item @b{scan_chain} @cindex scan_chain @*Print current scan chain configuration. @item @b{jtag_reset} <@var{trst}> <@var{srst}> @cindex jtag_reset @*Toggle reset lines. @item @b{endstate} <@var{tap_state}> @cindex endstate @*Finish JTAG operations in <@var{tap_state}>. @item @b{runtest} <@var{num_cycles}> @cindex runtest @*Move to Run-Test/Idle, and execute <@var{num_cycles}> @item @b{statemove} [@var{tap_state}] @cindex statemove @*Move to current endstate or [@var{tap_state}] @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ... @cindex irscan @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ... @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ... @cindex drscan @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ... @item @b{verify_ircapture} <@option{enable}|@option{disable}> @cindex verify_ircapture @*Verify value captured during Capture-IR. Default is enabled. @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ... @cindex var @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ... @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}] @cindex field Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}]. @end itemize @section Tap states @cindex Tap states Available tap_states are: @itemize @bullet @item @b{RESET} @cindex RESET @item @b{IDLE} @cindex IDLE @item @b{DRSELECT} @cindex DRSELECT @item @b{DRCAPTURE} @cindex DRCAPTURE @item @b{DRSHIFT} @cindex DRSHIFT @item @b{DREXIT1} @cindex DREXIT1 @item @b{DRPAUSE} @cindex DRPAUSE @item @b{DREXIT2} @cindex DREXIT2 @item @b{DRUPDATE} @cindex DRUPDATE @item @b{IRSELECT} @cindex IRSELECT @item @b{IRCAPTURE} @cindex IRCAPTURE @item @b{IRSHIFT} @cindex IRSHIFT @item @b{IREXIT1} @cindex IREXIT1 @item @b{IRPAUSE} @cindex IRPAUSE @item @b{IREXIT2} @cindex IREXIT2 @item @b{IRUPDATE} @cindex IRUPDATE @end itemize @node TFTP @chapter TFTP @cindex TFTP If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can be used to access files on PCs (either the developer's PC or some other PC). The way this works on the ZY1000 is to prefix a filename by "/tftp/ip/" and append the TFTP path on the TFTP server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as if the file was hosted on the embedded host. In order to achieve decent performance, you must choose a TFTP server that supports a packet size bigger than the default packet size (512 bytes). There are numerous TFTP servers out there (free and commercial) and you will have to do a bit of googling to find something that fits your requirements. @node Sample Scripts @chapter Sample Scripts @cindex scripts This page shows how to use the Target Library. The configuration script can be divided into the following sections: @itemize @bullet @item Daemon configuration @item Interface @item JTAG scan chain @item Target configuration @item Flash configuration @end itemize Detailed information about each section can be found at OpenOCD configuration. @section AT91R40008 example @cindex AT91R40008 example To start OpenOCD with a target script for the AT91R40008 CPU and reset the CPU upon startup of the OpenOCD daemon. @example openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset @end example @node GDB and OpenOCD @chapter GDB and OpenOCD @cindex GDB and OpenOCD OpenOCD complies with the remote gdbserver protocol, and as such can be used to debug remote targets. @section Connecting to GDB @cindex Connecting to GDB @anchor{Connecting to GDB} Use GDB 6.7 or newer with OpenOCD if you run into trouble. For instance GDB 6.3 has a known bug that produces bogus memory access errors, which has since been fixed: look up 1836 in @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb} @*OpenOCD can communicate with GDB in two ways: @enumerate @item A socket (TCP/IP) connection is typically started as follows: @example target remote localhost:3333 @end example This would cause GDB to connect to the gdbserver on the local pc using port 3333. @item A pipe connection is typically started as follows: @example target remote | openocd --pipe @end example This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout). Using this method has the advantage of GDB starting/stopping OpenOCD for the debug session. @end enumerate @*To see a list of available OpenOCD commands type @option{monitor help} on the GDB command line. OpenOCD supports the gdb @option{qSupported} packet, this enables information to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes packet size and the device's memory map. Previous versions of OpenOCD required the following GDB options to increase the packet size and speed up GDB communication: @example set remote memory-write-packet-size 1024 set remote memory-write-packet-size fixed set remote memory-read-packet-size 1024 set remote memory-read-packet-size fixed @end example This is now handled in the @option{qSupported} PacketSize and should not be required. @section Programming using GDB @cindex Programming using GDB By default the target memory map is sent to GDB. This can be disabled by the following OpenOCD configuration option: @example gdb_memory_map disable @end example For this to function correctly a valid flash configuration must also be set in OpenOCD. For faster performance you should also configure a valid working area. Informing GDB of the memory map of the target will enable GDB to protect any flash areas of the target and use hardware breakpoints by default. This means that the OpenOCD option @option{gdb_breakpoint_override} is not required when using a memory map. @xref{gdb_breakpoint_override}. To view the configured memory map in GDB, use the GDB command @option{info mem} All other unassigned addresses within GDB are treated as RAM. GDB 6.8 and higher set any memory area not in the memory map as inaccessible. This can be changed to the old behaviour by using the following GDB command @example set mem inaccessible-by-default off @end example If @option{gdb_flash_program enable} is also used, GDB will be able to program any flash memory using the vFlash interface. GDB will look at the target memory map when a load command is given, if any areas to be programmed lie within the target flash area the vFlash packets will be used. If the target needs configuring before GDB programming, an event script can be executed: @example $_TARGETNAME configure -event EVENTNAME BODY @end example To verify any flash programming the GDB command @option{compare-sections} can be used. @node Tcl Scripting API @chapter Tcl Scripting API @cindex Tcl Scripting API @cindex Tcl scripts @section API rules The commands are stateless. E.g. the telnet command line has a concept of currently active target, the Tcl API proc's take this sort of state information as an argument to each proc. There are three main types of return values: single value, name value pair list and lists. Name value pair. The proc 'foo' below returns a name/value pair list. @verbatim > set foo(me) Duane > set foo(you) Oyvind > set foo(mouse) Micky > set foo(duck) Donald If one does this: > set foo The result is: me Duane you Oyvind mouse Micky duck Donald Thus, to get the names of the associative array is easy: foreach { name value } [set foo] { puts "Name: $name, Value: $value" } @end verbatim Lists returned must be relatively small. Otherwise a range should be passed in to the proc in question. @section Internal low-level Commands By low-level, the intent is a human would not directly use these commands. Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks is the low level API upon which "flash banks" is implemented. @itemize @bullet @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}> Read memory and return as a Tcl array for script processing @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}> Convert a Tcl array to memory locations and write the values @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...] Return information about the flash banks @end itemize OpenOCD commands can consist of two words, e.g. "flash banks". The startup.tcl "unknown" proc will translate this into a Tcl proc called "flash_banks". @section OpenOCD specific Global Variables @subsection HostOS Real Tcl has ::tcl_platform(), and platform::identify, and many other variables. JimTCL, as implemented in OpenOCD creates $HostOS which holds one of the following values: @itemize @bullet @item @b{winxx} Built using Microsoft Visual Studio @item @b{linux} Linux is the underlying operating sytem @item @b{darwin} Darwin (mac-os) is the underlying operating sytem. @item @b{cygwin} Running under Cygwin @item @b{mingw32} Running under MingW32 @item @b{other} Unknown, none of the above. @end itemize Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64. @node Upgrading @chapter Deprecated/Removed Commands @cindex Deprecated/Removed Commands Certain OpenOCD commands have been deprecated/removed during the various revisions. @itemize @bullet @item @b{arm7_9 fast_writes} @cindex arm7_9 fast_writes @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}. @item @b{arm7_9 force_hw_bkpts} @cindex arm7_9 force_hw_bkpts @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints for flash if the GDB memory map has been set up(default when flash is declared in target configuration). @xref{gdb_breakpoint_override}. @item @b{arm7_9 sw_bkpts} @cindex arm7_9 sw_bkpts @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}. @item @b{daemon_startup} @cindex daemon_startup @*this config option has been removed, simply adding @option{init} and @option{reset halt} to the end of your config script will give the same behaviour as using @option{daemon_startup reset} and @option{target cortex_m3 little reset_halt 0}. @item @b{dump_binary} @cindex dump_binary @*use @option{dump_image} command with same args. @xref{dump_image}. @item @b{flash erase} @cindex flash erase @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}. @item @b{flash write} @cindex flash write @*use @option{flash write_bank} command with same args. @xref{flash write_bank}. @item @b{flash write_binary} @cindex flash write_binary @*use @option{flash write_bank} command with same args. @xref{flash write_bank}. @item @b{flash auto_erase} @cindex flash auto_erase @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}. @item @b{load_binary} @cindex load_binary @*use @option{load_image} command with same args. @xref{load_image}. @item @b{run_and_halt_time} @cindex run_and_halt_time @*This command has been removed for simpler reset behaviour, it can be simulated with the following commands: @smallexample reset run sleep 100 halt @end smallexample @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}> @cindex target @*use the create subcommand of @option{target}. @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}> @cindex target_script @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>" @item @b{working_area} @cindex working_area @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target. @end itemize @node FAQ @chapter FAQ @cindex faq @enumerate @item @b{RTCK, also known as: Adaptive Clocking - What is it?} @cindex RTCK @cindex adaptive clocking @* In digital circuit design it is often refered to as ``clock synchronisation'' the JTAG interface uses one clock (TCK or TCLK) operating at some speed, your target is operating at another. The two clocks are not synchronised, they are ``asynchronous'' In order for the two to work together they must be synchronised. Otherwise the two systems will get out of sync with each other and nothing will work. There are 2 basic options: @enumerate @item Use a special circuit. @item One clock must be some multiple slower than the other. @end enumerate @b{Does this really matter?} For some chips and some situations, this is a non-issue (i.e.: A 500MHz ARM926) but for others - for example some Atmel SAM7 and SAM9 chips start operation from reset at 32kHz - program/enable the oscillators and eventually the main clock. It is in those critical times you must slow the JTAG clock to sometimes 1 to 4kHz. Imagine debugging a 500MHz ARM926 hand held battery powered device that ``deep sleeps'' at 32kHz between every keystroke. It can be painful. @b{Solution #1 - A special circuit} In order to make use of this, your JTAG dongle must support the RTCK feature. Not all dongles support this - keep reading! The RTCK signal often found in some ARM chips is used to help with this problem. ARM has a good description of the problem described at this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic work? / how does adaptive clocking work?''. The nice thing about adaptive clocking is that ``battery powered hand held device example'' - the adaptiveness works perfectly all the time. One can set a break point or halt the system in the deep power down code, slow step out until the system speeds up. @b{Solution #2 - Always works - but may be slower} Often this is a perfectly acceptable solution. In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of the target clock speed. But what that ``magic division'' is varies depending on the chips on your board. @b{ARM rule of thumb} Most ARM based systems require an 8:1 division. @b{Xilinx rule of thumb} is 1/12 the clock speed. Note: Many FTDI2232C based JTAG dongles are limited to 6MHz. You can still debug the 'low power' situations - you just need to manually adjust the clock speed at every step. While painful and tedious, it is not always practical. It is however easy to ``code your way around it'' - i.e.: Cheat a little, have a special debug mode in your application that does a ``high power sleep''. If you are careful - 98% of your problems can be debugged this way. To set the JTAG frequency use the command: @example # Example: 1.234MHz jtag_khz 1234 @end example @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths? OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @} around Windows filenames. @example > echo \a > echo @{\a@} \a > echo "\a" > @end example @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll. Make sure you have Cygwin installed, or at least a version of OpenOCD that claims to come with all the necessary DLLs. When using Cygwin, try launching OpenOCD from the Cygwin shell. @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled". GDB issues software breakpoints when a normal breakpoint is requested, or to implement source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T, software breakpoints consume one of the two available hardware breakpoints. @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random. Make sure the core frequency specified in the @option{flash lpc2000} line matches the clock at the time you're programming the flash. If you've specified the crystal's frequency, make sure the PLL is disabled. If you've specified the full core speed (e.g. 60MHz), make sure the PLL is enabled. @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration, I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed out while waiting for end of scan, rtck was disabled". Make sure your PC's parallel port operates in EPP mode. You might have to try several settings in your PC BIOS (ECP, EPP, and different versions of those). @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse), I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory(): memory read caused data abort". The errors are non-fatal, and are the result of GDB trying to trace stack frames beyond the last valid frame. It might be possible to prevent this by setting up a proper "initial" stack frame, if you happen to know what exactly has to be done, feel free to add this here. @b{Simple:} In your startup code - push 8 registers of zeros onto the stack before calling main(). What GDB is doing is ``climbing'' the run time stack by reading various values on the stack using the standard call frame for the target. GDB keeps going - until one of 2 things happen @b{#1} an invalid frame is found, or @b{#2} some huge number of stackframes have been processed. By pushing zeros on the stack, GDB gracefully stops. @b{Debugging Interrupt Service Routines} - In your ISR before you call your C code, do the same - artifically push some zeros onto the stack, remember to pop them off when the ISR is done. @b{Also note:} If you have a multi-threaded operating system, they often do not @b{in the intrest of saving memory} waste these few bytes. Painful... @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file): "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too". This warning doesn't indicate any serious problem, as long as you don't want to debug your core right out of reset. Your .cfg file specified @option{jtag_reset trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board, your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals independently. With this setup, it's not possible to halt the core right out of reset, everything else should work fine. @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be unstable. When single-stepping over large blocks of code, GDB and OpenOCD quit with an error message. Is there a stability issue with OpenOCD? No, this is not a stability issue concerning OpenOCD. Most users have solved this issue by simply using a self-powered USB hub, which they connect their Amontec JTAGkey to. Apparently, some computers do not provide a USB power supply stable enough for the Amontec JTAGkey to be operated. @b{Laptops running on battery have this problem too...} @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned: 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232". What does that mean and what might be the reason for this? First of all, the reason might be the USB power supply. Try using a self-powered hub instead of a direct connection to your computer. Secondly, the error code 4 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB chip ran into some sort of error - this points us to a USB problem. @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054". What does that mean and what might be the reason for this? Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB) has closed the connection to OpenOCD. This might be a GDB issue. @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations are described, there is a parameter for specifying the clock frequency for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be specified in kilohertz. However, I do have a quartz crystal of a frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz). Is it possible to specify real numbers for the clock frequency? No. The clock frequency specified here must be given as an integral number. However, this clock frequency is used by the In-Application-Programming (IAP) routines of the LPC2000 family only, which seems to be very tolerant concerning the given clock frequency, so a slight difference between the specified clock frequency and the actual clock frequency will not cause any trouble. @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file? Well, yes and no. Commands can be given in arbitrary order, yet the devices listed for the JTAG scan chain must be given in the right order (jtag newdevice), with the device closest to the TDO-Pin being listed first. In general, whenever objects of the same type exist which require an index number, then these objects must be given in the right order (jtag newtap, targets and flash banks - a target references a jtag newtap and a flash bank references a target). You can use the ``scan_chain'' command to verify and display the tap order. @item @b{JTAG Tap Order} JTAG tap order - command order Many newer devices have multiple JTAG taps. For example: ST Microsystems STM32 chips have two taps, a ``boundary scan tap'' and ``Cortex-M3'' tap. Example: The STM32 reference manual, Document ID: RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is connected to the boundary scan tap, which then connects to the Cortex-M3 tap, which then connects to the TDO pin. Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then (2) The boundary scan tap. If your board includes an additional JTAG chip in the scan chain (for example a Xilinx CPLD or FPGA) you could place it before or after the STM32 chip in the chain. For example: @itemize @bullet @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input) @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input) @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input) @item Xilinx TDO Pin -> OpenOCD TDO (input) @end itemize The ``jtag device'' commands would thus be in the order shown below. Note: @itemize @bullet @item jtag newtap Xilinx tap -irlen ... @item jtag newtap stm32 cpu -irlen ... @item jtag newtap stm32 bs -irlen ... @item # Create the debug target and say where it is @item target create stm32.cpu -chain-position stm32.cpu ... @end itemize @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the log file, I can see these error messages: Error: arm7_9_common.c:561 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP TODO. @end enumerate @node Tcl Crash Course @chapter Tcl Crash Course @cindex Tcl Not everyone knows Tcl - this is not intended to be a replacement for learning Tcl, the intent of this chapter is to give you some idea of how the Tcl scripts work. This chapter is written with two audiences in mind. (1) OpenOCD users who need to understand a bit more of how JIM-Tcl works so they can do something useful, and (2) those that want to add a new command to OpenOCD. @section Tcl Rule #1 There is a famous joke, it goes like this: @enumerate @item Rule #1: The wife is always correct @item Rule #2: If you think otherwise, See Rule #1 @end enumerate The Tcl equal is this: @enumerate @item Rule #1: Everything is a string @item Rule #2: If you think otherwise, See Rule #1 @end enumerate As in the famous joke, the consequences of Rule #1 are profound. Once you understand Rule #1, you will understand Tcl. @section Tcl Rule #1b There is a second pair of rules. @enumerate @item Rule #1: Control flow does not exist. Only commands @* For example: the classic FOR loop or IF statement is not a control flow item, they are commands, there is no such thing as control flow in Tcl. @item Rule #2: If you think otherwise, See Rule #1 @* Actually what happens is this: There are commands that by convention, act like control flow key words in other languages. One of those commands is the word ``for'', another command is ``if''. @end enumerate @section Per Rule #1 - All Results are strings Every Tcl command results in a string. The word ``result'' is used deliberatly. No result is just an empty string. Remember: @i{Rule #1 - Everything is a string} @section Tcl Quoting Operators In life of a Tcl script, there are two important periods of time, the difference is subtle. @enumerate @item Parse Time @item Evaluation Time @end enumerate The two key items here are how ``quoted things'' work in Tcl. Tcl has three primary quoting constructs, the [square-brackets] the @{curly-braces@} and ``double-quotes'' By now you should know $VARIABLES always start with a $DOLLAR sign. BTW: To set a variable, you actually use the command ``set'', as in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x = 1'' statement, but without the equal sign. @itemize @bullet @item @b{[square-brackets]} @* @b{[square-brackets]} are command substitutions. It operates much like Unix Shell `back-ticks`. The result of a [square-bracket] operation is exactly 1 string. @i{Remember Rule #1 - Everything is a string}. These two statements are roughly identical: @example # bash example X=`date` echo "The Date is: $X" # Tcl example set X [date] puts "The Date is: $X" @end example @item @b{``double-quoted-things''} @* @b{``double-quoted-things''} are just simply quoted text. $VARIABLES and [square-brackets] are expanded in place - the result however is exactly 1 string. @i{Remember Rule #1 - Everything is a string} @example set x "Dinner" puts "It is now \"[date]\", $x is in 1 hour" @end example @item @b{@{Curly-Braces@}} @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are parsed, but are NOT expanded or executed. @{Curly-Braces@} are like 'single-quote' operators in BASH shell scripts, with the added feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of 28/nov/2008, Jim/OpenOCD does not have a date command. @end itemize @section Consequences of Rule 1/2/3/4 The consequences of Rule 1 are profound. @subsection Tokenisation & Execution. Of course, whitespace, blank lines and #comment lines are handled in the normal way. As a script is parsed, each (multi) line in the script file is tokenised and according to the quoting rules. After tokenisation, that line is immedatly executed. Multi line statements end with one or more ``still-open'' @{curly-braces@} which - eventually - closes a few lines later. @subsection Command Execution Remember earlier: There are no ``control flow'' statements in Tcl. Instead there are COMMANDS that simply act like control flow operators. Commands are executed like this: @enumerate @item Parse the next line into (argc) and (argv[]). @item Look up (argv[0]) in a table and call its function. @item Repeat until End Of File. @end enumerate It sort of works like this: @example for(;;)@{ ReadAndParse( &argc, &argv ); cmdPtr = LookupCommand( argv[0] ); (*cmdPtr->Execute)( argc, argv ); @} @end example When the command ``proc'' is parsed (which creates a procedure function) it gets 3 parameters on the command line. @b{1} the name of the proc (function), @b{2} the list of parameters, and @b{3} the body of the function. Not the choice of words: LIST and BODY. The PROC command stores these items in a table somewhere so it can be found by ``LookupCommand()'' @subsection The FOR command The most interesting command to look at is the FOR command. In Tcl, the FOR command is normally implemented in C. Remember, FOR is a command just like any other command. When the ascii text containing the FOR command is parsed, the parser produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they are: @enumerate 0 @item The ascii text 'for' @item The start text @item The test expression @item The next text @item The body text @end enumerate Sort of reminds you of ``main( int argc, char **argv )'' does it not? Remember @i{Rule #1 - Everything is a string.} The key point is this: Often many of those parameters are in @{curly-braces@} - thus the variables inside are not expanded or replaced until later. Remember that every Tcl command looks like the classic ``main( argc, argv )'' function in C. In JimTCL - they actually look like this: @example int MyCommand( Jim_Interp *interp, int *argc, Jim_Obj * const *argvs ); @end example Real Tcl is nearly identical. Although the newer versions have introduced a byte-code parser and intepreter, but at the core, it still operates in the same basic way. @subsection FOR command implementation To understand Tcl it is perhaps most helpful to see the FOR command. Remember, it is a COMMAND not a control flow structure. In Tcl there are two underlying C helper functions. Remember Rule #1 - You are a string. The @b{first} helper parses and executes commands found in an ascii string. Commands can be seperated by semicolons, or newlines. While parsing, variables are expanded via the quoting rules. The @b{second} helper evaluates an ascii string as a numerical expression and returns a value. Here is an example of how the @b{FOR} command could be implemented. The pseudo code below does not show error handling. @example void Execute_AsciiString( void *interp, const char *string ); int Evaluate_AsciiExpression( void *interp, const char *string ); int MyForCommand( void *interp, int argc, char **argv ) @{ if( argc != 5 )@{ SetResult( interp, "WRONG number of parameters"); return ERROR; @} // argv[0] = the ascii string just like C // Execute the start statement. Execute_AsciiString( interp, argv[1] ); // Top of loop test for(;;)@{ i = Evaluate_AsciiExpression(interp, argv[2]); if( i == 0 ) break; // Execute the body Execute_AsciiString( interp, argv[3] ); // Execute the LOOP part Execute_AsciiString( interp, argv[4] ); @} // Return no error SetResult( interp, "" ); return SUCCESS; @} @end example Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works in the same basic way. @section OpenOCD Tcl Usage @subsection source and find commands @b{Where:} In many configuration files @* Example: @b{ source [find FILENAME] } @*Remember the parsing rules @enumerate @item The FIND command is in square brackets. @* The FIND command is executed with the parameter FILENAME. It should find the full path to the named file. The RESULT is a string, which is substituted on the orginal command line. @item The command source is executed with the resulting filename. @* SOURCE reads a file and executes as a script. @end enumerate @subsection format command @b{Where:} Generally occurs in numerous places. @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like @b{sprintf()}. @b{Example} @example set x 6 set y 7 puts [format "The answer: %d" [expr $x * $y]] @end example @enumerate @item The SET command creates 2 variables, X and Y. @item The double [nested] EXPR command performs math @* The EXPR command produces numerical result as a string. @* Refer to Rule #1 @item The format command is executed, producing a single string @* Refer to Rule #1. @item The PUTS command outputs the text. @end enumerate @subsection Body or Inlined Text @b{Where:} Various TARGET scripts. @example #1 Good proc someproc @{@} @{ ... multiple lines of stuff ... @} $_TARGETNAME configure -event FOO someproc #2 Good - no variables $_TARGETNAME confgure -event foo "this ; that;" #3 Good Curly Braces $_TARGETNAME configure -event FOO @{ puts "Time: [date]" @} #4 DANGER DANGER DANGER $_TARGETNAME configure -event foo "puts \"Time: [date]\"" @end example @enumerate @item The $_TARGETNAME is an OpenOCD variable convention. @*@b{$_TARGETNAME} represents the last target created, the value changes each time a new target is created. Remember the parsing rules. When the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string, the name of the target which happens to be a TARGET (object) command. @item The 2nd parameter to the @option{-event} parameter is a TCBODY @*There are 4 examples: @enumerate @item The TCLBODY is a simple string that happens to be a proc name @item The TCLBODY is several simple commands seperated by semicolons @item The TCLBODY is a multi-line @{curly-brace@} quoted string @item The TCLBODY is a string with variables that get expanded. @end enumerate In the end, when the target event FOO occurs the TCLBODY is evaluated. Method @b{#1} and @b{#2} are functionally identical. For Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY? Remember the parsing rules. In case #3, @{curly-braces@} mean the $VARS and [square-brackets] are expanded later, when the EVENT occurs, and the text is evaluated. In case #4, they are replaced before the ``Target Object Command'' is executed. This occurs at the same time $_TARGETNAME is replaced. In case #4 the date will never change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008, Jim/OpenOCD does not have a date command@} @end enumerate @subsection Global Variables @b{Where:} You might discover this when writing your own procs @* In simple terms: Inside a PROC, if you need to access a global variable you must say so. See also ``upvar''. Example: @example proc myproc @{ @} @{ set y 0 #Local variable Y global x #Global variable X puts [format "X=%d, Y=%d" $x $y] @} @end example @section Other Tcl Hacks @b{Dynamic variable creation} @example # Dynamically create a bunch of variables. for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{ # Create var name set vn [format "BIT%d" $x] # Make it a global global $vn # Set it. set $vn [expr (1 << $x)] @} @end example @b{Dynamic proc/command creation} @example # One "X" function - 5 uart functions. foreach who @{A B C D E@} proc [format "show_uart%c" $who] @{ @} "show_UARTx $who" @} @end example @node Target Library @chapter Target Library @cindex Target Library OpenOCD comes with a target configuration script library. These scripts can be used as-is or serve as a starting point. The target library is published together with the OpenOCD executable and the path to the target library is in the OpenOCD script search path. Similarly there are example scripts for configuring the JTAG interface. The command line below uses the example parport configuration script that ship with OpenOCD, then configures the str710.cfg target and finally issues the init and reset commands. The communication speed is set to 10kHz for reset and 8MHz for post reset. @example openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset" @end example To list the target scripts available: @example $ ls /usr/local/lib/openocd/target arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg @end example @include fdl.texi @node OpenOCD Index @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename @comment case issue with ``Index.html'' and ``index.html'' @comment Occurs when creating ``--html --no-split'' output @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html @unnumbered OpenOCD Index @printindex cp @bye href='#n3812'>3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949