\input texinfo @c -*-texinfo-*- @c %**start of header @setfilename openocd.info @settitle OpenOCD User's Guide @dircategory Development @direntry * OpenOCD: (openocd). OpenOCD User's Guide @end direntry @paragraphindent 0 @c %**end of header @include version.texi @copying This User's Guide documents release @value{VERSION}, dated @value{UPDATED}, of the Open On-Chip Debugger (OpenOCD). @itemize @bullet @item Copyright @copyright{} 2008 The OpenOCD Project @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk} @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com} @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com} @item Copyright @copyright{} 2009 David Brownell @end itemize @quotation Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''. @end quotation @end copying @titlepage @titlefont{@emph{Open On-Chip Debugger:}} @sp 1 @title OpenOCD User's Guide @subtitle for release @value{VERSION} @subtitle @value{UPDATED} @page @vskip 0pt plus 1filll @insertcopying @end titlepage @summarycontents @contents @ifnottex @node Top @top OpenOCD User's Guide @insertcopying @end ifnottex @menu * About:: About OpenOCD * Developers:: OpenOCD Developers * JTAG Hardware Dongles:: JTAG Hardware Dongles * About JIM-Tcl:: About JIM-Tcl * Running:: Running OpenOCD * OpenOCD Project Setup:: OpenOCD Project Setup * Config File Guidelines:: Config File Guidelines * Daemon Configuration:: Daemon Configuration * Interface - Dongle Configuration:: Interface - Dongle Configuration * Reset Configuration:: Reset Configuration * TAP Declaration:: TAP Declaration * CPU Configuration:: CPU Configuration * Flash Commands:: Flash Commands * NAND Flash Commands:: NAND Flash Commands * PLD/FPGA Commands:: PLD/FPGA Commands * General Commands:: General Commands * Architecture and Core Commands:: Architecture and Core Commands * JTAG Commands:: JTAG Commands * Boundary Scan Commands:: Boundary Scan Commands * TFTP:: TFTP * GDB and OpenOCD:: Using GDB and OpenOCD * Tcl Scripting API:: Tcl Scripting API * FAQ:: Frequently Asked Questions * Tcl Crash Course:: Tcl Crash Course * License:: GNU Free Documentation License @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename @comment case issue with ``Index.html'' and ``index.html'' @comment Occurs when creating ``--html --no-split'' output @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html * OpenOCD Concept Index:: Concept Index * Command and Driver Index:: Command and Driver Index @end menu @node About @unnumbered About @cindex about OpenOCD was created by Dominic Rath as part of a diploma thesis written at the University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}). Since that time, the project has grown into an active open-source project, supported by a diverse community of software and hardware developers from around the world. @section What is OpenOCD? @cindex TAP @cindex JTAG The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming and boundary-scan testing for embedded target devices. @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate with the JTAG (IEEE 1149.1) compliant TAPs on your target board. A @dfn{TAP} is a ``Test Access Port'', a module which processes special instructions and data. TAPs are daisy-chained within and between chips and boards. @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB based, parallel port based, and other standalone boxes that run OpenOCD internally. @xref{JTAG Hardware Dongles}. @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T, ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and Cortex-M3 (Stellaris LM3 and ST STM32) based cores to be debugged via the GDB protocol. @b{Flash Programing:} Flash writing is supported for external CFI compatible NOR flashes (Intel and AMD/Spansion command set) and several internal flashes (LPC1700, LPC2000, AT91SAM7, AT91SAM3U, STR7x, STR9x, LM3, and STM32x). Preliminary support for various NAND flash controllers (LPC3180, Orion, S3C24xx, more) controller is included. @section OpenOCD Web Site The OpenOCD web site provides the latest public news from the community: @uref{http://openocd.berlios.de/web/} @section Latest User's Guide: The user's guide you are now reading may not be the latest one available. A version for more recent code may be available. Its HTML form is published irregularly at: @uref{http://openocd.berlios.de/doc/html/index.html} PDF form is likewise published at: @uref{http://openocd.berlios.de/doc/pdf/openocd.pdf} @section OpenOCD User's Forum There is an OpenOCD forum (phpBB) hosted by SparkFun, which might be helpful to you. Note that if you want anything to come to the attention of developers, you should post it to the OpenOCD Developer Mailing List instead of this forum. @uref{http://forum.sparkfun.com/viewforum.php?f=18} @node Developers @chapter OpenOCD Developer Resources @cindex developers If you are interested in improving the state of OpenOCD's debugging and testing support, new contributions will be welcome. Motivated developers can produce new target, flash or interface drivers, improve the documentation, as well as more conventional bug fixes and enhancements. The resources in this chapter are available for developers wishing to explore or expand the OpenOCD source code. @section OpenOCD GIT Repository During the 0.3.x release cycle, OpenOCD switched from Subversion to a GIT repository hosted at SourceForge. The repository URL is: @uref{git://openocd.git.sourceforge.net/gitroot/openocd/openocd} You may prefer to use a mirror and the HTTP protocol: @uref{http://repo.or.cz/r/openocd.git} With standard GIT tools, use @command{git clone} to initialize a local repository, and @command{git pull} to update it. There are also gitweb pages letting you browse the repository with a web browser, or download arbitrary snapshots without needing a GIT client: @uref{http://openocd.git.sourceforge.net/git/gitweb.cgi?p=openocd/openocd} @uref{http://repo.or.cz/w/openocd.git} The @file{README} file contains the instructions for building the project from the repository or a snapshot. Developers that want to contribute patches to the OpenOCD system are @b{strongly} encouraged to work against mainline. Patches created against older versions may require additional work from their submitter in order to be updated for newer releases. @section Doxygen Developer Manual During the 0.2.x release cycle, the OpenOCD project began providing a Doxygen reference manual. This document contains more technical information about the software internals, development processes, and similar documentation: @uref{http://openocd.berlios.de/doc/doxygen/index.html} This document is a work-in-progress, but contributions would be welcome to fill in the gaps. All of the source files are provided in-tree, listed in the Doxyfile configuration in the top of the source tree. @section OpenOCD Developer Mailing List The OpenOCD Developer Mailing List provides the primary means of communication between developers: @uref{https://lists.berlios.de/mailman/listinfo/openocd-development} Discuss and submit patches to this list. The @file{PATCHES.txt} file contains basic information about how to prepare patches. @node JTAG Hardware Dongles @chapter JTAG Hardware Dongles @cindex dongles @cindex FTDI @cindex wiggler @cindex zy1000 @cindex printer port @cindex USB Adapter @cindex RTCK Defined: @b{dongle}: A small device that plugins into a computer and serves as an adapter .... [snip] In the OpenOCD case, this generally refers to @b{a small adapater} one attaches to your computer via USB or the Parallel Printer Port. The execption being the Zylin ZY1000 which is a small box you attach via an ethernet cable. The Zylin ZY1000 has the advantage that it does not require any drivers to be installed on the developer PC. It also has a built in web interface. It supports RTCK/RCLK or adaptive clocking and has a built in relay to power cycle targets remotely. @section Choosing a Dongle There are several things you should keep in mind when choosing a dongle. @enumerate @item @b{Voltage} What voltage is your target - 1.8, 2.8, 3.3, or 5V? Does your dongle support it? You might need a level converter. @item @b{Pinout} What pinout does your target board use? Does your dongle support it? You may be able to use jumper wires, or an "octopus" connector, to convert pinouts. @item @b{Connection} Does your computer have the USB, printer, or Ethernet port needed? @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking'' @end enumerate @section Stand alone Systems @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a dongle, but a standalone box. The ZY1000 has the advantage that it does not require any drivers installed on the developer PC. It also has a built in web interface. It supports RTCK/RCLK or adaptive clocking and has a built in relay to power cycle targets remotely. @section USB FT2232 Based There are many USB JTAG dongles on the market, many of them are based on a chip from ``Future Technology Devices International'' (FTDI) known as the FTDI FT2232; this is a USB full speed (12 Mbps) chip. See: @url{http://www.ftdichip.com} for more information. In summer 2009, USB high speed (480 Mbps) versions of these FTDI chips are starting to become available in JTAG adapters. @itemize @bullet @item @b{usbjtag} @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html} @item @b{jtagkey} @* See: @url{http://www.amontec.com/jtagkey.shtml} @item @b{jtagkey2} @* See: @url{http://www.amontec.com/jtagkey2.shtml} @item @b{oocdlink} @* See: @url{http://www.oocdlink.com} By Joern Kaipf @item @b{signalyzer} @* See: @url{http://www.signalyzer.com} @item @b{Stellaris Eval Boards} @* See: @url{http://www.luminarymicro.com} - The Stellaris eval boards bundle FT2232-based JTAG and SWD support, which can be used to debug the Stellaris chips. Using separate JTAG adapters is optional. These boards can also be used as JTAG adapters to other target boards, disabling the Stellaris chip. @item @b{Luminary ICDI} @* See: @url{http://www.luminarymicro.com} - Luminary In-Circuit Debug Interface (ICDI) Boards are included in Stellaris LM3S9B90 and LM3S9B92 Evaluation Kits. Like the non-detachable FT2232 support on the other Stellaris eval boards, they can be used to debug other target boards. @item @b{olimex-jtag} @* See: @url{http://www.olimex.com} @item @b{flyswatter} @* See: @url{http://www.tincantools.com} @item @b{turtelizer2} @* See: @uref{http://www.ethernut.de/en/hardware/turtelizer/index.html, Turtelizer 2}, or @url{http://www.ethernut.de} @item @b{comstick} @* Link: @url{http://www.hitex.com/index.php?id=383} @item @b{stm32stick} @* Link @url{http://www.hitex.com/stm32-stick} @item @b{axm0432_jtag} @* Axiom AXM-0432 Link @url{http://www.axman.com} @item @b{cortino} @* Link @url{http://www.hitex.com/index.php?id=cortino} @end itemize @section USB-JTAG / Altera USB-Blaster compatibles These devices also show up as FTDI devices, but are not protocol-compatible with the FT2232 devices. They are, however, protocol-compatible among themselves. USB-JTAG devices typically consist of a FT245 followed by a CPLD that understands a particular protocol, or emulate this protocol using some other hardware. They may appear under different USB VID/PID depending on the particular product. The driver can be configured to search for any VID/PID pair (see the section on driver commands). @itemize @item @b{USB-JTAG} Kolja Waschk's USB Blaster-compatible adapter @* Link: @url{http://www.ixo.de/info/usb_jtag/} @item @b{Altera USB-Blaster} @* Link: @url{http://www.altera.com/literature/ug/ug_usb_blstr.pdf} @end itemize @section USB JLINK based There are several OEM versions of the Segger @b{JLINK} adapter. It is an example of a micro controller based JTAG adapter, it uses an AT91SAM764 internally. @itemize @bullet @item @b{ATMEL SAMICE} Only works with ATMEL chips! @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892} @item @b{SEGGER JLINK} @* Link: @url{http://www.segger.com/jlink.html} @item @b{IAR J-Link} @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php} @end itemize @section USB RLINK based Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported. @itemize @bullet @item @b{Raisonance RLink} @* Link: @url{http://www.raisonance.com/products/RLink.php} @item @b{STM32 Primer} @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php} @item @b{STM32 Primer2} @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php} @end itemize @section USB Other @itemize @bullet @item @b{USBprog} @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604 @item @b{USB - Presto} @* Link: @url{http://tools.asix.net/prg_presto.htm} @item @b{Versaloon-Link} @* Link: @url{http://www.simonqian.com/en/Versaloon} @item @b{ARM-JTAG-EW} @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html} @end itemize @section IBM PC Parallel Printer Port Based The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5 and the MacGraigor Wiggler. There are many clones and variations of these on the market. Note that parallel ports are becoming much less common, so if you have the choice you should probably avoid these adapters in favor of USB-based ones. @itemize @bullet @item @b{Wiggler} - There are many clones of this. @* Link: @url{http://www.macraigor.com/wiggler.htm} @item @b{DLC5} - From XILINX - There are many clones of this @* Link: Search the web for: ``XILINX DLC5'' - it is no longer produced, PDF schematics are easily found and it is easy to make. @item @b{Amontec - JTAG Accelerator} @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml} @item @b{GW16402} @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php} @item @b{Wiggler2} @*@uref{http://www.ccac.rwth-aachen.de/@/~michaels/@/index.php/hardware/@/armjtag, Improved parallel-port wiggler-style JTAG adapter} @item @b{Wiggler_ntrst_inverted} @* Yet another variation - See the source code, src/jtag/parport.c @item @b{old_amt_wiggler} @* Unknown - probably not on the market today @item @b{arm-jtag} @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone] @item @b{chameleon} @* Link: @url{http://www.amontec.com/chameleon.shtml} @item @b{Triton} @* Unknown. @item @b{Lattice} @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/@/devtools/dlcable.pdf} @item @b{flashlink} @* From ST Microsystems; @uref{http://www.st.com/stonline/@/products/literature/um/7889.pdf, FlashLINK JTAG programing cable for PSD and uPSD} @end itemize @section Other... @itemize @bullet @item @b{ep93xx} @* An EP93xx based Linux machine using the GPIO pins directly. @item @b{at91rm9200} @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip. @end itemize @node About JIM-Tcl @chapter About JIM-Tcl @cindex JIM Tcl @cindex tcl OpenOCD includes a small ``Tcl Interpreter'' known as JIM-Tcl. This programming language provides a simple and extensible command interpreter. All commands presented in this Guide are extensions to JIM-Tcl. You can use them as simple commands, without needing to learn much of anything about Tcl. Alternatively, can write Tcl programs with them. You can learn more about JIM at its website, @url{http://jim.berlios.de}. @itemize @bullet @item @b{JIM vs. Tcl} @* JIM-TCL is a stripped down version of the well known Tcl language, which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far fewer features. JIM-Tcl is a single .C file and a single .H file and implements the basic Tcl command set. In contrast: Tcl 8.6 is a 4.2 MB .zip file containing 1540 files. @item @b{Missing Features} @* Our practice has been: Add/clone the real Tcl feature if/when needed. We welcome JIM Tcl improvements, not bloat. @item @b{Scripts} @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's command interpreter today is a mixture of (newer) JIM-Tcl commands, and (older) the orginal command interpreter. @item @b{Commands} @* At the OpenOCD telnet command line (or via the GDB mon command) one can type a Tcl for() loop, set variables, etc. Some of the commands documented in this guide are implemented as Tcl scripts, from a @file{startup.tcl} file internal to the server. @item @b{Historical Note} @* JIM-Tcl was introduced to OpenOCD in spring 2008. @item @b{Need a crash course in Tcl?} @*@xref{Tcl Crash Course}. @end itemize @node Running @chapter Running @cindex command line options @cindex logfile @cindex directory search The @option{--help} option shows: @verbatim bash$ openocd --help --help | -h display this help --version | -v display OpenOCD version --file | -f use configuration file --search | -s dir to search for config files and scripts --debug | -d set debug level <0-3> --log_output | -l redirect log output to file --command | -c run --pipe | -p use pipes when talking to gdb @end verbatim By default OpenOCD reads the configuration file @file{openocd.cfg}. To specify a different (or multiple) configuration file, you can use the @option{-f} option. For example: @example openocd -f config1.cfg -f config2.cfg -f config3.cfg @end example Configuration files and scripts are searched for in @enumerate @item the current directory, @item any search dir specified on the command line using the @option{-s} option, @item @file{$HOME/.openocd} (not on Windows), @item the site wide script library @file{$pkgdatadir/site} and @item the OpenOCD-supplied script library @file{$pkgdatadir/scripts}. @end enumerate The first found file with a matching file name will be used. @section Simple setup, no customization In the best case, you can use two scripts from one of the script libraries, hook up your JTAG adapter, and start the server ... and your JTAG setup will just work "out of the box". Always try to start by reusing those scripts, but assume you'll need more customization even if this works. @xref{OpenOCD Project Setup}. If you find a script for your JTAG adapter, and for your board or target, you may be able to hook up your JTAG adapter then start the server like: @example openocd -f interface/ADAPTER.cfg -f board/MYBOARD.cfg @end example You might also need to configure which reset signals are present, using @option{-c 'reset_config trst_and_srst'} or something similar. If all goes well you'll see output something like @example Open On-Chip Debugger 0.4.0 (2010-01-14-15:06) For bug reports, read http://openocd.berlios.de/doc/doxygen/bugs.html Info : JTAG tap: lm3s.cpu tap/device found: 0x3ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x3) @end example Seeing that "tap/device found" message, and no warnings, means the JTAG communication is working. That's a key milestone, but you'll probably need more project-specific setup. @section What OpenOCD does as it starts OpenOCD starts by processing the configuration commands provided on the command line or, if there were no @option{-c command} or @option{-f file.cfg} options given, in @file{openocd.cfg}. @xref{Configuration Stage}. At the end of the configuration stage it verifies the JTAG scan chain defined using those commands; your configuration should ensure that this always succeeds. Normally, OpenOCD then starts running as a daemon. Alternatively, commands may be used to terminate the configuration stage early, perform work (such as updating some flash memory), and then shut down without acting as a daemon. Once OpenOCD starts running as a daemon, it waits for connections from clients (Telnet, GDB, Other) and processes the commands issued through those channels. If you are having problems, you can enable internal debug messages via the @option{-d} option. Also it is possible to interleave JIM-Tcl commands w/config scripts using the @option{-c} command line switch. To enable debug output (when reporting problems or working on OpenOCD itself), use the @option{-d} command line switch. This sets the @option{debug_level} to "3", outputting the most information, including debug messages. The default setting is "2", outputting only informational messages, warnings and errors. You can also change this setting from within a telnet or gdb session using @command{debug_level } (@pxref{debug_level}). You can redirect all output from the daemon to a file using the @option{-l } switch. For details on the @option{-p} option. @xref{Connecting to GDB}. Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection with the target. In general, it is possible for the JTAG controller to be unresponsive until the target is set up correctly via e.g. GDB monitor commands in a GDB init script. @node OpenOCD Project Setup @chapter OpenOCD Project Setup To use OpenOCD with your development projects, you need to do more than just connecting the JTAG adapter hardware (dongle) to your development board and then starting the OpenOCD server. You also need to configure that server so that it knows about that adapter and board, and helps your work. You may also want to connect OpenOCD to GDB, possibly using Eclipse or some other GUI. @section Hooking up the JTAG Adapter Today's most common case is a dongle with a JTAG cable on one side (such as a ribbon cable with a 10-pin or 20-pin IDC connector) and a USB cable on the other. Instead of USB, some cables use Ethernet; older ones may use a PC parallel port, or even a serial port. @enumerate @item @emph{Start with power to your target board turned off}, and nothing connected to your JTAG adapter. If you're particularly paranoid, unplug power to the board. It's important to have the ground signal properly set up, unless you are using a JTAG adapter which provides galvanic isolation between the target board and the debugging host. @item @emph{Be sure it's the right kind of JTAG connector.} If your dongle has a 20-pin ARM connector, you need some kind of adapter (or octopus, see below) to hook it up to boards using 14-pin or 10-pin connectors ... or to 20-pin connectors which don't use ARM's pinout. In the same vein, make sure the voltage levels are compatible. Not all JTAG adapters have the level shifters needed to work with 1.2 Volt boards. @item @emph{Be certain the cable is properly oriented} or you might damage your board. In most cases there are only two possible ways to connect the cable. Connect the JTAG cable from your adapter to the board. Be sure it's firmly connected. In the best case, the connector is keyed to physically prevent you from inserting it wrong. This is most often done using a slot on the board's male connector housing, which must match a key on the JTAG cable's female connector. If there's no housing, then you must look carefully and make sure pin 1 on the cable hooks up to pin 1 on the board. Ribbon cables are frequently all grey except for a wire on one edge, which is red. The red wire is pin 1. Sometimes dongles provide cables where one end is an ``octopus'' of color coded single-wire connectors, instead of a connector block. These are great when converting from one JTAG pinout to another, but are tedious to set up. Use these with connector pinout diagrams to help you match up the adapter signals to the right board pins. @item @emph{Connect the adapter's other end} once the JTAG cable is connected. A USB, parallel, or serial port connector will go to the host which you are using to run OpenOCD. For Ethernet, consult the documentation and your network administrator. For USB based JTAG adapters you have an easy sanity check at this point: does the host operating system see the JTAG adapter? If that host is an MS-Windows host, you'll need to install a driver before OpenOCD works. @item @emph{Connect the adapter's power supply, if needed.} This step is primarily for non-USB adapters, but sometimes USB adapters need extra power. @item @emph{Power up the target board.} Unless you just let the magic smoke escape, you're now ready to set up the OpenOCD server so you can use JTAG to work with that board. @end enumerate Talk with the OpenOCD server using telnet (@code{telnet localhost 4444} on many systems) or GDB. @xref{GDB and OpenOCD}. @section Project Directory There are many ways you can configure OpenOCD and start it up. A simple way to organize them all involves keeping a single directory for your work with a given board. When you start OpenOCD from that directory, it searches there first for configuration files, scripts, files accessed through semihosting, and for code you upload to the target board. It is also the natural place to write files, such as log files and data you download from the board. @section Configuration Basics There are two basic ways of configuring OpenOCD, and a variety of ways you can mix them. Think of the difference as just being how you start the server: @itemize @item Many @option{-f file} or @option{-c command} options on the command line @item No options, but a @dfn{user config file} in the current directory named @file{openocd.cfg} @end itemize Here is an example @file{openocd.cfg} file for a setup using a Signalyzer FT2232-based JTAG adapter to talk to a board with an Atmel AT91SAM7X256 microcontroller: @example source [find interface/signalyzer.cfg] # GDB can also flash my flash! gdb_memory_map enable gdb_flash_program enable source [find target/sam7x256.cfg] @end example Here is the command line equivalent of that configuration: @example openocd -f interface/signalyzer.cfg \ -c "gdb_memory_map enable" \ -c "gdb_flash_program enable" \ -f target/sam7x256.cfg @end example You could wrap such long command lines in shell scripts, each supporting a different development task. One might re-flash the board with a specific firmware version. Another might set up a particular debugging or run-time environment. @quotation Important At this writing (October 2009) the command line method has problems with how it treats variables. For example, after @option{-c "set VAR value"}, or doing the same in a script, the variable @var{VAR} will have no value that can be tested in a later script. @end quotation Here we will focus on the simpler solution: one user config file, including basic configuration plus any TCL procedures to simplify your work. @section User Config Files @cindex config file, user @cindex user config file @cindex config file, overview A user configuration file ties together all the parts of a project in one place. One of the following will match your situation best: @itemize @item Ideally almost everything comes from configuration files provided by someone else. For example, OpenOCD distributes a @file{scripts} directory (probably in @file{/usr/share/openocd/scripts} on Linux). Board and tool vendors can provide these too, as can individual user sites; the @option{-s} command line option lets you say where to find these files. (@xref{Running}.) The AT91SAM7X256 example above works this way. Three main types of non-user configuration file each have their own subdirectory in the @file{scripts} directory: @enumerate @item @b{interface} -- one for each kind of JTAG adapter/dongle @item @b{board} -- one for each different board @item @b{target} -- the chips which integrate CPUs and other JTAG TAPs @end enumerate Best case: include just two files, and they handle everything else. The first is an interface config file. The second is board-specific, and it sets up the JTAG TAPs and their GDB targets (by deferring to some @file{target.cfg} file), declares all flash memory, and leaves you nothing to do except meet your deadline: @example source [find interface/olimex-jtag-tiny.cfg] source [find board/csb337.cfg] @end example Boards with a single microcontroller often won't need more than the target config file, as in the AT91SAM7X256 example. That's because there is no external memory (flash, DDR RAM), and the board differences are encapsulated by application code. @item Maybe you don't know yet what your board looks like to JTAG. Once you know the @file{interface.cfg} file to use, you may need help from OpenOCD to discover what's on the board. Once you find the TAPs, you can just search for appropriate configuration files ... or write your own, from the bottom up. @xref{Autoprobing}. @item You can often reuse some standard config files but need to write a few new ones, probably a @file{board.cfg} file. You will be using commands described later in this User's Guide, and working with the guidelines in the next chapter. For example, there may be configuration files for your JTAG adapter and target chip, but you need a new board-specific config file giving access to your particular flash chips. Or you might need to write another target chip configuration file for a new chip built around the Cortex M3 core. @quotation Note When you write new configuration files, please submit them for inclusion in the next OpenOCD release. For example, a @file{board/newboard.cfg} file will help the next users of that board, and a @file{target/newcpu.cfg} will help support users of any board using that chip. @end quotation @item You may may need to write some C code. It may be as simple as a supporting a new ft2232 or parport based dongle; a bit more involved, like a NAND or NOR flash controller driver; or a big piece of work like supporting a new chip architecture. @end itemize Reuse the existing config files when you can. Look first in the @file{scripts/boards} area, then @file{scripts/targets}. You may find a board configuration that's a good example to follow. When you write config files, separate the reusable parts (things every user of that interface, chip, or board needs) from ones specific to your environment and debugging approach. @itemize @item For example, a @code{gdb-attach} event handler that invokes the @command{reset init} command will interfere with debugging early boot code, which performs some of the same actions that the @code{reset-init} event handler does. @item Likewise, the @command{arm9 vector_catch} command (or @cindex vector_catch its siblings @command{xscale vector_catch} and @command{cortex_m3 vector_catch}) can be a timesaver during some debug sessions, but don't make everyone use that either. Keep those kinds of debugging aids in your user config file, along with messaging and tracing setup. (@xref{Software Debug Messages and Tracing}.) @item You might need to override some defaults. For example, you might need to move, shrink, or back up the target's work area if your application needs much SRAM. @item TCP/IP port configuration is another example of something which is environment-specific, and should only appear in a user config file. @xref{TCP/IP Ports}. @end itemize @section Project-Specific Utilities A few project-specific utility routines may well speed up your work. Write them, and keep them in your project's user config file. For example, if you are making a boot loader work on a board, it's nice to be able to debug the ``after it's loaded to RAM'' parts separately from the finicky early code which sets up the DDR RAM controller and clocks. A script like this one, or a more GDB-aware sibling, may help: @example proc ramboot @{ @} @{ # Reset, running the target's "reset-init" scripts # to initialize clocks and the DDR RAM controller. # Leave the CPU halted. reset init # Load CONFIG_SKIP_LOWLEVEL_INIT version into DDR RAM. load_image u-boot.bin 0x20000000 # Start running. resume 0x20000000 @} @end example Then once that code is working you will need to make it boot from NOR flash; a different utility would help. Alternatively, some developers write to flash using GDB. (You might use a similar script if you're working with a flash based microcontroller application instead of a boot loader.) @example proc newboot @{ @} @{ # Reset, leaving the CPU halted. The "reset-init" event # proc gives faster access to the CPU and to NOR flash; # "reset halt" would be slower. reset init # Write standard version of U-Boot into the first two # sectors of NOR flash ... the standard version should # do the same lowlevel init as "reset-init". flash protect 0 0 1 off flash erase_sector 0 0 1 flash write_bank 0 u-boot.bin 0x0 flash protect 0 0 1 on # Reboot from scratch using that new boot loader. reset run @} @end example You may need more complicated utility procedures when booting from NAND. That often involves an extra bootloader stage, running from on-chip SRAM to perform DDR RAM setup so it can load the main bootloader code (which won't fit into that SRAM). Other helper scripts might be used to write production system images, involving considerably more than just a three stage bootloader. @section Target Software Changes Sometimes you may want to make some small changes to the software you're developing, to help make JTAG debugging work better. For example, in C or assembly language code you might use @code{#ifdef JTAG_DEBUG} (or its converse) around code handling issues like: @itemize @bullet @item @b{Watchdog Timers}... Watchog timers are typically used to automatically reset systems if some application task doesn't periodically reset the timer. (The assumption is that the system has locked up if the task can't run.) When a JTAG debugger halts the system, that task won't be able to run and reset the timer ... potentially causing resets in the middle of your debug sessions. It's rarely a good idea to disable such watchdogs, since their usage needs to be debugged just like all other parts of your firmware. That might however be your only option. Look instead for chip-specific ways to stop the watchdog from counting while the system is in a debug halt state. It may be simplest to set that non-counting mode in your debugger startup scripts. You may however need a different approach when, for example, a motor could be physically damaged by firmware remaining inactive in a debug halt state. That might involve a type of firmware mode where that "non-counting" mode is disabled at the beginning then re-enabled at the end; a watchdog reset might fire and complicate the debug session, but hardware (or people) would be protected.@footnote{Note that many systems support a "monitor mode" debug that is a somewhat cleaner way to address such issues. You can think of it as only halting part of the system, maybe just one task, instead of the whole thing. At this writing, January 2010, OpenOCD based debugging does not support monitor mode debug, only "halt mode" debug.} @item @b{ARM Semihosting}... @cindex ARM semihosting When linked with a special runtime library provided with many toolchains@footnote{See chapter 8 "Semihosting" in @uref{http://infocenter.arm.com/help/topic/com.arm.doc.dui0203i/DUI0203I_rvct_developer_guide.pdf, ARM DUI 0203I}, the "RealView Compilation Tools Developer Guide". The CodeSourcery EABI toolchain also includes a semihosting library.}, your target code can use I/O facilities on the debug host. That library provides a small set of system calls which are handled by OpenOCD. It can let the debugger provide your system console and a file system, helping with early debugging or providing a more capable environment for sometimes-complex tasks like installing system firmware onto NAND or SPI flash. @item @b{ARM Wait-For-Interrupt}... Many ARM chips synchronize the JTAG clock using the core clock. Low power states which stop that core clock thus prevent JTAG access. Idle loops in tasking environments often enter those low power states via the @code{WFI} instruction (or its coprocessor equivalent, before ARMv7). You may want to @emph{disable that instruction} in source code, or otherwise prevent using that state, to ensure you can get JTAG access at any time.@footnote{As a more polite alternative, some processors have special debug-oriented registers which can be used to change various features including how the low power states are clocked while debugging. The STM32 DBGMCU_CR register is an example; at the cost of extra power consumption, JTAG can be used during low power states.} For example, the OpenOCD @command{halt} command may not work for an idle processor otherwise. @item @b{Delay after reset}... Not all chips have good support for debugger access right after reset; many LPC2xxx chips have issues here. Similarly, applications that reconfigure pins used for JTAG access as they start will also block debugger access. To work with boards like this, @emph{enable a short delay loop} the first thing after reset, before "real" startup activities. For example, one second's delay is usually more than enough time for a JTAG debugger to attach, so that early code execution can be debugged or firmware can be replaced. @item @b{Debug Communications Channel (DCC)}... Some processors include mechanisms to send messages over JTAG. Many ARM cores support these, as do some cores from other vendors. (OpenOCD may be able to use this DCC internally, speeding up some operations like writing to memory.) Your application may want to deliver various debugging messages over JTAG, by @emph{linking with a small library of code} provided with OpenOCD and using the utilities there to send various kinds of message. @xref{Software Debug Messages and Tracing}. @end itemize @node Config File Guidelines @chapter Config File Guidelines This chapter is aimed at any user who needs to write a config file, including developers and integrators of OpenOCD and any user who needs to get a new board working smoothly. It provides guidelines for creating those files. You should find the following directories under @t{$(INSTALLDIR)/scripts}, with files including the ones listed here. Use them as-is where you can; or as models for new files. @itemize @bullet @item @file{interface} ... think JTAG Dongle. Files that configure JTAG adapters go here. @example $ ls interface arm-jtag-ew.cfg hitex_str9-comstick.cfg oocdlink.cfg arm-usb-ocd.cfg icebear.cfg openocd-usb.cfg at91rm9200.cfg jlink.cfg parport.cfg axm0432.cfg jtagkey2.cfg parport_dlc5.cfg calao-usb-a9260-c01.cfg jtagkey.cfg rlink.cfg calao-usb-a9260-c02.cfg jtagkey-tiny.cfg sheevaplug.cfg calao-usb-a9260.cfg luminary.cfg signalyzer.cfg chameleon.cfg luminary-icdi.cfg stm32-stick.cfg cortino.cfg luminary-lm3s811.cfg turtelizer2.cfg dummy.cfg olimex-arm-usb-ocd.cfg usbprog.cfg flyswatter.cfg olimex-jtag-tiny.cfg vsllink.cfg $ @end example @item @file{board} ... think Circuit Board, PWA, PCB, they go by many names. Board files contain initialization items that are specific to a board. They reuse target configuration files, since the same microprocessor chips are used on many boards, but support for external parts varies widely. For example, the SDRAM initialization sequence for the board, or the type of external flash and what address it uses. Any initialization sequence to enable that external flash or SDRAM should be found in the board file. Boards may also contain multiple targets: two CPUs; or a CPU and an FPGA. @example $ ls board arm_evaluator7t.cfg keil_mcb1700.cfg at91rm9200-dk.cfg keil_mcb2140.cfg at91sam9g20-ek.cfg linksys_nslu2.cfg atmel_at91sam7s-ek.cfg logicpd_imx27.cfg atmel_at91sam9260-ek.cfg mini2440.cfg atmel_sam3u_ek.cfg olimex_LPC2378STK.cfg crossbow_tech_imote2.cfg olimex_lpc_h2148.cfg csb337.cfg olimex_sam7_ex256.cfg csb732.cfg olimex_sam9_l9260.cfg digi_connectcore_wi-9c.cfg olimex_stm32_h103.cfg dm355evm.cfg omap2420_h4.cfg dm365evm.cfg osk5912.cfg dm6446evm.cfg pic-p32mx.cfg eir.cfg propox_mmnet1001.cfg ek-lm3s1968.cfg pxa255_sst.cfg ek-lm3s3748.cfg sheevaplug.cfg ek-lm3s811.cfg stm3210e_eval.cfg ek-lm3s9b9x.cfg stm32f10x_128k_eval.cfg hammer.cfg str910-eval.cfg hitex_lpc2929.cfg telo.cfg hitex_stm32-performancestick.cfg ti_beagleboard.cfg hitex_str9-comstick.cfg topas910.cfg iar_str912_sk.cfg topasa900.cfg imx27ads.cfg unknown_at91sam9260.cfg imx27lnst.cfg x300t.cfg imx31pdk.cfg zy1000.cfg $ @end example @item @file{target} ... think chip. The ``target'' directory represents the JTAG TAPs on a chip which OpenOCD should control, not a board. Two common types of targets are ARM chips and FPGA or CPLD chips. When a chip has multiple TAPs (maybe it has both ARM and DSP cores), the target config file defines all of them. @example $ ls target aduc702x.cfg imx27.cfg pxa255.cfg ar71xx.cfg imx31.cfg pxa270.cfg at91eb40a.cfg imx35.cfg readme.txt at91r40008.cfg is5114.cfg sam7se512.cfg at91rm9200.cfg ixp42x.cfg sam7x256.cfg at91sam3u1c.cfg lm3s1968.cfg samsung_s3c2410.cfg at91sam3u1e.cfg lm3s3748.cfg samsung_s3c2440.cfg at91sam3u2c.cfg lm3s6965.cfg samsung_s3c2450.cfg at91sam3u2e.cfg lm3s811.cfg samsung_s3c4510.cfg at91sam3u4c.cfg lm3s9b9x.cfg samsung_s3c6410.cfg at91sam3u4e.cfg lpc1768.cfg sharp_lh79532.cfg at91sam3uXX.cfg lpc2103.cfg smdk6410.cfg at91sam7sx.cfg lpc2124.cfg smp8634.cfg at91sam9260.cfg lpc2129.cfg stm32.cfg c100.cfg lpc2148.cfg str710.cfg c100config.tcl lpc2294.cfg str730.cfg c100helper.tcl lpc2378.cfg str750.cfg c100regs.tcl lpc2478.cfg str912.cfg cs351x.cfg lpc2900.cfg telo.cfg davinci.cfg mega128.cfg ti_dm355.cfg dragonite.cfg netx500.cfg ti_dm365.cfg epc9301.cfg omap2420.cfg ti_dm6446.cfg feroceon.cfg omap3530.cfg tmpa900.cfg icepick.cfg omap5912.cfg tmpa910.cfg imx21.cfg pic32mx.cfg xba_revA3.cfg $ @end example @item @emph{more} ... browse for other library files which may be useful. For example, there are various generic and CPU-specific utilities. @end itemize The @file{openocd.cfg} user config file may override features in any of the above files by setting variables before sourcing the target file, or by adding commands specific to their situation. @section Interface Config Files The user config file should be able to source one of these files with a command like this: @example source [find interface/FOOBAR.cfg] @end example A preconfigured interface file should exist for every interface in use today, that said, perhaps some interfaces have only been used by the sole developer who created it. A separate chapter gives information about how to set these up. @xref{Interface - Dongle Configuration}. Read the OpenOCD source code if you have a new kind of hardware interface and need to provide a driver for it. @section Board Config Files @cindex config file, board @cindex board config file The user config file should be able to source one of these files with a command like this: @example source [find board/FOOBAR.cfg] @end example The point of a board config file is to package everything about a given board that user config files need to know. In summary the board files should contain (if present) @enumerate @item One or more @command{source [target/...cfg]} statements @item NOR flash configuration (@pxref{NOR Configuration}) @item NAND flash configuration (@pxref{NAND Configuration}) @item Target @code{reset} handlers for SDRAM and I/O configuration @item JTAG adapter reset configuration (@pxref{Reset Configuration}) @item All things that are not ``inside a chip'' @end enumerate Generic things inside target chips belong in target config files, not board config files. So for example a @code{reset-init} event handler should know board-specific oscillator and PLL parameters, which it passes to target-specific utility code. The most complex task of a board config file is creating such a @code{reset-init} event handler. Define those handlers last, after you verify the rest of the board configuration works. @subsection Communication Between Config files In addition to target-specific utility code, another way that board and target config files communicate is by following a convention on how to use certain variables. The full Tcl/Tk language supports ``namespaces'', but JIM-Tcl does not. Thus the rule we follow in OpenOCD is this: Variables that begin with a leading underscore are temporary in nature, and can be modified and used at will within a target configuration file. Complex board config files can do the things like this, for a board with three chips: @example # Chip #1: PXA270 for network side, big endian set CHIPNAME network set ENDIAN big source [find target/pxa270.cfg] # on return: _TARGETNAME = network.cpu # other commands can refer to the "network.cpu" target. $_TARGETNAME configure .... events for this CPU.. # Chip #2: PXA270 for video side, little endian set CHIPNAME video set ENDIAN little source [find target/pxa270.cfg] # on return: _TARGETNAME = video.cpu # other commands can refer to the "video.cpu" target. $_TARGETNAME configure .... events for this CPU.. # Chip #3: Xilinx FPGA for glue logic set CHIPNAME xilinx unset ENDIAN source [find target/spartan3.cfg] @end example That example is oversimplified because it doesn't show any flash memory, or the @code{reset-init} event handlers to initialize external DRAM or (assuming it needs it) load a configuration into the FPGA. Such features are usually needed for low-level work with many boards, where ``low level'' implies that the board initialization software may not be working. (That's a common reason to need JTAG tools. Another is to enable working with microcontroller-based systems, which often have no debugging support except a JTAG connector.) Target config files may also export utility functions to board and user config files. Such functions should use name prefixes, to help avoid naming collisions. Board files could also accept input variables from user config files. For example, there might be a @code{J4_JUMPER} setting used to identify what kind of flash memory a development board is using, or how to set up other clocks and peripherals. @subsection Variable Naming Convention @cindex variable names Most boards have only one instance of a chip. However, it should be easy to create a board with more than one such chip (as shown above). Accordingly, we encourage these conventions for naming variables associated with different @file{target.cfg} files, to promote consistency and so that board files can override target defaults. Inputs to target config files include: @itemize @bullet @item @code{CHIPNAME} ... This gives a name to the overall chip, and is used as part of tap identifier dotted names. While the default is normally provided by the chip manufacturer, board files may need to distinguish between instances of a chip. @item @code{ENDIAN} ... By default @option{little} - although chips may hard-wire @option{big}. Chips that can't change endianness don't need to use this variable. @item @code{CPUTAPID} ... When OpenOCD examines the JTAG chain, it can be told verify the chips against the JTAG IDCODE register. The target file will hold one or more defaults, but sometimes the chip in a board will use a different ID (perhaps a newer revision). @end itemize Outputs from target config files include: @itemize @bullet @item @code{_TARGETNAME} ... By convention, this variable is created by the target configuration script. The board configuration file may make use of this variable to configure things like a ``reset init'' script, or other things specific to that board and that target. If the chip has 2 targets, the names are @code{_TARGETNAME0}, @code{_TARGETNAME1}, ... etc. @end itemize @subsection The reset-init Event Handler @cindex event, reset-init @cindex reset-init handler Board config files run in the OpenOCD configuration stage; they can't use TAPs or targets, since they haven't been fully set up yet. This means you can't write memory or access chip registers; you can't even verify that a flash chip is present. That's done later in event handlers, of which the target @code{reset-init} handler is one of the most important. Except on microcontrollers, the basic job of @code{reset-init} event handlers is setting up flash and DRAM, as normally handled by boot loaders. Microcontrollers rarely use boot loaders; they run right out of their on-chip flash and SRAM memory. But they may want to use one of these handlers too, if just for developer convenience. @quotation Note Because this is so very board-specific, and chip-specific, no examples are included here. Instead, look at the board config files distributed with OpenOCD. If you have a boot loader, its source code will help; so will configuration files for other JTAG tools (@pxref{Translating Configuration Files}). @end quotation Some of this code could probably be shared between different boards. For example, setting up a DRAM controller often doesn't differ by much except the bus width (16 bits or 32?) and memory timings, so a reusable TCL procedure loaded by the @file{target.cfg} file might take those as parameters. Similarly with oscillator, PLL, and clock setup; and disabling the watchdog. Structure the code cleanly, and provide comments to help the next developer doing such work. (@emph{You might be that next person} trying to reuse init code!) The last thing normally done in a @code{reset-init} handler is probing whatever flash memory was configured. For most chips that needs to be done while the associated target is halted, either because JTAG memory access uses the CPU or to prevent conflicting CPU access. @subsection JTAG Clock Rate Before your @code{reset-init} handler has set up the PLLs and clocking, you may need to run with a low JTAG clock rate. @xref{JTAG Speed}. Then you'd increase that rate after your handler has made it possible to use the faster JTAG clock. When the initial low speed is board-specific, for example because it depends on a board-specific oscillator speed, then you should probably set it up in the board config file; if it's target-specific, it belongs in the target config file. For most ARM-based processors the fastest JTAG clock@footnote{A FAQ @uref{http://www.arm.com/support/faqdev/4170.html} gives details.} is one sixth of the CPU clock; or one eighth for ARM11 cores. Consult chip documentation to determine the peak JTAG clock rate, which might be less than that. @quotation Warning On most ARMs, JTAG clock detection is coupled to the core clock, so software using a @option{wait for interrupt} operation blocks JTAG access. Adaptive clocking provides a partial workaround, but a more complete solution just avoids using that instruction with JTAG debuggers. @end quotation If the board supports adaptive clocking, use the @command{jtag_rclk} command, in case your board is used with JTAG adapter which also supports it. Otherwise use @command{jtag_khz}. Set the slow rate at the beginning of the reset sequence, and the faster rate as soon as the clocks are at full speed. @section Target Config Files @cindex config file, target @cindex target config file Board config files communicate with target config files using naming conventions as described above, and may source one or more target config files like this: @example source [find target/FOOBAR.cfg] @end example The point of a target config file is to package everything about a given chip that board config files need to know. In summary the target files should contain @enumerate @item Set defaults @item Add TAPs to the scan chain @item Add CPU targets (includes GDB support) @item CPU/Chip/CPU-Core specific features @item On-Chip flash @end enumerate As a rule of thumb, a target file sets up only one chip. For a microcontroller, that will often include a single TAP, which is a CPU needing a GDB target, and its on-chip flash. More complex chips may include multiple TAPs, and the target config file may need to define them all before OpenOCD can talk to the chip. For example, some phone chips have JTAG scan chains that include an ARM core for operating system use, a DSP, another ARM core embedded in an image processing engine, and other processing engines. @subsection Default Value Boiler Plate Code All target configuration files should start with code like this, letting board config files express environment-specific differences in how things should be set up. @example # Boards may override chip names, perhaps based on role, # but the default should match what the vendor uses if @{ [info exists CHIPNAME] @} @{ set _CHIPNAME $CHIPNAME @} else @{ set _CHIPNAME sam7x256 @} # ONLY use ENDIAN with targets that can change it. if @{ [info exists ENDIAN] @} @{ set _ENDIAN $ENDIAN @} else @{ set _ENDIAN little @} # TAP identifiers may change as chips mature, for example with # new revision fields (the "3" here). Pick a good default; you # can pass several such identifiers to the "jtag newtap" command. if @{ [info exists CPUTAPID ] @} @{ set _CPUTAPID $CPUTAPID @} else @{ set _CPUTAPID 0x3f0f0f0f @} @end example @c but 0x3f0f0f0f is for an str73x part ... @emph{Remember:} Board config files may include multiple target config files, or the same target file multiple times (changing at least @code{CHIPNAME}). Likewise, the target configuration file should define @code{_TARGETNAME} (or @code{_TARGETNAME0} etc) and use it later on when defining debug targets: @example set _TARGETNAME $_CHIPNAME.cpu target create $_TARGETNAME arm7tdmi -chain-position $_TARGETNAME @end example @subsection Adding TAPs to the Scan Chain After the ``defaults'' are set up, add the TAPs on each chip to the JTAG scan chain. @xref{TAP Declaration}, and the naming convention for taps. In the simplest case the chip has only one TAP, probably for a CPU or FPGA. The config file for the Atmel AT91SAM7X256 looks (in part) like this: @example jtag newtap $_CHIPNAME cpu -irlen 4 -expected-id $_CPUTAPID @end example A board with two such at91sam7 chips would be able to source such a config file twice, with different values for @code{CHIPNAME}, so it adds a different TAP each time. If there are nonzero @option{-expected-id} values, OpenOCD attempts to verify the actual tap id against those values. It will issue error messages if there is mismatch, which can help to pinpoint problems in OpenOCD configurations. @example JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3) ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1 ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3 @end example There are more complex examples too, with chips that have multiple TAPs. Ones worth looking at include: @itemize @item @file{target/omap3530.cfg} -- with disabled ARM and DSP, plus a JRC to enable them @item @file{target/str912.cfg} -- with flash, CPU, and boundary scan @item @file{target/ti_dm355.cfg} -- with ETM, ARM, and JRC (this JRC is not currently used) @end itemize @subsection Add CPU targets After adding a TAP for a CPU, you should set it up so that GDB and other commands can use it. @xref{CPU Configuration}. For the at91sam7 example above, the command can look like this; note that @code{$_ENDIAN} is not needed, since OpenOCD defaults to little endian, and this chip doesn't support changing that. @example set _TARGETNAME $_CHIPNAME.cpu target create $_TARGETNAME arm7tdmi -chain-position $_TARGETNAME @end example Work areas are small RAM areas associated with CPU targets. They are used by OpenOCD to speed up downloads, and to download small snippets of code to program flash chips. If the chip includes a form of ``on-chip-ram'' - and many do - define a work area if you can. Again using the at91sam7 as an example, this can look like: @example $_TARGETNAME configure -work-area-phys 0x00200000 \ -work-area-size 0x4000 -work-area-backup 0 @end example @subsection Chip Reset Setup As a rule, you should put the @command{reset_config} command into the board file. Most things you think you know about a chip can be tweaked by the board. Some chips have specific ways the TRST and SRST signals are managed. In the unusual case that these are @emph{chip specific} and can never be changed by board wiring, they could go here. For example, some chips can't support JTAG debugging without both signals. Provide a @code{reset-assert} event handler if you can. Such a handler uses JTAG operations to reset the target, letting this target config be used in systems which don't provide the optional SRST signal, or on systems where you don't want to reset all targets at once. Such a handler might write to chip registers to force a reset, use a JRC to do that (preferable -- the target may be wedged!), or force a watchdog timer to trigger. (For Cortex-M3 targets, this is not necessary. The target driver knows how to use trigger an NVIC reset when SRST is not available.) Some chips need special attention during reset handling if they're going to be used with JTAG. An example might be needing to send some commands right after the target's TAP has been reset, providing a @code{reset-deassert-post} event handler that writes a chip register to report that JTAG debugging is being done. Another would be reconfiguring the watchdog so that it stops counting while the core is halted in the debugger. JTAG clocking constraints often change during reset, and in some cases target config files (rather than board config files) are the right places to handle some of those issues. For example, immediately after reset most chips run using a slower clock than they will use later. That means that after reset (and potentially, as OpenOCD first starts up) they must use a slower JTAG clock rate than they will use later. @xref{JTAG Speed}. @quotation Important When you are debugging code that runs right after chip reset, getting these issues right is critical. In particular, if you see intermittent failures when OpenOCD verifies the scan chain after reset, look at how you are setting up JTAG clocking. @end quotation @subsection ARM Core Specific Hacks If the chip has a DCC, enable it. If the chip is an ARM9 with some special high speed download features - enable it. If present, the MMU, the MPU and the CACHE should be disabled. Some ARM cores are equipped with trace support, which permits examination of the instruction and data bus activity. Trace activity is controlled through an ``Embedded Trace Module'' (ETM) on one of the core's scan chains. The ETM emits voluminous data through a ``trace port''. (@xref{ARM Hardware Tracing}.) If you are using an external trace port, configure it in your board config file. If you are using an on-chip ``Embedded Trace Buffer'' (ETB), configure it in your target config file. @example etm config $_TARGETNAME 16 normal full etb etb config $_TARGETNAME $_CHIPNAME.etb @end example @subsection Internal Flash Configuration This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in. @b{Never ever} in the ``target configuration file'' define any type of flash that is external to the chip. (For example a BOOT flash on Chip Select 0.) Such flash information goes in a board file - not the TARGET (chip) file. Examples: @itemize @bullet @item at91sam7x256 - has 256K flash YES enable it. @item str912 - has flash internal YES enable it. @item imx27 - uses boot flash on CS0 - it goes in the board file. @item pxa270 - again - CS0 flash - it goes in the board file. @end itemize @anchor{Translating Configuration Files} @section Translating Configuration Files @cindex translation If you have a configuration file for another hardware debugger or toolset (Abatron, BDI2000, BDI3000, CCS, Lauterbach, Segger, Macraigor, etc.), translating it into OpenOCD syntax is often quite straightforward. The most tricky part of creating a configuration script is oftentimes the reset init sequence where e.g. PLLs, DRAM and the like is set up. One trick that you can use when translating is to write small Tcl procedures to translate the syntax into OpenOCD syntax. This can avoid manual translation errors and make it easier to convert other scripts later on. Example of transforming quirky arguments to a simple search and replace job: @example # Lauterbach syntax(?) # # Data.Set c15:0x042f %long 0x40000015 # # OpenOCD syntax when using procedure below. # # setc15 0x01 0x00050078 proc setc15 @{regs value@} @{ global TARGETNAME echo [format "set p15 0x%04x, 0x%08x" $regs $value] arm mcr 15 [expr ($regs>>12)&0x7] \ [expr ($regs>>0)&0xf] [expr ($regs>>4)&0xf] \ [expr ($regs>>8)&0x7] $value @} @end example @node Daemon Configuration @chapter Daemon Configuration @cindex initialization The commands here are commonly found in the openocd.cfg file and are used to specify what TCP/IP ports are used, and how GDB should be supported. @anchor{Configuration Stage} @section Configuration Stage @cindex configuration stage @cindex config command When the OpenOCD server process starts up, it enters a @emph{configuration stage} which is the only time that certain commands, @emph{configuration commands}, may be issued. Normally, configuration commands are only available inside startup scripts. In this manual, the definition of a configuration command is presented as a @emph{Config Command}, not as a @emph{Command} which may be issued interactively. The runtime @command{help} command also highlights configuration commands, and those which may be issued at any time. Those configuration commands include declaration of TAPs, flash banks, the interface used for JTAG communication, and other basic setup. The server must leave the configuration stage before it may access or activate TAPs. After it leaves this stage, configuration commands may no longer be issued. @section Entering the Run Stage The first thing OpenOCD does after leaving the configuration stage is to verify that it can talk to the scan chain (list of TAPs) which has been configured. It will warn if it doesn't find TAPs it expects to find, or finds TAPs that aren't supposed to be there. You should see no errors at this point. If you see errors, resolve them by correcting the commands you used to configure the server. Common errors include using an initial JTAG speed that's too fast, and not providing the right IDCODE values for the TAPs on the scan chain. Once OpenOCD has entered the run stage, a number of commands become available. A number of these relate to the debug targets you may have declared. For example, the @command{mww} command will not be available until a target has been successfuly instantiated. If you want to use those commands, you may need to force entry to the run stage. @deffn {Config Command} init This command terminates the configuration stage and enters the run stage. This helps when you need to have the startup scripts manage tasks such as resetting the target, programming flash, etc. To reset the CPU upon startup, add "init" and "reset" at the end of the config script or at the end of the OpenOCD command line using the @option{-c} command line switch. If this command does not appear in any startup/configuration file OpenOCD executes the command for you after processing all configuration files and/or command line options. @b{NOTE:} This command normally occurs at or near the end of your openocd.cfg file to force OpenOCD to ``initialize'' and make the targets ready. For example: If your openocd.cfg file needs to read/write memory on your target, @command{init} must occur before the memory read/write commands. This includes @command{nand probe}. @end deffn @deffn {Overridable Procedure} jtag_init This is invoked at server startup to verify that it can talk to the scan chain (list of TAPs) which has been configured. The default implementation first tries @command{jtag arp_init}, which uses only a lightweight JTAG reset before examining the scan chain. If that fails, it tries again, using a harder reset from the overridable procedure @command{init_reset}. Implementations must have verified the JTAG scan chain before they return. This is done by calling @command{jtag arp_init} (or @command{jtag arp_init-reset}). @end deffn @anchor{TCP/IP Ports} @section TCP/IP Ports @cindex TCP port @cindex server @cindex port @cindex security The OpenOCD server accepts remote commands in several syntaxes. Each syntax uses a different TCP/IP port, which you may specify only during configuration (before those ports are opened). For reasons including security, you may wish to prevent remote access using one or more of these ports. In such cases, just specify the relevant port number as zero. If you disable all access through TCP/IP, you will need to use the command line @option{-pipe} option. @deffn {Command} gdb_port [number] @cindex GDB server Specify or query the first port used for incoming GDB connections. The GDB port for the first target will be gdb_port, the second target will listen on gdb_port + 1, and so on. When not specified during the configuration stage, the port @var{number} defaults to 3333. When specified as zero, GDB remote access ports are not activated. @end deffn @deffn {Command} tcl_port [number] Specify or query the port used for a simplified RPC connection that can be used by clients to issue TCL commands and get the output from the Tcl engine. Intended as a machine interface. When not specified during the configuration stage, the port @var{number} defaults to 6666. When specified as zero, this port is not activated. @end deffn @deffn {Command} telnet_port [number] Specify or query the port on which to listen for incoming telnet connections. This port is intended for interaction with one human through TCL commands. When not specified during the configuration stage, the port @var{number} defaults to 4444. When specified as zero, this port is not activated. @end deffn @anchor{GDB Configuration} @section GDB Configuration @cindex GDB @cindex GDB configuration You can reconfigure some GDB behaviors if needed. The ones listed here are static and global. @xref{Target Configuration}, about configuring individual targets. @xref{Target Events}, about configuring target-specific event handling. @anchor{gdb_breakpoint_override} @deffn {Command} gdb_breakpoint_override [@option{hard}|@option{soft}|@option{disable}] Force breakpoint type for gdb @command{break} commands. This option supports GDB GUIs which don't distinguish hard versus soft breakpoints, if the default OpenOCD and GDB behaviour is not sufficient. GDB normally uses hardware breakpoints if the memory map has been set up for flash regions. @end deffn @anchor{gdb_flash_program} @deffn {Config Command} gdb_flash_program (@option{enable}|@option{disable}) Set to @option{enable} to cause OpenOCD to program the flash memory when a vFlash packet is received. The default behaviour is @option{enable}. @end deffn @deffn {Config Command} gdb_memory_map (@option{enable}|@option{disable}) Set to @option{enable} to cause OpenOCD to send the memory configuration to GDB when requested. GDB will then know when to set hardware breakpoints, and program flash using the GDB load command. @command{gdb_flash_program enable} must also be enabled for flash programming to work. Default behaviour is @option{enable}. @xref{gdb_flash_program}. @end deffn @deffn {Config Command} gdb_report_data_abort (@option{enable}|@option{disable}) Specifies whether data aborts cause an error to be reported by GDB memory read packets. The default behaviour is @option{disable}; use @option{enable} see these errors reported. @end deffn @anchor{Event Polling} @section Event Polling Hardware debuggers are parts of asynchronous systems, where significant events can happen at any time. The OpenOCD server needs to detect some of these events, so it can report them to through TCL command line or to GDB. Examples of such events include: @itemize @item One of the targets can stop running ... maybe it triggers a code breakpoint or data watchpoint, or halts itself. @item Messages may be sent over ``debug message'' channels ... many targets support such messages sent over JTAG, for receipt by the person debugging or tools. @item Loss of power ... some adapters can detect these events. @item Resets not issued through JTAG ... such reset sources can include button presses or other system hardware, sometimes including the target itself (perhaps through a watchdog). @item Debug instrumentation sometimes supports event triggering such as ``trace buffer full'' (so it can quickly be emptied) or other signals (to correlate with code behavior). @end itemize None of those events are signaled through standard JTAG signals. However, most conventions for JTAG connectors include voltage level and system reset (SRST) signal detection. Some connectors also include instrumentation signals, which can imply events when those signals are inputs. In general, OpenOCD needs to periodically check for those events, either by looking at the status of signals on the JTAG connector or by sending synchronous ``tell me your status'' JTAG requests to the various active targets. There is a command to manage and monitor that polling, which is normally done in the background. @deffn Command poll [@option{on}|@option{off}] Poll the current target for its current state. (Also, @pxref{target curstate}.) If that target is in debug mode, architecture specific information about the current state is printed. An optional parameter allows background polling to be enabled and disabled. You could use this from the TCL command shell, or from GDB using @command{monitor poll} command. Leave background polling enabled while you're using GDB. @example > poll background polling: on target state: halted target halted in ARM state due to debug-request, \ current mode: Supervisor cpsr: 0x800000d3 pc: 0x11081bfc MMU: disabled, D-Cache: disabled, I-Cache: enabled > @end example @end deffn @node Interface - Dongle Configuration @chapter Interface - Dongle Configuration @cindex config file, interface @cindex interface config file JTAG Adapters/Interfaces/Dongles are normally configured through commands in an interface configuration file which is sourced by your @file{openocd.cfg} file, or through a command line @option{-f interface/....cfg} option. @example source [find interface/olimex-jtag-tiny.cfg] @end example These commands tell OpenOCD what type of JTAG adapter you have, and how to talk to it. A few cases are so simple that you only need to say what driver to use: @example # jlink interface interface jlink @end example Most adapters need a bit more configuration than that. @section Interface Configuration The interface command tells OpenOCD what type of JTAG dongle you are using. Depending on the type of dongle, you may need to have one or more additional commands. @deffn {Config Command} {interface} name Use the interface driver @var{name} to connect to the target. @end deffn @deffn Command {interface_list} List the interface drivers that have been built into the running copy of OpenOCD. @end deffn @deffn Command {jtag interface} Returns the name of the interface driver being used. @end deffn @section Interface Drivers Each of the interface drivers listed here must be explicitly enabled when OpenOCD is configured, in order to be made available at run time. @deffn {Interface Driver} {amt_jtagaccel} Amontec Chameleon in its JTAG Accelerator configuration, connected to a PC's EPP mode parallel port. This defines some driver-specific commands: @deffn {Config Command} {parport_port} number Specifies either the address of the I/O port (default: 0x378 for LPT1) or the number of the @file{/dev/parport} device. @end deffn @deffn {Config Command} rtck [@option{enable}|@option{disable}] Displays status of RTCK option. Optionally sets that option first. @end deffn @end deffn @deffn {Interface Driver} {arm-jtag-ew} Olimex ARM-JTAG-EW USB adapter This has one driver-specific command: @deffn Command {armjtagew_info} Logs some status @end deffn @end deffn @deffn {Interface Driver} {at91rm9200} Supports bitbanged JTAG from the local system, presuming that system is an Atmel AT91rm9200 and a specific set of GPIOs is used. @c command: at91rm9200_device NAME @c chooses among list of bit configs ... only one option @end deffn @deffn {Interface Driver} {dummy} A dummy software-only driver for debugging. @end deffn @deffn {Interface Driver} {ep93xx} Cirrus Logic EP93xx based single-board computer bit-banging (in development) @end deffn @deffn {Interface Driver} {ft2232} FTDI FT2232 (USB) based devices over one of the userspace libraries. These interfaces have several commands, used to configure the driver before initializing the JTAG scan chain: @deffn {Config Command} {ft2232_device_desc} description Provides the USB device description (the @emph{iProduct string}) of the FTDI FT2232 device. If not specified, the FTDI default value is used. This setting is only valid if compiled with FTD2XX support. @end deffn @deffn {Config Command} {ft2232_serial} serial-number Specifies the @var{serial-number} of the FTDI FT2232 device to use, in case the vendor provides unique IDs and more than one FT2232 device is connected to the host. If not specified, serial numbers are not considered. (Note that USB serial numbers can be arbitrary Unicode strings, and are not restricted to containing only decimal digits.) @end deffn @deffn {Config Command} {ft2232_layout} name Each vendor's FT2232 device can use different GPIO signals to control output-enables, reset signals, and LEDs. Currently valid layout @var{name} values include: @itemize @minus @item @b{axm0432_jtag} Axiom AXM-0432 @item @b{comstick} Hitex STR9 comstick @item @b{cortino} Hitex Cortino JTAG interface @item @b{evb_lm3s811} Luminary Micro EVB_LM3S811 as a JTAG interface, either for the local Cortex-M3 (SRST only) or in a passthrough mode (neither SRST nor TRST) This layout can not support the SWO trace mechanism, and should be used only for older boards (before rev C). @item @b{luminary_icdi} This layout should be used with most Luminary eval boards, including Rev C LM3S811 eval boards and the eponymous ICDI boards, to debug either the local Cortex-M3 or in passthrough mode to debug some other target. It can support the SWO trace mechanism. @item @b{flyswatter} Tin Can Tools Flyswatter @item @b{icebear} ICEbear JTAG adapter from Section 5 @item @b{jtagkey} Amontec JTAGkey and JTAGkey-Tiny (and compatibles) @item @b{jtagkey2} Amontec JTAGkey2 (and compatibles) @item @b{m5960} American Microsystems M5960 @item @b{olimex-jtag} Olimex ARM-USB-OCD and ARM-USB-Tiny @item @b{oocdlink} OOCDLink @c oocdlink ~= jtagkey_prototype_v1 @item @b{sheevaplug} Marvell Sheevaplug development kit @item @b{signalyzer} Xverve Signalyzer @item @b{stm32stick} Hitex STM32 Performance Stick @item @b{turtelizer2} egnite Software turtelizer2 @item @b{usbjtag} "USBJTAG-1" layout described in the OpenOCD diploma thesis @end itemize @end deffn @deffn {Config Command} {ft2232_vid_pid} [vid pid]+ The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI default values are used. Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g. @example ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003 @end example @end deffn @deffn {Config Command} {ft2232_latency} ms On some systems using FT2232 based JTAG interfaces the FT_Read function call in ft2232_read() fails to return the expected number of bytes. This can be caused by USB communication delays and has proved hard to reproduce and debug. Setting the FT2232 latency timer to a larger value increases delays for short USB packets but it also reduces the risk of timeouts before receiving the expected number of bytes. The OpenOCD default value is 2 and for some systems a value of 10 has proved useful. @end deffn For example, the interface config file for a Turtelizer JTAG Adapter looks something like this: @example interface ft2232 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter" ft2232_layout turtelizer2 ft2232_vid_pid 0x0403 0xbdc8 @end example @end deffn @deffn {Interface Driver} {usb_blaster} USB JTAG/USB-Blaster compatibles over one of the userspace libraries for FTDI chips. These interfaces have several commands, used to configure the driver before initializing the JTAG scan chain: @deffn {Config Command} {usb_blaster_device_desc} description Provides the USB device description (the @emph{iProduct string}) of the FTDI FT245 device. If not specified, the FTDI default value is used. This setting is only valid if compiled with FTD2XX support. @end deffn @deffn {Config Command} {usb_blaster_vid_pid} vid pid The vendor ID and product ID of the FTDI FT245 device. If not specified, default values are used. Currently, only one @var{vid}, @var{pid} pair may be given, e.g. for Altera USB-Blaster (default): @example ft2232_vid_pid 0x09FB 0x6001 @end example The following VID/PID is for Kolja Waschk's USB JTAG: @example ft2232_vid_pid 0x16C0 0x06AD @end example @end deffn @deffn {Command} {usb_blaster} (@option{pin6}|@option{pin8}) (@option{0}|@option{1}) Sets the state of the unused GPIO pins on USB-Blasters (pins 6 and 8 on the female JTAG header). These pins can be used as SRST and/or TRST provided the appropriate connections are made on the target board. For example, to use pin 6 as SRST (as with an AVR board): @example $_TARGETNAME configure -event reset-assert \ "usb_blaster pin6 1; wait 1; usb_blaster pin6 0" @end example @end deffn @end deffn @deffn {Interface Driver} {gw16012} Gateworks GW16012 JTAG programmer. This has one driver-specific command: @deffn {Config Command} {parport_port} [port_number] Display either the address of the I/O port (default: 0x378 for LPT1) or the number of the @file{/dev/parport} device. If a parameter is provided, first switch to use that port. This is a write-once setting. @end deffn @end deffn @deffn {Interface Driver} {jlink} Segger jlink USB adapter @c command: jlink_info @c dumps status @c command: jlink_hw_jtag (2|3) @c sets version 2 or 3 @end deffn @deffn {Interface Driver} {parport} Supports PC parallel port bit-banging cables: Wigglers, PLD download cable, and more. These interfaces have several commands, used to configure the driver before initializing the JTAG scan chain: @deffn {Config Command} {parport_cable} name Set the layout of the parallel port cable used to connect to the target. This is a write-once setting. Currently valid cable @var{name} values include: @itemize @minus @item @b{altium} Altium Universal JTAG cable. @item @b{arm-jtag} Same as original wiggler except SRST and TRST connections reversed and TRST is also inverted. @item @b{chameleon} The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target. @item @b{dlc5} The Xilinx Parallel cable III. @item @b{flashlink} The ST Parallel cable. @item @b{lattice} Lattice ispDOWNLOAD Cable @item @b{old_amt_wiggler} The Wiggler configuration that comes with some versions of Amontec's Chameleon Programmer. The new version available from the website uses the original Wiggler layout ('@var{wiggler}') @item @b{triton} The parallel port adapter found on the ``Karo Triton 1 Development Board''. This is also the layout used by the HollyGates design (see @uref{http://www.lartmaker.nl/projects/jtag/}). @item @b{wiggler} The original Wiggler layout, also supported by several clones, such as the Olimex ARM-JTAG @item @b{wiggler2} Same as original wiggler except an led is fitted on D5. @item @b{wiggler_ntrst_inverted} Same as original wiggler except TRST is inverted. @end itemize @end deffn @deffn {Config Command} {parport_port} [port_number] Display either the address of the I/O port (default: 0x378 for LPT1) or the number of the @file{/dev/parport} device. If a parameter is provided, first switch to use that port. This is a write-once setting. When using PPDEV to access the parallel port, use the number of the parallel port: @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified you may encounter a problem. @end deffn @deffn Command {parport_toggling_time} [nanoseconds] Displays how many nanoseconds the hardware needs to toggle TCK; the parport driver uses this value to obey the @command{jtag_khz} configuration. When the optional @var{nanoseconds} parameter is given, that setting is changed before displaying the current value. The default setting should work reasonably well on commodity PC hardware. However, you may want to calibrate for your specific hardware. @quotation Tip To measure the toggling time with a logic analyzer or a digital storage oscilloscope, follow the procedure below: @example > parport_toggling_time 1000 > jtag_khz 500 @end example This sets the maximum JTAG clock speed of the hardware, but the actual speed probably deviates from the requested 500 kHz. Now, measure the time between the two closest spaced TCK transitions. You can use @command{runtest 1000} or something similar to generate a large set of samples. Update the setting to match your measurement: @example > parport_toggling_time @end example Now the clock speed will be a better match for @command{jtag_khz rate} commands given in OpenOCD scripts and event handlers. You can do something similar with many digital multimeters, but note that you'll probably need to run the clock continuously for several seconds before it decides what clock rate to show. Adjust the toggling time up or down until the measured clock rate is a good match for the jtag_khz rate you specified; be conservative. @end quotation @end deffn @deffn {Config Command} {parport_write_on_exit} (@option{on}|@option{off}) This will configure the parallel driver to write a known cable-specific value to the parallel interface on exiting OpenOCD. @end deffn For example, the interface configuration file for a classic ``Wiggler'' cable on LPT2 might look something like this: @example interface parport parport_port 0x278 parport_cable wiggler @end example @end deffn @deffn {Interface Driver} {presto} ASIX PRESTO USB JTAG programmer. @deffn {Config Command} {presto_serial} serial_string Configures the USB serial number of the Presto device to use. @end deffn @end deffn @deffn {Interface Driver} {rlink} Raisonance RLink USB adapter @end deffn @deffn {Interface Driver} {usbprog} usbprog is a freely programmable USB adapter. @end deffn @deffn {Interface Driver} {vsllink} vsllink is part of Versaloon which is a versatile USB programmer. @quotation Note This defines quite a few driver-specific commands, which are not currently documented here. @end quotation @end deffn @deffn {Interface Driver} {ZY1000} This is the Zylin ZY1000 JTAG debugger. @quotation Note This defines some driver-specific commands, which are not currently documented here. @end quotation @deffn Command power [@option{on}|@option{off}] Turn power switch to target on/off. No arguments: print status. @end deffn @end deffn @anchor{JTAG Speed} @section JTAG Speed JTAG clock setup is part of system setup. It @emph{does not belong with interface setup} since any interface only knows a few of the constraints for the JTAG clock speed. Sometimes the JTAG speed is changed during the target initialization process: (1) slow at reset, (2) program the CPU clocks, (3) run fast. Both the "slow" and "fast" clock rates are functions of the oscillators used, the chip, the board design, and sometimes power management software that may be active. The speed used during reset, and the scan chain verification which follows reset, can be adjusted using a @code{reset-start} target event handler. It can then be reconfigured to a faster speed by a @code{reset-init} target event handler after it reprograms those CPU clocks, or manually (if something else, such as a boot loader, sets up those clocks). @xref{Target Events}. When the initial low JTAG speed is a chip characteristic, perhaps because of a required oscillator speed, provide such a handler in the target config file. When that speed is a function of a board-specific characteristic such as which speed oscillator is used, it belongs in the board config file instead. In both cases it's safest to also set the initial JTAG clock rate to that same slow speed, so that OpenOCD never starts up using a clock speed that's faster than the scan chain can support. @example jtag_rclk 3000 $_TARGET.cpu configure -event reset-start @{ jtag_rclk 3000 @} @end example If your system supports adaptive clocking (RTCK), configuring JTAG to use that is probably the most robust approach. However, it introduces delays to synchronize clocks; so it may not be the fastest solution. @b{NOTE:} Script writers should consider using @command{jtag_rclk} instead of @command{jtag_khz}. @deffn {Command} jtag_khz max_speed_kHz A non-zero speed is in KHZ. Hence: 3000 is 3mhz. JTAG interfaces usually support a limited number of speeds. The speed actually used won't be faster than the speed specified. Chip data sheets generally include a top JTAG clock rate. The actual rate is often a function of a CPU core clock, and is normally less than that peak rate. For example, most ARM cores accept at most one sixth of the CPU clock. Speed 0 (khz) selects RTCK method. @xref{FAQ RTCK}. If your system uses RTCK, you won't need to change the JTAG clocking after setup. Not all interfaces, boards, or targets support ``rtck''. If the interface device can not support it, an error is returned when you try to use RTCK. @end deffn @defun jtag_rclk fallback_speed_kHz @cindex adaptive clocking @cindex RTCK This Tcl proc (defined in @file{startup.tcl}) attempts to enable RTCK/RCLK. If that fails (maybe the interface, board, or target doesn't support it), falls back to the specified frequency. @example # Fall back to 3mhz if RTCK is not supported jtag_rclk 3000 @end example @end defun @node Reset Configuration @chapter Reset Configuration @cindex Reset Configuration Every system configuration may require a different reset configuration. This can also be quite confusing. Resets also interact with @var{reset-init} event handlers, which do things like setting up clocks and DRAM, and JTAG clock rates. (@xref{JTAG Speed}.) They can also interact with JTAG routers. Please see the various board files for examples. @quotation Note To maintainers and integrators: Reset configuration touches several things at once. Normally the board configuration file should define it and assume that the JTAG adapter supports everything that's wired up to the board's JTAG connector. However, the target configuration file could also make note of something the silicon vendor has done inside the chip, which will be true for most (or all) boards using that chip. And when the JTAG adapter doesn't support everything, the user configuration file will need to override parts of the reset configuration provided by other files. @end quotation @section Types of Reset There are many kinds of reset possible through JTAG, but they may not all work with a given board and adapter. That's part of why reset configuration can be error prone. @itemize @bullet @item @emph{System Reset} ... the @emph{SRST} hardware signal resets all chips connected to the JTAG adapter, such as processors, power management chips, and I/O controllers. Normally resets triggered with this signal behave exactly like pressing a RESET button. @item @emph{JTAG TAP Reset} ... the @emph{TRST} hardware signal resets just the TAP controllers connected to the JTAG adapter. Such resets should not be visible to the rest of the system; resetting a device's the TAP controller just puts that controller into a known state. @item @emph{Emulation Reset} ... many devices can be reset through JTAG commands. These resets are often distinguishable from system resets, either explicitly (a "reset reason" register says so) or implicitly (not all parts of the chip get reset). @item @emph{Other Resets} ... system-on-chip devices often support several other types of reset. You may need to arrange that a watchdog timer stops while debugging, preventing a watchdog reset. There may be individual module resets. @end itemize In the best case, OpenOCD can hold SRST, then reset the TAPs via TRST and send commands through JTAG to halt the CPU at the reset vector before the 1st instruction is executed. Then when it finally releases the SRST signal, the system is halted under debugger control before any code has executed. This is the behavior required to support the @command{reset halt} and @command{reset init} commands; after @command{reset init} a board-specific script might do things like setting up DRAM. (@xref{Reset Command}.) @anchor{SRST and TRST Issues} @section SRST and TRST Issues Because SRST and TRST are hardware signals, they can have a variety of system-specific constraints. Some of the most common issues are: @itemize @bullet @item @emph{Signal not available} ... Some boards don't wire SRST or TRST to the JTAG connector. Some JTAG adapters don't support such signals even if they are wired up. Use the @command{reset_config} @var{signals} options to say when either of those signals is not connected. When SRST is not available, your code might not be able to rely on controllers having been fully reset during code startup. Missing TRST is not a problem, since JTAG level resets can be triggered using with TMS signaling. @item @emph{Signals shorted} ... Sometimes a chip, board, or adapter will connect SRST to TRST, instead of keeping them separate. Use the @command{reset_config} @var{combination} options to say when those signals aren't properly independent. @item @emph{Timing} ... Reset circuitry like a resistor/capacitor delay circuit, reset supervisor, or on-chip features can extend the effect of a JTAG adapter's reset for some time after the adapter stops issuing the reset. For example, there may be chip or board requirements that all reset pulses last for at least a certain amount of time; and reset buttons commonly have hardware debouncing. Use the @command{jtag_nsrst_delay} and @command{jtag_ntrst_delay} commands to say when extra delays are needed. @item @emph{Drive type} ... Reset lines often have a pullup resistor, letting the JTAG interface treat them as open-drain signals. But that's not a requirement, so the adapter may need to use push/pull output drivers. Also, with weak pullups it may be advisable to drive signals to both levels (push/pull) to minimize rise times. Use the @command{reset_config} @var{trst_type} and @var{srst_type} parameters to say how to drive reset signals. @item @emph{Special initialization} ... Targets sometimes need special JTAG initialization sequences to handle chip-specific issues (not limited to errata). For example, certain JTAG commands might need to be issued while the system as a whole is in a reset state (SRST active) but the JTAG scan chain is usable (TRST inactive). Many systems treat combined assertion of SRST and TRST as a trigger for a harder reset than SRST alone. Such custom reset handling is discussed later in this chapter. @end itemize There can also be other issues. Some devices don't fully conform to the JTAG specifications. Trivial system-specific differences are common, such as SRST and TRST using slightly different names. There are also vendors who distribute key JTAG documentation for their chips only to developers who have signed a Non-Disclosure Agreement (NDA). Sometimes there are chip-specific extensions like a requirement to use the normally-optional TRST signal (precluding use of JTAG adapters which don't pass TRST through), or needing extra steps to complete a TAP reset. In short, SRST and especially TRST handling may be very finicky, needing to cope with both architecture and board specific constraints. @section Commands for Handling Resets @deffn {Command} jtag_nsrst_assert_width milliseconds Minimum amount of time (in milliseconds) OpenOCD should wait after asserting nSRST (active-low system reset) before allowing it to be deasserted. @end deffn @deffn {Command} jtag_nsrst_delay milliseconds How long (in milliseconds) OpenOCD should wait after deasserting nSRST (active-low system reset) before starting new JTAG operations. When a board has a reset button connected to SRST line it will probably have hardware debouncing, implying you should use this. @end deffn @deffn {Command} jtag_ntrst_assert_width milliseconds Minimum amount of time (in milliseconds) OpenOCD should wait after asserting nTRST (active-low JTAG TAP reset) before allowing it to be deasserted. @end deffn @deffn {Command} jtag_ntrst_delay milliseconds How long (in milliseconds) OpenOCD should wait after deasserting nTRST (active-low JTAG TAP reset) before starting new JTAG operations. @end deffn @deffn {Command} reset_config mode_flag ... This command displays or modifies the reset configuration of your combination of JTAG board and target in target configuration scripts. Information earlier in this section describes the kind of problems the command is intended to address (@pxref{SRST and TRST Issues}). As a rule this command belongs only in board config files, describing issues like @emph{board doesn't connect TRST}; or in user config files, addressing limitations derived from a particular combination of interface and board. (An unlikely example would be using a TRST-only adapter with a board that only wires up SRST.) The @var{mode_flag} options can be specified in any order, but only one of each type -- @var{signals}, @var{combination}, @var{gates}, @var{trst_type}, and @var{srst_type} -- may be specified at a time. If you don't provide a new value for a given type, its previous value (perhaps the default) is unchanged. For example, this means that you don't need to say anything at all about TRST just to declare that if the JTAG adapter should want to drive SRST, it must explicitly be driven high (@option{srst_push_pull}). @itemize @item @var{signals} can specify which of the reset signals are connected. For example, If the JTAG interface provides SRST, but the board doesn't connect that signal properly, then OpenOCD can't use it. Possible values are @option{none} (the default), @option{trst_only}, @option{srst_only} and @option{trst_and_srst}. @quotation Tip If your board provides SRST and/or TRST through the JTAG connector, you must declare that so those signals can be used. @end quotation @item The @var{combination} is an optional value specifying broken reset signal implementations. The default behaviour if no option given is @option{separate}, indicating everything behaves normally. @option{srst_pulls_trst} states that the test logic is reset together with the reset of the system (e.g. NXP LPC2000, "broken" board layout), @option{trst_pulls_srst} says that the system is reset together with the test logic (only hypothetical, I haven't seen hardware with such a bug, and can be worked around). @option{combined} implies both @option{srst_pulls_trst} and @option{trst_pulls_srst}. @item The @var{gates} tokens control flags that describe some cases where JTAG may be unvailable during reset. @option{srst_gates_jtag} (default) indicates that asserting SRST gates the JTAG clock. This means that no communication can happen on JTAG while SRST is asserted. Its converse is @option{srst_nogate}, indicating that JTAG commands can safely be issued while SRST is active. @end itemize The optional @var{trst_type} and @var{srst_type} parameters allow the driver mode of each reset line to be specified. These values only affect JTAG interfaces with support for different driver modes, like the Amontec JTAGkey and JTAG Accelerator. Also, they are necessarily ignored if the relevant signal (TRST or SRST) is not connected. @itemize @item Possible @var{trst_type} driver modes for the test reset signal (TRST) are the default @option{trst_push_pull}, and @option{trst_open_drain}. Most boards connect this signal to a pulldown, so the JTAG TAPs never leave reset unless they are hooked up to a JTAG adapter. @item Possible @var{srst_type} driver modes for the system reset signal (SRST) are the default @option{srst_open_drain}, and @option{srst_push_pull}. Most boards connect this signal to a pullup, and allow the signal to be pulled low by various events including system powerup and pressing a reset button. @end itemize @end deffn @section Custom Reset Handling @cindex events OpenOCD has several ways to help support the various reset mechanisms provided by chip and board vendors. The commands shown in the previous section give standard parameters. There are also @emph{event handlers} associated with TAPs or Targets. Those handlers are Tcl procedures you can provide, which are invoked at particular points in the reset sequence. @emph{When SRST is not an option} you must set up a @code{reset-assert} event handler for your target. For example, some JTAG adapters don't include the SRST signal; and some boards have multiple targets, and you won't always want to reset everything at once. After configuring those mechanisms, you might still find your board doesn't start up or reset correctly. For example, maybe it needs a slightly different sequence of SRST and/or TRST manipulations, because of quirks that the @command{reset_config} mechanism doesn't address; or asserting both might trigger a stronger reset, which needs special attention. Experiment with lower level operations, such as @command{jtag_reset} and the @command{jtag arp_*} operations shown here, to find a sequence of operations that works. @xref{JTAG Commands}. When you find a working sequence, it can be used to override @command{jtag_init}, which fires during OpenOCD startup (@pxref{Configuration Stage}); or @command{init_reset}, which fires during reset processing. You might also want to provide some project-specific reset schemes. For example, on a multi-target board the standard @command{reset} command would reset all targets, but you may need the ability to reset only one target at time and thus want to avoid using the board-wide SRST signal. @deffn {Overridable Procedure} init_reset mode This is invoked near the beginning of the @command{reset} command, usually to provide as much of a cold (power-up) reset as practical. By default it is also invoked from @command{jtag_init} if the scan chain does not respond to pure JTAG operations. The @var{mode} parameter is the parameter given to the low level reset command (@option{halt}, @option{init}, or @option{run}), @option{setup}, or potentially some other value. The default implementation just invokes @command{jtag arp_init-reset}. Replacements will normally build on low level JTAG operations such as @command{jtag_reset}. Operations here must not address individual TAPs (or their associated targets) until the JTAG scan chain has first been verified to work. Implementations must have verified the JTAG scan chain before they return. This is done by calling @command{jtag arp_init} (or @command{jtag arp_init-reset}). @end deffn @deffn Command {jtag arp_init} This validates the scan chain using just the four standard JTAG signals (TMS, TCK, TDI, TDO). It starts by issuing a JTAG-only reset. Then it performs checks to verify that the scan chain configuration matches the TAPs it can observe. Those checks include checking IDCODE values for each active TAP, and verifying the length of their instruction registers using TAP @code{-ircapture} and @code{-irmask} values. If these tests all pass, TAP @code{setup} events are issued to all TAPs with handlers for that event. @end deffn @deffn Command {jtag arp_init-reset} This uses TRST and SRST to try resetting everything on the JTAG scan chain (and anything else connected to SRST). It then invokes the logic of @command{jtag arp_init}. @end deffn @node TAP Declaration @chapter TAP Declaration @cindex TAP declaration @cindex TAP configuration @emph{Test Access Ports} (TAPs) are the core of JTAG. TAPs serve many roles, including: @itemize @bullet @item @b{Debug Target} A CPU TAP can be used as a GDB debug target @item @b{Flash Programing} Some chips program the flash directly via JTAG. Others do it indirectly, making a CPU do it. @item @b{Program Download} Using the same CPU support GDB uses, you can initialize a DRAM controller, download code to DRAM, and then start running that code. @item @b{Boundary Scan} Most chips support boundary scan, which helps test for board assembly problems like solder bridges and missing connections @end itemize OpenOCD must know about the active TAPs on your board(s). Setting up the TAPs is the core task of your configuration files. Once those TAPs are set up, you can pass their names to code which sets up CPUs and exports them as GDB targets, probes flash memory, performs low-level JTAG operations, and more. @section Scan Chains @cindex scan chain TAPs are part of a hardware @dfn{scan chain}, which is daisy chain of TAPs. They also need to be added to OpenOCD's software mirror of that hardware list, giving each member a name and associating other data with it. Simple scan chains, with a single TAP, are common in systems with a single microcontroller or microprocessor. More complex chips may have several TAPs internally. Very complex scan chains might have a dozen or more TAPs: several in one chip, more in the next, and connecting to other boards with their own chips and TAPs. You can display the list with the @command{scan_chain} command. (Don't confuse this with the list displayed by the @command{targets} command, presented in the next chapter. That only displays TAPs for CPUs which are configured as debugging targets.) Here's what the scan chain might look like for a chip more than one TAP: @verbatim TapName Enabled IdCode Expected IrLen IrCap IrMask -- ------------------ ------- ---------- ---------- ----- ----- ------ 0 omap5912.dsp Y 0x03df1d81 0x03df1d81 38 0x01 0x03 1 omap5912.arm Y 0x0692602f 0x0692602f 4 0x01 0x0f 2 omap5912.unknown Y 0x00000000 0x00000000 8 0x01 0x03 @end verbatim OpenOCD can detect some of that information, but not all of it. @xref{Autoprobing}. Unfortunately those TAPs can't always be autoconfigured, because not all devices provide good support for that. JTAG doesn't require supporting IDCODE instructions, and chips with JTAG routers may not link TAPs into the chain until they are told to do so. The configuration mechanism currently supported by OpenOCD requires explicit configuration of all TAP devices using @command{jtag newtap} commands, as detailed later in this chapter. A command like this would declare one tap and name it @code{chip1.cpu}: @example jtag newtap chip1 cpu -irlen 4 -expected-id 0x3ba00477 @end example Each target configuration file lists the TAPs provided by a given chip. Board configuration files combine all the targets on a board, and so forth. Note that @emph{the order in which TAPs are declared is very important.} It must match the order in the JTAG scan chain, both inside a single chip and between them. @xref{FAQ TAP Order}. For example, the ST Microsystems STR912 chip has three separate TAPs@footnote{See the ST document titled: @emph{STR91xFAxxx, Section 3.15 Jtag Interface, Page: 28/102, Figure 3: JTAG chaining inside the STR91xFA}. @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}}. To configure those taps, @file{target/str912.cfg} includes commands something like this: @example jtag newtap str912 flash ... params ... jtag newtap str912 cpu ... params ... jtag newtap str912 bs ... params ... @end example Actual config files use a variable instead of literals like @option{str912}, to support more than one chip of each type. @xref{Config File Guidelines}. @deffn Command {jtag names} Returns the names of all current TAPs in the scan chain. Use @command{jtag cget} or @command{jtag tapisenabled} to examine attributes and state of each TAP. @example foreach t [jtag names] @{ puts [format "TAP: %s\n" $t] @} @end example @end deffn @deffn Command {scan_chain} Displays the TAPs in the scan chain configuration, and their status. The set of TAPs listed by this command is fixed by exiting the OpenOCD configuration stage, but systems with a JTAG router can enable or disable TAPs dynamically. @end deffn @c FIXME! "jtag cget" should be able to return all TAP @c attributes, like "$target_name cget" does for targets. @c Probably want "jtag eventlist", and a "tap-reset" event @c (on entry to RESET state). @section TAP Names @cindex dotted name When TAP objects are declared with @command{jtag newtap}, a @dfn{dotted.name} is created for the TAP, combining the name of a module (usually a chip) and a label for the TAP. For example: @code{xilinx.tap}, @code{str912.flash}, @code{omap3530.jrc}, @code{dm6446.dsp}, or @code{stm32.cpu}. Many other commands use that dotted.name to manipulate or refer to the TAP. For example, CPU configuration uses the name, as does declaration of NAND or NOR flash banks. The components of a dotted name should follow ``C'' symbol name rules: start with an alphabetic character, then numbers and underscores are OK; while others (including dots!) are not. @quotation Tip In older code, JTAG TAPs were numbered from 0..N. This feature is still present. However its use is highly discouraged, and should not be relied on; it will be removed by mid-2010. Update all of your scripts to use TAP names rather than numbers, by paying attention to the runtime warnings they trigger. Using TAP numbers in target configuration scripts prevents reusing those scripts on boards with multiple targets. @end quotation @section TAP Declaration Commands @c shouldn't this be(come) a {Config Command}? @anchor{jtag newtap} @deffn Command {jtag newtap} chipname tapname configparams... Declares a new TAP with the dotted name @var{chipname}.@var{tapname}, and configured according to the various @var{configparams}. The @var{chipname} is a symbolic name for the chip. Conventionally target config files use @code{$_CHIPNAME}, defaulting to the model name given by the chip vendor but overridable. @cindex TAP naming convention The @var{tapname} reflects the role of that TAP, and should follow this convention: @itemize @bullet @item @code{bs} -- For boundary scan if this is a seperate TAP; @item @code{cpu} -- The main CPU of the chip, alternatively @code{arm} and @code{dsp} on chips with both ARM and DSP CPUs, @code{arm1} and @code{arm2} on chips two ARMs, and so forth; @item @code{etb} -- For an embedded trace buffer (example: an ARM ETB11); @item @code{flash} -- If the chip has a flash TAP, like the str912; @item @code{jrc} -- For JTAG route controller (example: the ICEpick modules on many Texas Instruments chips, like the OMAP3530 on Beagleboards); @item @code{tap} -- Should be used only FPGA or CPLD like devices with a single TAP; @item @code{unknownN} -- If you have no idea what the TAP is for (N is a number); @item @emph{when in doubt} -- Use the chip maker's name in their data sheet. For example, the Freescale IMX31 has a SDMA (Smart DMA) with a JTAG TAP; that TAP should be named @code{sdma}. @end itemize Every TAP requires at least the following @var{configparams}: @itemize @bullet @item @code{-irlen} @var{NUMBER} @*The length in bits of the instruction register, such as 4 or 5 bits. @end itemize A TAP may also provide optional @var{configparams}: @itemize @bullet @item @code{-disable} (or @code{-enable}) @*Use the @code{-disable} parameter to flag a TAP which is not linked in to the scan chain after a reset using either TRST or the JTAG state machine's @sc{reset} state. You may use @code{-enable} to highlight the default state (the TAP is linked in). @xref{Enabling and Disabling TAPs}. @item @code{-expected-id} @var{number} @*A non-zero @var{number} represents a 32-bit IDCODE which you expect to find when the scan chain is examined. These codes are not required by all JTAG devices. @emph{Repeat the option} as many times as required if more than one ID code could appear (for example, multiple versions). Specify @var{number} as zero to suppress warnings about IDCODE values that were found but not included in the list. Provide this value if at all possible, since it lets OpenOCD tell when the scan chain it sees isn't right. These values are provided in vendors' chip documentation, usually a technical reference manual. Sometimes you may need to probe the JTAG hardware to find these values. @xref{Autoprobing}. @item @code{-ignore-version} @*Specify this to ignore the JTAG version field in the @code{-expected-id} option. When vendors put out multiple versions of a chip, or use the same JTAG-level ID for several largely-compatible chips, it may be more practical to ignore the version field than to update config files to handle all of the various chip IDs. @item @code{-ircapture} @var{NUMBER} @*The bit pattern loaded by the TAP into the JTAG shift register on entry to the @sc{ircapture} state, such as 0x01. JTAG requires the two LSBs of this value to be 01. By default, @code{-ircapture} and @code{-irmask} are set up to verify that two-bit value. You may provide additional bits, if you know them, or indicate that a TAP doesn't conform to the JTAG specification. @item @code{-irmask} @var{NUMBER} @*A mask used with @code{-ircapture} to verify that instruction scans work correctly. Such scans are not used by OpenOCD except to verify that there seems to be no problems with JTAG scan chain operations. @end itemize @end deffn @section Other TAP commands @deffn Command {jtag cget} dotted.name @option{-event} name @deffnx Command {jtag configure} dotted.name @option{-event} name string At this writing this TAP attribute mechanism is used only for event handling. (It is not a direct analogue of the @code{cget}/@code{configure} mechanism for debugger targets.) See the next section for information about the available events. The @code{configure} subcommand assigns an event handler, a TCL string which is evaluated when the event is triggered. The @code{cget} subcommand returns that handler. @end deffn @anchor{TAP Events} @section TAP Events @cindex events @cindex TAP events OpenOCD includes two event mechanisms. The one presented here applies to all JTAG TAPs. The other applies to debugger targets, which are associated with certain TAPs. The TAP events currently defined are: @itemize @bullet @item @b{post-reset} @* The TAP has just completed a JTAG reset. The tap may still be in the JTAG @sc{reset} state. Handlers for these events might perform initialization sequences such as issuing TCK cycles, TMS sequences to ensure exit from the ARM SWD mode, and more. Because the scan chain has not yet been verified, handlers for these events @emph{should not issue commands which scan the JTAG IR or DR registers} of any particular target. @b{NOTE:} As this is written (September 2009), nothing prevents such access. @item @b{setup} @* The scan chain has been reset and verified. This handler may enable TAPs as needed. @item @b{tap-disable} @* The TAP needs to be disabled. This handler should implement @command{jtag tapdisable} by issuing the relevant JTAG commands. @item @b{tap-enable} @* The TAP needs to be enabled. This handler should implement @command{jtag tapenable} by issuing the relevant JTAG commands. @end itemize If you need some action after each JTAG reset, which isn't actually specific to any TAP (since you can't yet trust the scan chain's contents to be accurate), you might: @example jtag configure CHIP.jrc -event post-reset @{ echo "JTAG Reset done" ... non-scan jtag operations to be done after reset @} @end example @anchor{Enabling and Disabling TAPs} @section Enabling and Disabling TAPs @cindex JTAG Route Controller @cindex jrc In some systems, a @dfn{JTAG Route Controller} (JRC) is used to enable and/or disable specific JTAG TAPs. Many ARM based chips from Texas Instruments include an ``ICEpick'' module, which is a JRC. Such chips include DaVinci and OMAP3 processors. A given TAP may not be visible until the JRC has been told to link it into the scan chain; and if the JRC has been told to unlink that TAP, it will no longer be visible. Such routers address problems that JTAG ``bypass mode'' ignores, such as: @itemize @item The scan chain can only go as fast as its slowest TAP. @item Having many TAPs slows instruction scans, since all TAPs receive new instructions. @item TAPs in the scan chain must be powered up, which wastes power and prevents debugging some power management mechanisms. @end itemize The IEEE 1149.1 JTAG standard has no concept of a ``disabled'' tap, as implied by the existence of JTAG routers. However, the upcoming IEEE 1149.7 framework (layered on top of JTAG) does include a kind of JTAG router functionality. @c (a) currently the event handlers don't seem to be able to @c fail in a way that could lead to no-change-of-state. In OpenOCD, tap enabling/disabling is invoked by the Tcl commands shown below, and is implemented using TAP event handlers. So for example, when defining a TAP for a CPU connected to a JTAG router, your @file{target.cfg} file should define TAP event handlers using code that looks something like this: @example jtag configure CHIP.cpu -event tap-enable @{ ... jtag operations using CHIP.jrc @} jtag configure CHIP.cpu -event tap-disable @{ ... jtag operations using CHIP.jrc @} @end example Then you might want that CPU's TAP enabled almost all the time: @example jtag configure $CHIP.jrc -event setup "jtag tapenable $CHIP.cpu" @end example Note how that particular setup event handler declaration uses quotes to evaluate @code{$CHIP} when the event is configured. Using brackets @{ @} would cause it to be evaluated later, at runtime, when it might have a different value. @deffn Command {jtag tapdisable} dotted.name If necessary, disables the tap by sending it a @option{tap-disable} event. Returns the string "1" if the tap specified by @var{dotted.name} is enabled, and "0" if it is disabled. @end deffn @deffn Command {jtag tapenable} dotted.name If necessary, enables the tap by sending it a @option{tap-enable} event. Returns the string "1" if the tap specified by @var{dotted.name} is enabled, and "0" if it is disabled. @end deffn @deffn Command {jtag tapisenabled} dotted.name Returns the string "1" if the tap specified by @var{dotted.name} is enabled, and "0" if it is disabled. @quotation Note Humans will find the @command{scan_chain} command more helpful for querying the state of the JTAG taps. @end quotation @end deffn @anchor{Autoprobing} @section Autoprobing @cindex autoprobe @cindex JTAG autoprobe TAP configuration is the first thing that needs to be done after interface and reset configuration. Sometimes it's hard finding out what TAPs exist, or how they are identified. Vendor documentation is not always easy to find and use. To help you get past such problems, OpenOCD has a limited @emph{autoprobing} ability to look at the scan chain, doing a @dfn{blind interrogation} and then reporting the TAPs it finds. To use this mechanism, start the OpenOCD server with only data that configures your JTAG interface, and arranges to come up with a slow clock (many devices don't support fast JTAG clocks right when they come out of reset). For example, your @file{openocd.cfg} file might have: @example source [find interface/olimex-arm-usb-tiny-h.cfg] reset_config trst_and_srst jtag_rclk 8 @end example When you start the server without any TAPs configured, it will attempt to autoconfigure the TAPs. There are two parts to this: @enumerate @item @emph{TAP discovery} ... After a JTAG reset (sometimes a system reset may be needed too), each TAP's data registers will hold the contents of either the IDCODE or BYPASS register. If JTAG communication is working, OpenOCD will see each TAP, and report what @option{-expected-id} to use with it. @item @emph{IR Length discovery} ... Unfortunately JTAG does not provide a reliable way to find out the value of the @option{-irlen} parameter to use with a TAP that is discovered. If OpenOCD can discover the length of a TAP's instruction register, it will report it. Otherwise you may need to consult vendor documentation, such as chip data sheets or BSDL files. @end enumerate In many cases your board will have a simple scan chain with just a single device. Here's what OpenOCD reported with one board that's a bit more complex: @example clock speed 8 kHz There are no enabled taps. AUTO PROBING MIGHT NOT WORK!! AUTO auto0.tap - use "jtag newtap auto0 tap -expected-id 0x2b900f0f ..." AUTO auto1.tap - use "jtag newtap auto1 tap -expected-id 0x07926001 ..." AUTO auto2.tap - use "jtag newtap auto2 tap -expected-id 0x0b73b02f ..." AUTO auto0.tap - use "... -irlen 4" AUTO auto1.tap - use "... -irlen 4" AUTO auto2.tap - use "... -irlen 6" no gdb ports allocated as no target has been specified @end example Given that information, you should be able to either find some existing config files to use, or create your own. If you create your own, you would configure from the bottom up: first a @file{target.cfg} file with these TAPs, any targets associated with them, and any on-chip resources; then a @file{board.cfg} with off-chip resources, clocking, and so forth. @node CPU Configuration @chapter CPU Configuration @cindex GDB target This chapter discusses how to set up GDB debug targets for CPUs. You can also access these targets without GDB (@pxref{Architecture and Core Commands}, and @ref{Target State handling}) and through various kinds of NAND and NOR flash commands. If you have multiple CPUs you can have multiple such targets. We'll start by looking at how to examine the targets you have, then look at how to add one more target and how to configure it. @section Target List @cindex target, current @cindex target, list All targets that have been set up are part of a list, where each member has a name. That name should normally be the same as the TAP name. You can display the list with the @command{targets} (plural!) command. This display often has only one CPU; here's what it might look like with more than one: @verbatim TargetName Type Endian TapName State -- ------------------ ---------- ------ ------------------ ------------ 0* at91rm9200.cpu arm920t little at91rm9200.cpu running 1 MyTarget cortex_m3 little mychip.foo tap-disabled @end verbatim One member of that list is the @dfn{current target}, which is implicitly referenced by many commands. It's the one marked with a @code{*} near the target name. In particular, memory addresses often refer to the address space seen by that current target. Commands like @command{mdw} (memory display words) and @command{flash erase_address} (erase NOR flash blocks) are examples; and there are many more. Several commands let you examine the list of targets: @deffn Command {target count} @emph{Note: target numbers are deprecated; don't use them. They will be removed shortly after August 2010, including this command. Iterate target using @command{target names}, not by counting.} Returns the number of targets, @math{N}. The highest numbered target is @math{N - 1}. @example set c [target count] for @{ set x 0 @} @{ $x < $c @} @{ incr x @} @{ # Assuming you have created this function print_target_details $x @} @end example @end deffn @deffn Command {target current} Returns the name of the current target. @end deffn @deffn Command {target names} Lists the names of all current targets in the list. @example foreach t [target names] @{ puts [format "Target: %s\n" $t] @} @end example @end deffn @deffn Command {target number} number @emph{Note: target numbers are deprecated; don't use them. They will be removed shortly after August 2010, including this command.} The list of targets is numbered starting at zero. This command returns the name of the target at index @var{number}. @example set thename [target number $x] puts [format "Target %d is: %s\n" $x $thename] @end example @end deffn @c yep, "target list" would have been better. @c plus maybe "target setdefault". @deffn Command targets [name] @emph{Note: the name of this command is plural. Other target command names are singular.} With no parameter, this command displays a table of all known targets in a user friendly form. With a parameter, this command sets the current target to the given target with the given @var{name}; this is only relevant on boards which have more than one target. @end deffn @section Target CPU Types and Variants @cindex target type @cindex CPU type @cindex CPU variant Each target has a @dfn{CPU type}, as shown in the output of the @command{targets} command. You need to specify that type when calling @command{target create}. The CPU type indicates more than just the instruction set. It also indicates how that instruction set is implemented, what kind of debug support it integrates, whether it has an MMU (and if so, what kind), what core-specific commands may be available (@pxref{Architecture and Core Commands}), and more. For some CPU types, OpenOCD also defines @dfn{variants} which indicate differences that affect their handling. For example, a particular implementation bug might need to be worked around in some chip versions. It's easy to see what target types are supported, since there's a command to list them. However, there is currently no way to list what target variants are supported (other than by reading the OpenOCD source code). @anchor{target types} @deffn Command {target types} Lists all supported target types. At this writing, the supported CPU types and variants are: @itemize @bullet @item @code{arm11} -- this is a generation of ARMv6 cores @item @code{arm720t} -- this is an ARMv4 core with an MMU @item @code{arm7tdmi} -- this is an ARMv4 core @item @code{arm920t} -- this is an ARMv5 core with an MMU @item @code{arm926ejs} -- this is an ARMv5 core with an MMU @item @code{arm966e} -- this is an ARMv5 core @item @code{arm9tdmi} -- this is an ARMv4 core @item @code{avr} -- implements Atmel's 8-bit AVR instruction set. (Support for this is preliminary and incomplete.) @item @code{cortex_a8} -- this is an ARMv7 core with an MMU @item @code{cortex_m3} -- this is an ARMv7 core, supporting only the compact Thumb2 instruction set. It supports one variant: @itemize @minus @item @code{lm3s} ... Use this when debugging older Stellaris LM3S targets. This will cause OpenOCD to use a software reset rather than asserting SRST, to avoid a issue with clearing the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest; these revisions will be detected and the normal reset behaviour used. @end itemize @item @code{dragonite} -- resembles arm966e @item @code{dsp563xx} -- implements Freescale's 24-bit DSP. (Support for this is still incomplete.) @item @code{fa526} -- resembles arm920 (w/o Thumb) @item @code{feroceon} -- resembles arm926 @item @code{mips_m4k} -- a MIPS core. This supports one variant: @itemize @minus @item @code{ejtag_srst} ... Use this when debugging targets that do not provide a functional SRST line on the EJTAG connector. This causes OpenOCD to instead use an EJTAG software reset command to reset the processor. You still need to enable @option{srst} on the @command{reset_config} command to enable OpenOCD hardware reset functionality. @end itemize @item @code{xscale} -- this is actually an architecture, not a CPU type. It is based on the ARMv5 architecture. There are several variants defined: @itemize @minus @item @code{ixp42x}, @code{ixp45x}, @code{ixp46x}, @code{pxa27x} ... instruction register length is 7 bits @item @code{pxa250}, @code{pxa255}, @code{pxa26x} ... instruction register length is 5 bits @item @code{pxa3xx} ... instruction register length is 11 bits @end itemize @end itemize @end deffn To avoid being confused by the variety of ARM based cores, remember this key point: @emph{ARM is a technology licencing company}. (See: @url{http://www.arm.com}.) The CPU name used by OpenOCD will reflect the CPU design that was licenced, not a vendor brand which incorporates that design. Name prefixes like arm7, arm9, arm11, and cortex reflect design generations; while names like ARMv4, ARMv5, ARMv6, and ARMv7 reflect an architecture version implemented by a CPU design. @anchor{Target Configuration} @section Target Configuration Before creating a ``target'', you must have added its TAP to the scan chain. When you've added that TAP, you will have a @code{dotted.name} which is used to set up the CPU support. The chip-specific configuration file will normally configure its CPU(s) right after it adds all of the chip's TAPs to the scan chain. Although you can set up a target in one step, it's often clearer if you use shorter commands and do it in two steps: create it, then configure optional parts. All operations on the target after it's created will use a new command, created as part of target creation. The two main things to configure after target creation are a work area, which usually has target-specific defaults even if the board setup code overrides them later; and event handlers (@pxref{Target Events}), which tend to be much more board-specific. The key steps you use might look something like this @example target create MyTarget cortex_m3 -chain-position mychip.cpu $MyTarget configure -work-area-phys 0x08000 -work-area-size 8096 $MyTarget configure -event reset-deassert-pre @{ jtag_rclk 5 @} $MyTarget configure -event reset-init @{ myboard_reinit @} @end example You should specify a working area if you can; typically it uses some on-chip SRAM. Such a working area can speed up many things, including bulk writes to target memory; flash operations like checking to see if memory needs to be erased; GDB memory checksumming; and more. @quotation Warning On more complex chips, the work area can become inaccessible when application code (such as an operating system) enables or disables the MMU. For example, the particular MMU context used to acess the virtual address will probably matter ... and that context might not have easy access to other addresses needed. At this writing, OpenOCD doesn't have much MMU intelligence. @end quotation It's often very useful to define a @code{reset-init} event handler. For systems that are normally used with a boot loader, common tasks include updating clocks and initializing memory controllers. That may be needed to let you write the boot loader into flash, in order to ``de-brick'' your board; or to load programs into external DDR memory without having run the boot loader. @deffn Command {target create} target_name type configparams... This command creates a GDB debug target that refers to a specific JTAG tap. It enters that target into a list, and creates a new command (@command{@var{target_name}}) which is used for various purposes including additional configuration. @itemize @bullet @item @var{target_name} ... is the name of the debug target. By convention this should be the same as the @emph{dotted.name} of the TAP associated with this target, which must be specified here using the @code{-chain-position @var{dotted.name}} configparam. This name is also used to create the target object command, referred to here as @command{$target_name}, and in other places the target needs to be identified. @item @var{type} ... specifies the target type. @xref{target types}. @item @var{configparams} ... all parameters accepted by @command{$target_name configure} are permitted. If the target is big-endian, set it here with @code{-endian big}. If the variant matters, set it here with @code{-variant}. You @emph{must} set the @code{-chain-position @var{dotted.name}} here. @end itemize @end deffn @deffn Command {$target_name configure} configparams... The options accepted by this command may also be specified as parameters to @command{target create}. Their values can later be queried one at a time by using the @command{$target_name cget} command. @emph{Warning:} changing some of these after setup is dangerous. For example, moving a target from one TAP to another; and changing its endianness or variant. @itemize @bullet @item @code{-chain-position} @var{dotted.name} -- names the TAP used to access this target. @item @code{-endian} (@option{big}|@option{little}) -- specifies whether the CPU uses big or little endian conventions @item @code{-event} @var{event_name} @var{event_body} -- @xref{Target Events}. Note that this updates a list of named event handlers. Calling this twice with two different event names assigns two different handlers, but calling it twice with the same event name assigns only one handler. @item @code{-variant} @var{name} -- specifies a variant of the target, which OpenOCD needs to know about. @item @code{-work-area-backup} (@option{0}|@option{1}) -- says whether the work area gets backed up; by default, @emph{it is not backed up.} When possible, use a working_area that doesn't need to be backed up, since performing a backup slows down operations. For example, the beginning of an SRAM block is likely to be used by most build systems, but the end is often unused. @item @code{-work-area-size} @var{size} -- specify work are size, in bytes. The same size applies regardless of whether its physical or virtual address is being used. @item @code{-work-area-phys} @var{address} -- set the work area base @var{address} to be used when no MMU is active. @item @code{-work-area-virt} @var{address} -- set the work area base @var{address} to be used when an MMU is active. @emph{Do not specify a value for this except on targets with an MMU.} The value should normally correspond to a static mapping for the @code{-work-area-phys} address, set up by the current operating system. @end itemize @end deffn @section Other $target_name Commands @cindex object command The Tcl/Tk language has the concept of object commands, and OpenOCD adopts that same model for targets. A good Tk example is a on screen button. Once a button is created a button has a name (a path in Tk terms) and that name is useable as a first class command. For example in Tk, one can create a button and later configure it like this: @example # Create button .foobar -background red -command @{ foo @} # Modify .foobar configure -foreground blue # Query set x [.foobar cget -background] # Report puts [format "The button is %s" $x] @end example In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk button, and its object commands are invoked the same way. @example str912.cpu mww 0x1234 0x42 omap3530.cpu mww 0x5555 123 @end example The commands supported by OpenOCD target objects are: @deffn Command {$target_name arp_examine} @deffnx Command {$target_name arp_halt} @deffnx Command {$target_name arp_poll} @deffnx Command {$target_name arp_reset} @deffnx Command {$target_name arp_waitstate} Internal OpenOCD scripts (most notably @file{startup.tcl}) use these to deal with specific reset cases. They are not otherwise documented here. @end deffn @deffn Command {$target_name array2mem} arrayname width address count @deffnx Command {$target_name mem2array} arrayname width address count These provide an efficient script-oriented interface to memory. The @code{array2mem} primitive writes bytes, halfwords, or words; while @code{mem2array} reads them. In both cases, the TCL side uses an array, and the target side uses raw memory. The efficiency comes from enabling the use of bulk JTAG data transfer operations. The script orientation comes from working with data values that are packaged for use by TCL scripts; @command{mdw} type primitives only print data they retrieve, and neither store nor return those values. @itemize @item @var{arrayname} ... is the name of an array variable @item @var{width} ... is 8/16/32 - indicating the memory access size @item @var{address} ... is the target memory address @item @var{count} ... is the number of elements to process @end itemize @end deffn @deffn Command {$target_name cget} queryparm Each configuration parameter accepted by @command{$target_name configure} can be individually queried, to return its current value. The @var{queryparm} is a parameter name accepted by that command, such as @code{-work-area-phys}. There are a few special cases: @itemize @bullet @item @code{-event} @var{event_name} -- returns the handler for the event named @var{event_name}. This is a special case because setting a handler requires two parameters. @item @code{-type} -- returns the target type. This is a special case because this is set using @command{target create} and can't be changed using @command{$target_name configure}. @end itemize For example, if you wanted to summarize information about all the targets you might use something like this: @example foreach name [target names] @{ set y [$name cget -endian] set z [$name cget -type] puts [format "Chip %d is %s, Endian: %s, type: %s" \ $x $name $y $z] @} @end example @end deffn @anchor{target curstate} @deffn Command {$target_name curstate} Displays the current target state: @code{debug-running}, @code{halted}, @code{reset}, @code{running}, or @code{unknown}. (Also, @pxref{Event Polling}.) @end deffn @deffn Command {$target_name eventlist} Displays a table listing all event handlers currently associated with this target. @xref{Target Events}. @end deffn @deffn Command {$target_name invoke-event} event_name Invokes the handler for the event named @var{event_name}. (This is primarily intended for use by OpenOCD framework code, for example by the reset code in @file{startup.tcl}.) @end deffn @deffn Command {$target_name mdw} addr [count] @deffnx Command {$target_name mdh} addr [count] @deffnx Command {$target_name mdb} addr [count] Display contents of address @var{addr}, as 32-bit words (@command{mdw}), 16-bit halfwords (@command{mdh}), or 8-bit bytes (@command{mdb}). If @var{count} is specified, displays that many units. (If you want to manipulate the data instead of displaying it, see the @code{mem2array} primitives.) @end deffn @deffn Command {$target_name mww} addr word @deffnx Command {$target_name mwh} addr halfword @deffnx Command {$target_name mwb} addr byte Writes the specified @var{word} (32 bits), @var{halfword} (16 bits), or @var{byte} (8-bit) pattern, at the specified address @var{addr}. @end deffn @anchor{Target Events} @section Target Events @cindex target events @cindex events At various times, certain things can happen, or you want them to happen. For example: @itemize @bullet @item What should happen when GDB connects? Should your target reset? @item When GDB tries to flash the target, do you need to enable the flash via a special command? @item Is using SRST appropriate (and possible) on your system? Or instead of that, do you need to issue JTAG commands to trigger reset? SRST usually resets everything on the scan chain, which can be inappropriate. @item During reset, do you need to write to certain memory locations to set up system clocks or to reconfigure the SDRAM? How about configuring the watchdog timer, or other peripherals, to stop running while you hold the core stopped for debugging? @end itemize All of the above items can be addressed by target event handlers. These are set up by @command{$target_name configure -event} or @command{target create ... -event}. The programmer's model matches the @code{-command} option used in Tcl/Tk buttons and events. The two examples below act the same, but one creates and invokes a small procedure while the other inlines it. @example proc my_attach_proc @{ @} @{ echo "Reset..." reset halt @} mychip.cpu configure -event gdb-attach my_attach_proc mychip.cpu configure -event gdb-attach @{ echo "Reset..." reset halt @} @end example The following target events are defined: @itemize @bullet @item @b{debug-halted} @* The target has halted for debug reasons (i.e.: breakpoint) @item @b{debug-resumed} @* The target has resumed (i.e.: gdb said run) @item @b{early-halted} @* Occurs early in the halt process @ignore @item @b{examine-end} @* Currently not used (goal: when JTAG examine completes) @item @b{examine-start} @* Currently not used (goal: when JTAG examine starts) @end ignore @item @b{gdb-attach} @* When GDB connects @item @b{gdb-detach} @* When GDB disconnects @item @b{gdb-end} @* When the target has halted and GDB is not doing anything (see early halt) @item @b{gdb-flash-erase-start} @* Before the GDB flash process tries to erase the flash @item @b{gdb-flash-erase-end} @* After the GDB flash process has finished erasing the flash @item @b{gdb-flash-write-start} @* Before GDB writes to the flash @item @b{gdb-flash-write-end} @* After GDB writes to the flash @item @b{gdb-start} @* Before the target steps, gdb is trying to start/resume the target @item @b{halted} @* The target has halted @ignore @item @b{old-gdb_program_config} @* DO NOT USE THIS: Used internally @item @b{old-pre_resume} @* DO NOT USE THIS: Used internally @end ignore @item @b{reset-assert-pre} @* Issued as part of @command{reset} processing after @command{reset_init} was triggered but before either SRST alone is re-asserted on the scan chain, or @code{reset-assert} is triggered. @item @b{reset-assert} @* Issued as part of @command{reset} processing after @command{reset-assert-pre} was triggered. When such a handler is present, cores which support this event will use it instead of asserting SRST. This support is essential for debugging with JTAG interfaces which don't include an SRST line (JTAG doesn't require SRST), and for selective reset on scan chains that have multiple targets. @item @b{reset-assert-post} @* Issued as part of @command{reset} processing after @code{reset-assert} has been triggered. or the target asserted SRST on the entire scan chain. @item @b{reset-deassert-pre} @* Issued as part of @command{reset} processing after @code{reset-assert-post} has been triggered. @item @b{reset-deassert-post} @* Issued as part of @command{reset} processing after @code{reset-deassert-pre} has been triggered and (if the target is using it) after SRST has been released on the scan chain. @item @b{reset-end} @* Issued as the final step in @command{reset} processing. @ignore @item @b{reset-halt-post} @* Currently not used @item @b{reset-halt-pre} @* Currently not used @end ignore @item @b{reset-init} @* Used by @b{reset init} command for board-specific initialization. This event fires after @emph{reset-deassert-post}. This is where you would configure PLLs and clocking, set up DRAM so you can download programs that don't fit in on-chip SRAM, set up pin multiplexing, and so on. (You may be able to switch to a fast JTAG clock rate here, after the target clocks are fully set up.) @item @b{reset-start} @* Issued as part of @command{reset} processing before @command{reset_init} is called. This is the most robust place to use @command{jtag_rclk} or @command{jtag_khz} to switch to a low JTAG clock rate, when reset disables PLLs needed to use a fast clock. @ignore @item @b{reset-wait-pos} @* Currently not used @item @b{reset-wait-pre} @* Currently not used @end ignore @item @b{resume-start} @* Before any target is resumed @item @b{resume-end} @* After all targets have resumed @item @b{resume-ok} @* Success @item @b{resumed} @* Target has resumed @end itemize @node Flash Commands @chapter Flash Commands OpenOCD has different commands for NOR and NAND flash; the ``flash'' command works with NOR flash, while the ``nand'' command works with NAND flash. This partially reflects different hardware technologies: NOR flash usually supports direct CPU instruction and data bus access, while data from a NAND flash must be copied to memory before it can be used. (SPI flash must also be copied to memory before use.) However, the documentation also uses ``flash'' as a generic term; for example, ``Put flash configuration in board-specific files''. Flash Steps: @enumerate @item Configure via the command @command{flash bank} @* Do this in a board-specific configuration file, passing parameters as needed by the driver. @item Operate on the flash via @command{flash subcommand} @* Often commands to manipulate the flash are typed by a human, or run via a script in some automated way. Common tasks include writing a boot loader, operating system, or other data. @item GDB Flashing @* Flashing via GDB requires the flash be configured via ``flash bank'', and the GDB flash features be enabled. @xref{GDB Configuration}. @end enumerate Many CPUs have the ablity to ``boot'' from the first flash bank. This means that misprogramming that bank can ``brick'' a system, so that it can't boot. JTAG tools, like OpenOCD, are often then used to ``de-brick'' the board by (re)installing working boot firmware. @anchor{NOR Configuration} @section Flash Configuration Commands @cindex flash configuration @deffn {Config Command} {flash bank} name driver base size chip_width bus_width target [driver_options] Configures a flash bank which provides persistent storage for addresses from @math{base} to @math{base + size - 1}. These banks will often be visible to GDB through the target's memory map. In some cases, configuring a flash bank will activate extra commands; see the driver-specific documentation. @itemize @bullet @item @var{name} ... may be used to reference the flash bank in other flash commands. A number is also available. @item @var{driver} ... identifies the controller driver associated with the flash bank being declared. This is usually @code{cfi} for external flash, or else the name of a microcontroller with embedded flash memory. @xref{Flash Driver List}. @item @var{base} ... Base address of the flash chip. @item @var{size} ... Size of the chip, in bytes. For some drivers, this value is detected from the hardware. @item @var{chip_width} ... Width of the flash chip, in bytes; ignored for most microcontroller drivers. @item @var{bus_width} ... Width of the data bus used to access the chip, in bytes; ignored for most microcontroller drivers. @item @var{target} ... Names the target used to issue commands to the flash controller. @comment Actually, it's currently a controller-specific parameter... @item @var{driver_options} ... drivers may support, or require, additional parameters. See the driver-specific documentation for more information. @end itemize @quotation Note This command is not available after OpenOCD initialization has completed. Use it in board specific configuration files, not interactively. @end quotation @end deffn @comment the REAL name for this command is "ocd_flash_banks" @comment less confusing would be: "flash list" (like "nand list") @deffn Command {flash banks} Prints a one-line summary of each device that was declared using @command{flash bank}, numbered from zero. Note that this is the @emph{plural} form; the @emph{singular} form is a very different command. @end deffn @deffn Command {flash list} Retrieves a list of associative arrays for each device that was declared using @command{flash bank}, numbered from zero. This returned list can be manipulated easily from within scripts. @end deffn @deffn Command {flash probe} num Identify the flash, or validate the parameters of the configured flash. Operation depends on the flash type. The @var{num} parameter is a value shown by @command{flash banks}. Most flash commands will implicitly @emph{autoprobe} the bank; flash drivers can distinguish between probing and autoprobing, but most don't bother. @end deffn @section Erasing, Reading, Writing to Flash @cindex flash erasing @cindex flash reading @cindex flash writing @cindex flash programming One feature distinguishing NOR flash from NAND or serial flash technologies is that for read access, it acts exactly like any other addressible memory. This means you can use normal memory read commands like @command{mdw} or @command{dump_image} with it, with no special @command{flash} subcommands. @xref{Memory access}, and @ref{Image access}. Write access works differently. Flash memory normally needs to be erased before it's written. Erasing a sector turns all of its bits to ones, and writing can turn ones into zeroes. This is why there are special commands for interactive erasing and writing, and why GDB needs to know which parts of the address space hold NOR flash memory. @quotation Note Most of these erase and write commands leverage the fact that NOR flash chips consume target address space. They implicitly refer to the current JTAG target, and map from an address in that target's address space back to a flash bank. @comment In May 2009, those mappings may fail if any bank associated @comment with that target doesn't succesfuly autoprobe ... bug worth fixing? A few commands use abstract addressing based on bank and sector numbers, and don't depend on searching the current target and its address space. Avoid confusing the two command models. @end quotation Some flash chips implement software protection against accidental writes, since such buggy writes could in some cases ``brick'' a system. For such systems, erasing and writing may require sector protection to be disabled first. Examples include CFI flash such as ``Intel Advanced Bootblock flash'', and AT91SAM7 on-chip flash. @xref{flash protect}. @anchor{flash erase_sector} @deffn Command {flash erase_sector} num first last Erase sectors in bank @var{num}, starting at sector @var{first} up to and including @var{last}. Sector numbering starts at 0. Providing a @var{last} sector of @option{last} specifies "to the end of the flash bank". The @var{num} parameter is a value shown by @command{flash banks}. @end deffn @deffn Command {flash erase_address} [@option{pad}] address length Erase sectors starting at @var{address} for @var{length} bytes. Unless @option{pad} is specified, @math{address} must begin a flash sector, and @math{address + length - 1} must end a sector. Specifying @option{pad} erases extra data at the beginning and/or end of the specified region, as needed to erase only full sectors. The flash bank to use is inferred from the @var{address}, and the specified length must stay within that bank. As a special case, when @var{length} is zero and @var{address} is the start of the bank, the whole flash is erased. @end deffn @deffn Command {flash fillw} address word length @deffnx Command {flash fillh} address halfword length @deffnx Command {flash fillb} address byte length Fills flash memory with the specified @var{word} (32 bits), @var{halfword} (16 bits), or @var{byte} (8-bit) pattern, starting at @var{address} and continuing for @var{length} units (word/halfword/byte). No erasure is done before writing; when needed, that must be done before issuing this command. Writes are done in blocks of up to 1024 bytes, and each write is verified by reading back the data and comparing it to what was written. The flash bank to use is inferred from the @var{address} of each block, and the specified length must stay within that bank. @end deffn @comment no current checks for errors if fill blocks touch multiple banks! @anchor{flash write_bank} @deffn Command {flash write_bank} num filename offset Write the binary @file{filename} to flash bank @var{num}, starting at @var{offset} bytes from the beginning of the bank. The @var{num} parameter is a value shown by @command{flash banks}. @end deffn @anchor{flash write_image} @deffn Command {flash write_image} [erase] [unlock] filename [offset] [type] Write the image @file{filename} to the current target's flash bank(s). A relocation @var{offset} may be specified, in which case it is added to the base address for each section in the image. The file [@var{type}] can be specified explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf} (ELF file), @option{s19} (Motorola s19). @option{mem}, or @option{builder}. The relevant flash sectors will be erased prior to programming if the @option{erase} parameter is given. If @option{unlock} is provided, then the flash banks are unlocked before erase and program. The flash bank to use is inferred from the address of each image section. @quotation Warning Be careful using the @option{erase} flag when the flash is holding data you want to preserve. Portions of the flash outside those described in the image's sections might be erased with no notice. @itemize @item When a section of the image being written does not fill out all the sectors it uses, the unwritten parts of those sectors are necessarily also erased, because sectors can't be partially erased. @item Data stored in sector "holes" between image sections are also affected. For example, "@command{flash write_image erase ...}" of an image with one byte at the beginning of a flash bank and one byte at the end erases the entire bank -- not just the two sectors being written. @end itemize Also, when flash protection is important, you must re-apply it after it has been removed by the @option{unlock} flag. @end quotation @end deffn @section Other Flash commands @cindex flash protection @deffn Command {flash erase_check} num Check erase state of sectors in flash bank @var{num}, and display that status. The @var{num} parameter is a value shown by @command{flash banks}. This is the only operation that updates the erase state information displayed by @option{flash info}. That means you have to issue a @command{flash erase_check} command after erasing or programming the device to get updated information. (Code execution may have invalidated any state records kept by OpenOCD.) @end deffn @deffn Command {flash info} num Print info about flash bank @var{num} The @var{num} parameter is a value shown by @command{flash banks}. The information includes per-sector protect status. @end deffn @anchor{flash protect} @deffn Command {flash protect} num first last (@option{on}|@option{off}) Enable (@option{on}) or disable (@option{off}) protection of flash sectors in flash bank @var{num}, starting at sector @var{first} and continuing up to and including @var{last}. Providing a @var{last} sector of @option{last} specifies "to the end of the flash bank". The @var{num} parameter is a value shown by @command{flash banks}. @end deffn @deffn Command {flash protect_check} num Check protection state of sectors in flash bank @var{num}. The @var{num} parameter is a value shown by @command{flash banks}. @comment @option{flash erase_sector} using the same syntax. @end deffn @anchor{Flash Driver List} @section Flash Driver List As noted above, the @command{flash bank} command requires a driver name, and allows driver-specific options and behaviors. Some drivers also activate driver-specific commands. @subsection External Flash @deffn {Flash Driver} cfi @cindex Common Flash Interface @cindex CFI The ``Common Flash Interface'' (CFI) is the main standard for external NOR flash chips, each of which connects to a specific external chip select on the CPU. Frequently the first such chip is used to boot the system. Your board's @code{reset-init} handler might need to configure additional chip selects using other commands (like: @command{mww} to configure a bus and its timings), or perhaps configure a GPIO pin that controls the ``write protect'' pin on the flash chip. The CFI driver can use a target-specific working area to significantly speed up operation. The CFI driver can accept the following optional parameters, in any order: @itemize @item @var{jedec_probe} ... is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types. @item @var{x16_as_x8} ... when a 16-bit flash is hooked up to an 8-bit bus. @end itemize To configure two adjacent banks of 16 MBytes each, both sixteen bits (two bytes) wide on a sixteen bit bus: @example flash bank cfi 0x00000000 0x01000000 2 2 $_TARGETNAME flash bank cfi 0x01000000 0x01000000 2 2 $_TARGETNAME @end example To configure one bank of 32 MBytes built from two sixteen bit (two byte) wide parts wired in parallel to create a thirty-two bit (four byte) bus with doubled throughput: @example flash bank cfi 0x00000000 0x02000000 2 4 $_TARGETNAME @end example @c "cfi part_id" disabled @end deffn @subsection Internal Flash (Microcontrollers) @deffn {Flash Driver} aduc702x The ADUC702x analog microcontrollers from Analog Devices include internal flash and use ARM7TDMI cores. The aduc702x flash driver works with models ADUC7019 through ADUC7028. The setup command only requires the @var{target} argument since all devices in this family have the same memory layout. @example flash bank aduc702x 0 0 0 0 $_TARGETNAME @end example @end deffn @deffn {Flash Driver} at91sam3 @cindex at91sam3 All members of the AT91SAM3 microcontroller family from Atmel include internal flash and use ARM's Cortex-M3 core. The driver currently (6/22/09) recognizes the AT91SAM3U[1/2/4][C/E] chips. Note that the driver was orginaly developed and tested using the AT91SAM3U4E, using a SAM3U-EK eval board. Support for other chips in the family was cribbed from the data sheet. @emph{Note to future readers/updaters: Please remove this worrysome comment after other chips are confirmed.} The AT91SAM3U4[E/C] (256K) chips have two flash banks; most other chips have one flash bank. In all cases the flash banks are at the following fixed locations: @example # Flash bank 0 - all chips flash bank at91sam3 0x00080000 0 1 1 $_TARGETNAME # Flash bank 1 - only 256K chips flash bank at91sam3 0x00100000 0 1 1 $_TARGETNAME @end example Internally, the AT91SAM3 flash memory is organized as follows. Unlike the AT91SAM7 chips, these are not used as parameters to the @command{flash bank} command: @itemize @item @emph{N-Banks:} 256K chips have 2 banks, others have 1 bank. @item @emph{Bank Size:} 128K/64K Per flash bank @item @emph{Sectors:} 16 or 8 per bank @item @emph{SectorSize:} 8K Per Sector @item @emph{PageSize:} 256 bytes per page. Note that OpenOCD operates on 'sector' sizes, not page sizes. @end itemize The AT91SAM3 driver adds some additional commands: @deffn Command {at91sam3 gpnvm} @deffnx Command {at91sam3 gpnvm clear} number @deffnx Command {at91sam3 gpnvm set} number @deffnx Command {at91sam3 gpnvm show} [@option{all}|number] With no parameters, @command{show} or @command{show all}, shows the status of all GPNVM bits. With @command{show} @var{number}, displays that bit. With @command{set} @var{number} or @command{clear} @var{number}, modifies that GPNVM bit. @end deffn @deffn Command {at91sam3 info} This command attempts to display information about the AT91SAM3 chip. @emph{First} it read the @code{CHIPID_CIDR} [address 0x400e0740, see Section 28.2.1, page 505 of the AT91SAM3U 29/may/2009 datasheet, document id: doc6430A] and decodes the values. @emph{Second} it reads the various clock configuration registers and attempts to display how it believes the chip is configured. By default, the SLOWCLK is assumed to be 32768 Hz, see the command @command{at91sam3 slowclk}. @end deffn @deffn Command {at91sam3 slowclk} [value] This command shows/sets the slow clock frequency used in the @command{at91sam3 info} command calculations above. @end deffn @end deffn @deffn {Flash Driver} at91sam7 All members of the AT91SAM7 microcontroller family from Atmel include internal flash and use ARM7TDMI cores. The driver automatically recognizes a number of these chips using the chip identification register, and autoconfigures itself. @example flash bank at91sam7 0 0 0 0 $_TARGETNAME @end example For chips which are not recognized by the controller driver, you must provide additional parameters in the following order: @itemize @item @var{chip_model} ... label used with @command{flash info} @item @var{banks} @item @var{sectors_per_bank} @item @var{pages_per_sector} @item @var{pages_size} @item @var{num_nvm_bits} @item @var{freq_khz} ... required if an external clock is provided, optional (but recommended) when the oscillator frequency is known @end itemize It is recommended that you provide zeroes for all of those values except the clock frequency, so that everything except that frequency will be autoconfigured. Knowing the frequency helps ensure correct timings for flash access. The flash controller handles erases automatically on a page (128/256 byte) basis, so explicit erase commands are not necessary for flash programming. However, there is an ``EraseAll`` command that can erase an entire flash plane (of up to 256KB), and it will be used automatically when you issue @command{flash erase_sector} or @command{flash erase_address} commands. @deffn Command {at91sam7 gpnvm} bitnum (@option{set}|@option{clear}) Set or clear a ``General Purpose Non-Volatile Memory'' (GPNVM) bit for the processor. Each processor has a number of such bits, used for controlling features such as brownout detection (so they are not truly general purpose). @quotation Note This assumes that the first flash bank (number 0) is associated with the appropriate at91sam7 target. @end quotation @end deffn @end deffn @deffn {Flash Driver} avr The AVR 8-bit microcontrollers from Atmel integrate flash memory. @emph{The current implementation is incomplete.} @comment - defines mass_erase ... pointless given flash_erase_address @end deffn @deffn {Flash Driver} ecosflash @emph{No idea what this is...} The @var{ecosflash} driver defines one mandatory parameter, the name of a modules of target code which is downloaded and executed. @end deffn @deffn {Flash Driver} lpc2000 Most members of the LPC1700 and LPC2000 microcontroller families from NXP include internal flash and use Cortex-M3 (LPC1700) or ARM7TDMI (LPC2000) cores. @quotation Note There are LPC2000 devices which are not supported by the @var{lpc2000} driver: The LPC2888 is supported by the @var{lpc288x} driver. The LPC29xx family is supported by the @var{lpc2900} driver. @end quotation The @var{lpc2000} driver defines two mandatory and one optional parameters, which must appear in the following order: @itemize @item @var{variant} ... required, may be @var{lpc2000_v1} (older LPC21xx and LPC22xx) @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx) or @var{lpc1700} (LPC175x and LPC176x) @item @var{clock_kHz} ... the frequency, in kiloHertz, at which the core is running @item @var{calc_checksum} ... optional (but you probably want to provide this!), telling the driver to calculate a valid checksum for the exception vector table. @end itemize LPC flashes don't require the chip and bus width to be specified. @example flash bank lpc2000 0x0 0x7d000 0 0 $_TARGETNAME \ lpc2000_v2 14765 calc_checksum @end example @deffn {Command} {lpc2000 part_id} bank Displays the four byte part identifier associated with the specified flash @var{bank}. @end deffn @end deffn @deffn {Flash Driver} lpc288x The LPC2888 microcontroller from NXP needs slightly different flash support from its lpc2000 siblings. The @var{lpc288x} driver defines one mandatory parameter, the programming clock rate in Hz. LPC flashes don't require the chip and bus width to be specified. @example flash bank lpc288x 0 0 0 0 $_TARGETNAME 12000000 @end example @end deffn @deffn {Flash Driver} lpc2900 This driver supports the LPC29xx ARM968E based microcontroller family from NXP. The predefined parameters @var{base}, @var{size}, @var{chip_width} and @var{bus_width} of the @code{flash bank} command are ignored. Flash size and sector layout are auto-configured by the driver. The driver has one additional mandatory parameter: The CPU clock rate (in kHz) at the time the flash operations will take place. Most of the time this will not be the crystal frequency, but a higher PLL frequency. The @code{reset-init} event handler in the board script is usually the place where you start the PLL. The driver rejects flashless devices (currently the LPC2930). The EEPROM in LPC2900 devices is not mapped directly into the address space. It must be handled much more like NAND flash memory, and will therefore be handled by a separate @code{lpc2900_eeprom} driver (not yet available). Sector protection in terms of the LPC2900 is handled transparently. Every time a sector needs to be erased or programmed, it is automatically unprotected. What is shown as protection status in the @code{flash info} command, is actually the LPC2900 @emph{sector security}. This is a mechanism to prevent a sector from ever being erased or programmed again. As this is an irreversible mechanism, it is handled by a special command (@code{lpc2900 secure_sector}), and not by the standard @code{flash protect} command. Example for a 125 MHz clock frequency: @example flash bank lpc2900 0 0 0 0 $_TARGETNAME 125000 @end example Some @code{lpc2900}-specific commands are defined. In the following command list, the @var{bank} parameter is the bank number as obtained by the @code{flash banks} command. @deffn Command {lpc2900 signature} bank Calculates a 128-bit hash value, the @emph{signature}, from the whole flash content. This is a hardware feature of the flash block, hence the calculation is very fast. You may use this to verify the content of a programmed device against a known signature. Example: @example lpc2900 signature 0 signature: 0x5f40cdc8:0xc64e592e:0x10490f89:0x32a0f317 @end example @end deffn @deffn Command {lpc2900 read_custom} bank filename Reads the 912 bytes of customer information from the flash index sector, and saves it to a file in binary format. Example: @example lpc2900 read_custom 0 /path_to/customer_info.bin @end example @end deffn The index sector of the flash is a @emph{write-only} sector. It cannot be erased! In order to guard against unintentional write access, all following commands need to be preceeded by a successful call to the @code{password} command: @deffn Command {lpc2900 password} bank password You need to use this command right before each of the following commands: @code{lpc2900 write_custom}, @code{lpc2900 secure_sector}, @code{lpc2900 secure_jtag}. The password string is fixed to "I_know_what_I_am_doing". Example: @example lpc2900 password 0 I_know_what_I_am_doing Potentially dangerous operation allowed in next command! @end example @end deffn @deffn Command {lpc2900 write_custom} bank filename type Writes the content of the file into the customer info space of the flash index sector. The filetype can be specified with the @var{type} field. Possible values for @var{type} are: @var{bin} (binary), @var{ihex} (Intel hex format), @var{elf} (ELF binary) or @var{s19} (Motorola S-records). The file must contain a single section, and the contained data length must be exactly 912 bytes. @quotation Attention This cannot be reverted! Be careful! @end quotation Example: @example lpc2900 write_custom 0 /path_to/customer_info.bin bin @end example @end deffn @deffn Command {lpc2900 secure_sector} bank first last Secures the sector range from @var{first} to @var{last} (including) against further program and erase operations. The sector security will be effective after the next power cycle. @quotation Attention This cannot be reverted! Be careful! @end quotation Secured sectors appear as @emph{protected} in the @code{flash info} command. Example: @example lpc2900 secure_sector 0 1 1 flash info 0 #0 : lpc2900 at 0x20000000, size 0x000c0000, (...) # 0: 0x00000000 (0x2000 8kB) not protected # 1: 0x00002000 (0x2000 8kB) protected # 2: 0x00004000 (0x2000 8kB) not protected @end example @end deffn @deffn Command {lpc2900 secure_jtag} bank Irreversibly disable the JTAG port. The new JTAG security setting will be effective after the next power cycle. @quotation Attention This cannot be reverted! Be careful! @end quotation Examples: @example lpc2900 secure_jtag 0 @end example @end deffn @end deffn @deffn {Flash Driver} ocl @emph{No idea what this is, other than using some arm7/arm9 core.} @example flash bank ocl 0 0 0 0 $_TARGETNAME @end example @end deffn @deffn {Flash Driver} pic32mx The PIC32MX microcontrollers are based on the MIPS 4K cores, and integrate flash memory. @emph{The current implementation is incomplete.} @example flash bank pix32mx 0 0 0 0 $_TARGETNAME @end example @comment numerous *disabled* commands are defined: @comment - chip_erase ... pointless given flash_erase_address @comment - lock, unlock ... pointless given protect on/off (yes?) @comment - pgm_word ... shouldn't bank be deduced from address?? Some pic32mx-specific commands are defined: @deffn Command {pic32mx pgm_word} address value bank Programs the specified 32-bit @var{value} at the given @var{address} in the specified chip @var{bank}. @end deffn @end deffn @deffn {Flash Driver} stellaris All members of the Stellaris LM3Sxxx microcontroller family from Texas Instruments include internal flash and use ARM Cortex M3 cores. The driver automatically recognizes a number of these chips using the chip identification register, and autoconfigures itself. @footnote{Currently there is a @command{stellaris mass_erase} command. That seems pointless since the same effect can be had using the standard @command{flash erase_address} command.} @example flash bank stellaris 0 0 0 0 $_TARGETNAME @end example @end deffn @deffn {Flash Driver} stm32x All members of the STM32 microcontroller family from ST Microelectronics include internal flash and use ARM Cortex M3 cores. The driver automatically recognizes a number of these chips using the chip identification register, and autoconfigures itself. @example flash bank stm32x 0 0 0 0 $_TARGETNAME @end example Some stm32x-specific commands @footnote{Currently there is a @command{stm32x mass_erase} command. That seems pointless since the same effect can be had using the standard @command{flash erase_address} command.} are defined: @deffn Command {stm32x lock} num Locks the entire stm32 device. The @var{num} parameter is a value shown by @command{flash banks}. @end deffn @deffn Command {stm32x unlock} num Unlocks the entire stm32 device. The @var{num} parameter is a value shown by @command{flash banks}. @end deffn @deffn Command {stm32x options_read} num Read and display the stm32 option bytes written by the @command{stm32x options_write} command. The @var{num} parameter is a value shown by @command{flash banks}. @end deffn @deffn Command {stm32x options_write} num (@option{SWWDG}|@option{HWWDG}) (@option{RSTSTNDBY}|@option{NORSTSTNDBY}) (@option{RSTSTOP}|@option{NORSTSTOP}) Writes the stm32 option byte with the specified values. The @var{num} parameter is a value shown by @command{flash banks}. @end deffn @end deffn @deffn {Flash Driver} str7x All members of the STR7 microcontroller family from ST Microelectronics include internal flash and use ARM7TDMI cores. The @var{str7x} driver defines one mandatory parameter, @var{variant}, which is either @code{STR71x}, @code{STR73x} or @code{STR75x}. @example flash bank str7x 0x40000000 0x00040000 0 0 $_TARGETNAME STR71x @end example @deffn Command {str7x disable_jtag} bank Activate the Debug/Readout protection mechanism for the specified flash bank. @end deffn @end deffn @deffn {Flash Driver} str9x Most members of the STR9 microcontroller family from ST Microelectronics include internal flash and use ARM966E cores. The str9 needs the flash controller to be configured using the @command{str9x flash_config} command prior to Flash programming. @example flash bank str9x 0x40000000 0x00040000 0 0 $_TARGETNAME str9x flash_config 0 4 2 0 0x80000 @end example @deffn Command {str9x flash_config} num bbsr nbbsr bbadr nbbadr Configures the str9 flash controller. The @var{num} parameter is a value shown by @command{flash banks}. @itemize @bullet @item @var{bbsr} - Boot Bank Size register @item @var{nbbsr} - Non Boot Bank Size register @item @var{bbadr} - Boot Bank Start Address register @item @var{nbbadr} - Boot Bank Start Address register @end itemize @end deffn @end deffn @deffn {Flash Driver} tms470 Most members of the TMS470 microcontroller family from Texas Instruments include internal flash and use ARM7TDMI cores. This driver doesn't require the chip and bus width to be specified. Some tms470-specific commands are defined: @deffn Command {tms470 flash_keyset} key0 key1 key2 key3 Saves programming keys in a register, to enable flash erase and write commands. @end deffn @deffn Command {tms470 osc_mhz} clock_mhz Reports the clock speed, which is used to calculate timings. @end deffn @deffn Command {tms470 plldis} (0|1) Disables (@var{1}) or enables (@var{0}) use of the PLL to speed up the flash clock. @end deffn @end deffn @subsection str9xpec driver @cindex str9xpec Here is some background info to help you better understand how this driver works. OpenOCD has two flash drivers for the str9: @enumerate @item Standard driver @option{str9x} programmed via the str9 core. Normally used for flash programming as it is faster than the @option{str9xpec} driver. @item Direct programming @option{str9xpec} using the flash controller. This is an ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9 core does not need to be running to program using this flash driver. Typical use for this driver is locking/unlocking the target and programming the option bytes. @end enumerate Before we run any commands using the @option{str9xpec} driver we must first disable the str9 core. This example assumes the @option{str9xpec} driver has been configured for flash bank 0. @example # assert srst, we do not want core running # while accessing str9xpec flash driver jtag_reset 0 1 # turn off target polling poll off # disable str9 core str9xpec enable_turbo 0 # read option bytes str9xpec options_read 0 # re-enable str9 core str9xpec disable_turbo 0 poll on reset halt @end example The above example will read the str9 option bytes. When performing a unlock remember that you will not be able to halt the str9 - it has been locked. Halting the core is not required for the @option{str9xpec} driver as mentioned above, just issue the commands above manually or from a telnet prompt. @deffn {Flash Driver} str9xpec Only use this driver for locking/unlocking the device or configuring the option bytes. Use the standard str9 driver for programming. Before using the flash commands the turbo mode must be enabled using the @command{str9xpec enable_turbo} command. Several str9xpec-specific commands are defined: @deffn Command {str9xpec disable_turbo} num Restore the str9 into JTAG chain. @end deffn @deffn Command {str9xpec enable_turbo} num Enable turbo mode, will simply remove the str9 from the chain and talk directly to the embedded flash controller. @end deffn @deffn Command {str9xpec lock} num Lock str9 device. The str9 will only respond to an unlock command that will erase the device. @end deffn @deffn Command {str9xpec part_id} num Prints the part identifier for bank @var{num}. @end deffn @deffn Command {str9xpec options_cmap} num (@option{bank0}|@option{bank1}) Configure str9 boot bank. @end deffn @deffn Command {str9xpec options_lvdsel} num (@option{vdd}|@option{vdd_vddq}) Configure str9 lvd source. @end deffn @deffn Command {str9xpec options_lvdthd} num (@option{2.4v}|@option{2.7v}) Configure str9 lvd threshold. @end deffn @deffn Command {str9xpec options_lvdwarn} bank (@option{vdd}|@option{vdd_vddq}) Configure str9 lvd reset warning source. @end deffn @deffn Command {str9xpec options_read} num Read str9 option bytes. @end deffn @deffn Command {str9xpec options_write} num Write str9 option bytes. @end deffn @deffn Command {str9xpec unlock} num unlock str9 device. @end deffn @end deffn @section mFlash @subsection mFlash Configuration @cindex mFlash Configuration @deffn {Config Command} {mflash bank} soc base RST_pin target Configures a mflash for @var{soc} host bank at address @var{base}. The pin number format depends on the host GPIO naming convention. Currently, the mflash driver supports s3c2440 and pxa270. Example for s3c2440 mflash where @var{RST pin} is GPIO B1: @example mflash bank s3c2440 0x10000000 1b 0 @end example Example for pxa270 mflash where @var{RST pin} is GPIO 43: @example mflash bank pxa270 0x08000000 43 0 @end example @end deffn @subsection mFlash commands @cindex mFlash commands @deffn Command {mflash config pll} frequency Configure mflash PLL. The @var{frequency} is the mflash input frequency, in Hz. Issuing this command will erase mflash's whole internal nand and write new pll. After this command, mflash needs power-on-reset for normal operation. If pll was newly configured, storage and boot(optional) info also need to be update. @end deffn @deffn Command {mflash config boot} Configure bootable option. If bootable option is set, mflash offer the first 8 sectors (4kB) for boot. @end deffn @deffn Command {mflash config storage} Configure storage information. For the normal storage operation, this information must be written. @end deffn @deffn Command {mflash dump} num filename offset size Dump @var{size} bytes, starting at @var{offset} bytes from the beginning of the bank @var{num}, to the file named @var{filename}. @end deffn @deffn Command {mflash probe} Probe mflash. @end deffn @deffn Command {mflash write} num filename offset Write the binary file @var{filename} to mflash bank @var{num}, starting at @var{offset} bytes from the beginning of the bank. @end deffn @node NAND Flash Commands @chapter NAND Flash Commands @cindex NAND Compared to NOR or SPI flash, NAND devices are inexpensive and high density. Today's NAND chips, and multi-chip modules, commonly hold multiple GigaBytes of data. NAND chips consist of a number of ``erase blocks'' of a given size (such as 128 KBytes), each of which is divided into a number of pages (of perhaps 512 or 2048 bytes each). Each page of a NAND flash has an ``out of band'' (OOB) area to hold Error Correcting Code (ECC) and other metadata, usually 16 bytes of OOB for every 512 bytes of page data. One key characteristic of NAND flash is that its error rate is higher than that of NOR flash. In normal operation, that ECC is used to correct and detect errors. However, NAND blocks can also wear out and become unusable; those blocks are then marked "bad". NAND chips are even shipped from the manufacturer with a few bad blocks. The highest density chips use a technology (MLC) that wears out more quickly, so ECC support is increasingly important as a way to detect blocks that have begun to fail, and help to preserve data integrity with techniques such as wear leveling. Software is used to manage the ECC. Some controllers don't support ECC directly; in those cases, software ECC is used. Other controllers speed up the ECC calculations with hardware. Single-bit error correction hardware is routine. Controllers geared for newer MLC chips may correct 4 or more errors for every 512 bytes of data. You will need to make sure that any data you write using OpenOCD includes the apppropriate kind of ECC. For example, that may mean passing the @code{oob_softecc} flag when writing NAND data, or ensuring that the correct hardware ECC mode is used. The basic steps for using NAND devices include: @enumerate @item Declare via the command @command{nand device} @* Do this in a board-specific configuration file, passing parameters as needed by the controller. @item Configure each device using @command{nand probe}. @* Do this only after the associated target is set up, such as in its reset-init script or in procures defined to access that device. @item Operate on the flash via @command{nand subcommand} @* Often commands to manipulate the flash are typed by a human, or run via a script in some automated way. Common task include writing a boot loader, operating system, or other data needed to initialize or de-brick a board. @end enumerate @b{NOTE:} At the time this text was written, the largest NAND flash fully supported by OpenOCD is 2 GiBytes (16 GiBits). This is because the variables used to hold offsets and lengths are only 32 bits wide. (Larger chips may work in some cases, unless an offset or length is larger than 0xffffffff, the largest 32-bit unsigned integer.) Some larger devices will work, since they are actually multi-chip modules with two smaller chips and individual chipselect lines. @anchor{NAND Configuration} @section NAND Configuration Commands @cindex NAND configuration NAND chips must be declared in configuration scripts, plus some additional configuration that's done after OpenOCD has initialized. @deffn {Config Command} {nand device} name driver target [configparams...] Declares a NAND device, which can be read and written to after it has been configured through @command{nand probe}. In OpenOCD, devices are single chips; this is unlike some operating systems, which may manage multiple chips as if they were a single (larger) device. In some cases, configuring a device will activate extra commands; see the controller-specific documentation. @b{NOTE:} This command is not available after OpenOCD initialization has completed. Use it in board specific configuration files, not interactively. @itemize @bullet @item @var{name} ... may be used to reference the NAND bank in most other NAND commands. A number is also available. @item @var{driver} ... identifies the NAND controller driver associated with the NAND device being declared. @xref{NAND Driver List}. @item @var{target} ... names the target used when issuing commands to the NAND controller. @comment Actually, it's currently a controller-specific parameter... @item @var{configparams} ... controllers may support, or require, additional parameters. See the controller-specific documentation for more information. @end itemize @end deffn @deffn Command {nand list} Prints a summary of each device declared using @command{nand device}, numbered from zero. Note that un-probed devices show no details. @example > nand list #0: NAND 1GiB 3,3V 8-bit (Micron) pagesize: 2048, buswidth: 8, blocksize: 131072, blocks: 8192 #1: NAND 1GiB 3,3V 8-bit (Micron) pagesize: 2048, buswidth: 8, blocksize: 131072, blocks: 8192 > @end example @end deffn @deffn Command {nand probe} num Probes the specified device to determine key characteristics like its page and block sizes, and how many blocks it has. The @var{num} parameter is the value shown by @command{nand list}. You must (successfully) probe a device before you can use it with most other NAND commands. @end deffn @section Erasing, Reading, Writing to NAND Flash @deffn Command {nand dump} num filename offset length [oob_option] @cindex NAND reading Reads binary data from the NAND device and writes it to the file, starting at the specified offset. The @var{num} parameter is the value shown by @command{nand list}. Use a complete path name for @var{filename}, so you don't depend on the directory used to start the OpenOCD server. The @var{offset} and @var{length} must be exact multiples of the device's page size. They describe a data region; the OOB data associated with each such page may also be accessed. @b{NOTE:} At the time this text was written, no error correction was done on the data that's read, unless raw access was disabled and the underlying NAND controller driver had a @code{read_page} method which handled that error correction. By default, only page data is saved to the specified file. Use an @var{oob_option} parameter to save OOB data: @itemize @bullet @item no oob_* parameter @*Output file holds only page data; OOB is discarded. @item @code{oob_raw} @*Output file interleaves page data and OOB data; the file will be longer than "length" by the size of the spare areas associated with each data page. Note that this kind of "raw" access is different from what's implied by @command{nand raw_access}, which just controls whether a hardware-aware access method is used. @item @code{oob_only} @*Output file has only raw OOB data, and will be smaller than "length" since it will contain only the spare areas associated with each data page. @end itemize @end deffn @deffn Command {nand erase} num [offset length] @cindex NAND erasing @cindex NAND programming Erases blocks on the specified NAND device, starting at the specified @var{offset} and continuing for @var{length} bytes. Both of those values must be exact multiples of the device's block size, and the region they specify must fit entirely in the chip. If those parameters are not specified, the whole NAND chip will be erased. The @var{num} parameter is the value shown by @command{nand list}. @b{NOTE:} This command will try to erase bad blocks, when told to do so, which will probably invalidate the manufacturer's bad block marker. For the remainder of the current server session, @command{nand info} will still report that the block ``is'' bad. @end deffn @deffn Command {nand write} num filename offset [option...] @cindex NAND writing @cindex NAND programming Writes binary data from the file into the specified NAND device, starting at the specified offset. Those pages should already have been erased; you can't change zero bits to one bits. The @var{num} parameter is the value shown by @command{nand list}. Use a complete path name for @var{filename}, so you don't depend on the directory used to start the OpenOCD server. The @var{offset} must be an exact multiple of the device's page size. All data in the file will be written, assuming it doesn't run past the end of the device. Only full pages are written, and any extra space in the last page will be filled with 0xff bytes. (That includes OOB data, if that's being written.) @b{NOTE:} At the time this text was written, bad blocks are ignored. That is, this routine will not skip bad blocks, but will instead try to write them. This can cause problems. Provide at most one @var{option} parameter. With some NAND drivers, the meanings of these parameters may change if @command{nand raw_access} was used to disable hardware ECC. @itemize @bullet @item no oob_* parameter @*File has only page data, which is written. If raw acccess is in use, the OOB area will not be written. Otherwise, if the underlying NAND controller driver has a @code{write_page} routine, that routine may write the OOB with hardware-computed ECC data. @item @code{oob_only} @*File has only raw OOB data, which is written to the OOB area. Each page's data area stays untouched. @i{This can be a dangerous option}, since it can invalidate the ECC data. You may need to force raw access to use this mode. @item @code{oob_raw} @*File interleaves data and OOB data, both of which are written If raw access is enabled, the data is written first, then the un-altered OOB. Otherwise, if the underlying NAND controller driver has a @code{write_page} routine, that routine may modify the OOB before it's written, to include hardware-computed ECC data. @item @code{oob_softecc} @*File has only page data, which is written. The OOB area is filled with 0xff, except for a standard 1-bit software ECC code stored in conventional locations. You might need to force raw access to use this mode, to prevent the underlying driver from applying hardware ECC. @item @code{oob_softecc_kw} @*File has only page data, which is written. The OOB area is filled with 0xff, except for a 4-bit software ECC specific to the boot ROM in Marvell Kirkwood SoCs. You might need to force raw access to use this mode, to prevent the underlying driver from applying hardware ECC. @end itemize @end deffn @deffn Command {nand verify} num filename offset [option...] @cindex NAND verification @cindex NAND programming Verify the binary data in the file has been programmed to the specified NAND device, starting at the specified offset. The @var{num} parameter is the value shown by @command{nand list}. Use a complete path name for @var{filename}, so you don't depend on the directory used to start the OpenOCD server. The @var{offset} must be an exact multiple of the device's page size. All data in the file will be read and compared to the contents of the flash, assuming it doesn't run past the end of the device. As with @command{nand write}, only full pages are verified, so any extra space in the last page will be filled with 0xff bytes. The same @var{options} accepted by @command{nand write}, and the file will be processed similarly to produce the buffers that can be compared against the contents produced from @command{nand dump}. @b{NOTE:} This will not work when the underlying NAND controller driver's @code{write_page} routine must update the OOB with a hardward-computed ECC before the data is written. This limitation may be removed in a future release. @end deffn @section Other NAND commands @cindex NAND other commands @deffn Command {nand check_bad_blocks} [offset length] Checks for manufacturer bad block markers on the specified NAND device. If no parameters are provided, checks the whole device; otherwise, starts at the specified @var{offset} and continues for @var{length} bytes. Both of those values must be exact multiples of the device's block size, and the region they specify must fit entirely in the chip. The @var{num} parameter is the value shown by @command{nand list}. @b{NOTE:} Before using this command you should force raw access with @command{nand raw_access enable} to ensure that the underlying driver will not try to apply hardware ECC. @end deffn @deffn Command {nand info} num The @var{num} parameter is the value shown by @command{nand list}. This prints the one-line summary from "nand list", plus for devices which have been probed this also prints any known status for each block. @end deffn @deffn Command {nand raw_access} num (@option{enable}|@option{disable}) Sets or clears an flag affecting how page I/O is done. The @var{num} parameter is the value shown by @command{nand list}. This flag is cleared (disabled) by default, but changing that value won't affect all NAND devices. The key factor is whether the underlying driver provides @code{read_page} or @code{write_page} methods. If it doesn't provide those methods, the setting of this flag is irrelevant; all access is effectively ``raw''. When those methods exist, they are normally used when reading data (@command{nand dump} or reading bad block markers) or writing it (@command{nand write}). However, enabling raw access (setting the flag) prevents use of those methods, bypassing hardware ECC logic. @i{This can be a dangerous option}, since writing blocks with the wrong ECC data can cause them to be marked as bad. @end deffn @anchor{NAND Driver List} @section NAND Driver List As noted above, the @command{nand device} command allows driver-specific options and behaviors. Some controllers also activate controller-specific commands. @deffn {NAND Driver} at91sam9 This driver handles the NAND controllers found on AT91SAM9 family chips from Atmel. It takes two extra parameters: address of the NAND chip; address of the ECC controller. @example nand device $NANDFLASH at91sam9 $CHIPNAME 0x40000000 0xfffffe800 @end example AT91SAM9 chips support single-bit ECC hardware. The @code{write_page} and @code{read_page} methods are used to utilize the ECC hardware unless they are disabled by using the @command{nand raw_access} command. There are four additional commands that are needed to fully configure the AT91SAM9 NAND controller. Two are optional; most boards use the same wiring for ALE/CLE: @deffn Command {at91sam9 cle} num addr_line Configure the address line used for latching commands. The @var{num} parameter is the value shown by @command{nand list}. @end deffn @deffn Command {at91sam9 ale} num addr_line Configure the address line used for latching addresses. The @var{num} parameter is the value shown by @command{nand list}. @end deffn For the next two commands, it is assumed that the pins have already been properly configured for input or output. @deffn Command {at91sam9 rdy_busy} num pio_base_addr pin Configure the RDY/nBUSY input from the NAND device. The @var{num} parameter is the value shown by @command{nand list}. @var{pio_base_addr} is the base address of the PIO controller and @var{pin} is the pin number. @end deffn @deffn Command {at91sam9 ce} num pio_base_addr pin Configure the chip enable input to the NAND device. The @var{num} parameter is the value shown by @command{nand list}. @var{pio_base_addr} is the base address of the PIO controller and @var{pin} is the pin number. @end deffn @end deffn @deffn {NAND Driver} davinci This driver handles the NAND controllers found on DaVinci family chips from Texas Instruments. It takes three extra parameters: address of the NAND chip; hardware ECC mode to use (@option{hwecc1}, @option{hwecc4}, @option{hwecc4_infix}); address of the AEMIF controller on this processor. @example nand device davinci dm355.arm 0x02000000 hwecc4 0x01e10000 @end example All DaVinci processors support the single-bit ECC hardware, and newer ones also support the four-bit ECC hardware. The @code{write_page} and @code{read_page} methods are used to implement those ECC modes, unless they are disabled using the @command{nand raw_access} command. @end deffn @deffn {NAND Driver} lpc3180 These controllers require an extra @command{nand device} parameter: the clock rate used by the controller. @deffn Command {lpc3180 select} num [mlc|slc] Configures use of the MLC or SLC controller mode. MLC implies use of hardware ECC. The @var{num} parameter is the value shown by @command{nand list}. @end deffn At this writing, this driver includes @code{write_page} and @code{read_page} methods. Using @command{nand raw_access} to disable those methods will prevent use of hardware ECC in the MLC controller mode, but won't change SLC behavior. @end deffn @comment current lpc3180 code won't issue 5-byte address cycles @deffn {NAND Driver} orion These controllers require an extra @command{nand device} parameter: the address of the controller. @example nand device orion 0xd8000000 @end example These controllers don't define any specialized commands. At this writing, their drivers don't include @code{write_page} or @code{read_page} methods, so @command{nand raw_access} won't change any behavior. @end deffn @deffn {NAND Driver} s3c2410 @deffnx {NAND Driver} s3c2412 @deffnx {NAND Driver} s3c2440 @deffnx {NAND Driver} s3c2443 These S3C24xx family controllers don't have any special @command{nand device} options, and don't define any specialized commands. At this writing, their drivers don't include @code{write_page} or @code{read_page} methods, so @command{nand raw_access} won't change any behavior. @end deffn @node PLD/FPGA Commands @chapter PLD/FPGA Commands @cindex PLD @cindex FPGA Programmable Logic Devices (PLDs) and the more flexible Field Programmable Gate Arrays (FPGAs) are both types of programmable hardware. OpenOCD can support programming them. Although PLDs are generally restrictive (cells are less functional, and there are no special purpose cells for memory or computational tasks), they share the same OpenOCD infrastructure. Accordingly, both are called PLDs here. @section PLD/FPGA Configuration and Commands As it does for JTAG TAPs, debug targets, and flash chips (both NOR and NAND), OpenOCD maintains a list of PLDs available for use in various commands. Also, each such PLD requires a driver. They are referenced by the number shown by the @command{pld devices} command, and new PLDs are defined by @command{pld device driver_name}. @deffn {Config Command} {pld device} driver_name tap_name [driver_options] Defines a new PLD device, supported by driver @var{driver_name}, using the TAP named @var{tap_name}. The driver may make use of any @var{driver_options} to configure its behavior. @end deffn @deffn {Command} {pld devices} Lists the PLDs and their numbers. @end deffn @deffn {Command} {pld load} num filename Loads the file @file{filename} into the PLD identified by @var{num}. The file format must be inferred by the driver. @end deffn @section PLD/FPGA Drivers, Options, and Commands Drivers may support PLD-specific options to the @command{pld device} definition command, and may also define commands usable only with that particular type of PLD. @deffn {FPGA Driver} virtex2 Virtex-II is a family of FPGAs sold by Xilinx. It supports the IEEE 1532 standard for In-System Configuration (ISC). No driver-specific PLD definition options are used, and one driver-specific command is defined. @deffn {Command} {virtex2 read_stat} num Reads and displays the Virtex-II status register (STAT) for FPGA @var{num}. @end deffn @end deffn @node General Commands @chapter General Commands @cindex commands The commands documented in this chapter here are common commands that you, as a human, may want to type and see the output of. Configuration type commands are documented elsewhere. Intent: @itemize @bullet @item @b{Source Of Commands} @* OpenOCD commands can occur in a configuration script (discussed elsewhere) or typed manually by a human or supplied programatically, or via one of several TCP/IP Ports. @item @b{From the human} @* A human should interact with the telnet interface (default port: 4444) or via GDB (default port 3333). To issue commands from within a GDB session, use the @option{monitor} command, e.g. use @option{monitor poll} to issue the @option{poll} command. All output is relayed through the GDB session. @item @b{Machine Interface} The Tcl interface's intent is to be a machine interface. The default Tcl port is 5555. @end itemize @section Daemon Commands @deffn {Command} exit Exits the current telnet session. @end deffn @deffn {Command} help [string] With no parameters, prints help text for all commands. Otherwise, prints each helptext containing @var{string}. Not every command provides helptext. Configuration commands, and commands valid at any time, are explicitly noted in parenthesis. In most cases, no such restriction is listed; this indicates commands which are only available after the configuration stage has completed. @end deffn @deffn Command sleep msec [@option{busy}] Wait for at least @var{msec} milliseconds before resuming. If @option{busy} is passed, busy-wait instead of sleeping. (This option is strongly discouraged.) Useful in connection with script files (@command{script} command and @command{target_name} configuration). @end deffn @deffn Command shutdown Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other). @end deffn @anchor{debug_level} @deffn Command debug_level [n] @cindex message level Display debug level. If @var{n} (from 0..3) is provided, then set it to that level. This affects the kind of messages sent to the server log. Level 0 is error messages only; level 1 adds warnings; level 2 adds informational messages; and level 3 adds debugging messages. The default is level 2, but that can be overridden on the command line along with the location of that log file (which is normally the server's standard output). @xref{Running}. @end deffn @deffn Command fast (@option{enable}|@option{disable}) Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". At this writing, this only affects the defaults for two ARM7/ARM9 parameters: fast memory access, and DCC downloads. Those parameters may still be individually overridden. The target specific "dangerous" optimisation tweaking options may come and go as more robust and user friendly ways are found to ensure maximum throughput and robustness with a minimum of configuration. Typically the "fast enable" is specified first on the command line: @example openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg @end example @end deffn @deffn Command echo message Logs a message at "user" priority. Output @var{message} to stdout. @example echo "Downloading kernel -- please wait" @end example @end deffn @deffn Command log_output [filename] Redirect logging to @var{filename}; the initial log output channel is stderr. @end deffn @anchor{Target State handling} @section Target State handling @cindex reset @cindex halt @cindex target initialization In this section ``target'' refers to a CPU configured as shown earlier (@pxref{CPU Configuration}). These commands, like many, implicitly refer to a current target which is used to perform the various operations. The current target may be changed by using @command{targets} command with the name of the target which should become current. @deffn Command reg [(number|name) [value]] Access a single register by @var{number} or by its @var{name}. The target must generally be halted before access to CPU core registers is allowed. Depending on the hardware, some other registers may be accessible while the target is running. @emph{With no arguments}: list all available registers for the current target, showing number, name, size, value, and cache status. For valid entries, a value is shown; valid entries which are also dirty (and will be written back later) are flagged as such. @emph{With number/name}: display that register's value. @emph{With both number/name and value}: set register's value. Writes may be held in a writeback cache internal to OpenOCD, so that setting the value marks the register as dirty instead of immediately flushing that value. Resuming CPU execution (including by single stepping) or otherwise activating the relevant module will flush such values. Cores may have surprisingly many registers in their Debug and trace infrastructure: @example > reg ===== ARM registers (0) r0 (/32): 0x0000D3C2 (dirty) (1) r1 (/32): 0xFD61F31C (2) r2 (/32) ... (164) ETM_contextid_comparator_mask (/32) > @end example @end deffn @deffn Command halt [ms] @deffnx Command wait_halt [ms] The @command{halt} command first sends a halt request to the target, which @command{wait_halt} doesn't. Otherwise these behave the same: wait up to @var{ms} milliseconds, or 5 seconds if there is no parameter, for the target to halt (and enter debug mode). Using 0 as the @var{ms} parameter prevents OpenOCD from waiting. @quotation Warning On ARM cores, software using the @emph{wait for interrupt} operation often blocks the JTAG access needed by a @command{halt} command. This is because that operation also puts the core into a low power mode by gating the core clock; but the core clock is needed to detect JTAG clock transitions. One partial workaround uses adaptive clocking: when the core is interrupted the operation completes, then JTAG clocks are accepted at least until the interrupt handler completes. However, this workaround is often unusable since the processor, board, and JTAG adapter must all support adaptive JTAG clocking. Also, it can't work until an interrupt is issued. A more complete workaround is to not use that operation while you work with a JTAG debugger. Tasking environments generaly have idle loops where the body is the @emph{wait for interrupt} operation. (On older cores, it is a coprocessor action; newer cores have a @option{wfi} instruction.) Such loops can just remove that operation, at the cost of higher power consumption (because the CPU is needlessly clocked). @end quotation @end deffn @deffn Command resume [address] Resume the target at its current code position, or the optional @var{address} if it is provided. OpenOCD will wait 5 seconds for the target to resume. @end deffn @deffn Command step [address] Single-step the target at its current code position, or the optional @var{address} if it is provided. @end deffn @anchor{Reset Command} @deffn Command reset @deffnx Command {reset run} @deffnx Command {reset halt} @deffnx Command {reset init} Perform as hard a reset as possible, using SRST if possible. @emph{All defined targets will be reset, and target events will fire during the reset sequence.} The optional parameter specifies what should happen after the reset. If there is no parameter, a @command{reset run} is executed. The other options will not work on all systems. @xref{Reset Configuration}. @itemize @minus @item @b{run} Let the target run @item @b{halt} Immediately halt the target @item @b{init} Immediately halt the target, and execute the reset-init script @end itemize @end deffn @deffn Command soft_reset_halt Requesting target halt and executing a soft reset. This is often used when a target cannot be reset and halted. The target, after reset is released begins to execute code. OpenOCD attempts to stop the CPU and then sets the program counter back to the reset vector. Unfortunately the code that was executed may have left the hardware in an unknown state. @end deffn @section I/O Utilities These commands are available when OpenOCD is built with @option{--enable-ioutil}. They are mainly useful on embedded targets, notably the ZY1000. Hosts with operating systems have complementary tools. @emph{Note:} there are several more such commands. @deffn Command append_file filename [string]* Appends the @var{string} parameters to the text file @file{filename}. Each string except the last one is followed by one space. The last string is followed by a newline. @end deffn @deffn Command cat filename Reads and displays the text file @file{filename}. @end deffn @deffn Command cp src_filename dest_filename Copies contents from the file @file{src_filename} into @file{dest_filename}. @end deffn @deffn Command ip @emph{No description provided.} @end deffn @deffn Command ls @emph{No description provided.} @end deffn @deffn Command mac @emph{No description provided.} @end deffn @deffn Command meminfo Display available RAM memory on OpenOCD host. Used in OpenOCD regression testing scripts. @end deffn @deffn Command peek @emph{No description provided.} @end deffn @deffn Command poke @emph{No description provided.} @end deffn @deffn Command rm filename @c "rm" has both normal and Jim-level versions?? Unlinks the file @file{filename}. @end deffn @deffn Command trunc filename Removes all data in the file @file{filename}. @end deffn @anchor{Memory access} @section Memory access commands @cindex memory access These commands allow accesses of a specific size to the memory system. Often these are used to configure the current target in some special way. For example - one may need to write certain values to the SDRAM controller to enable SDRAM. @enumerate @item Use the @command{targets} (plural) command to change the current target. @item In system level scripts these commands are deprecated. Please use their TARGET object siblings to avoid making assumptions about what TAP is the current target, or about MMU configuration. @end enumerate @deffn Command mdw [phys] addr [count] @deffnx Command mdh [phys] addr [count] @deffnx Command mdb [phys] addr [count] Display contents of address @var{addr}, as 32-bit words (@command{mdw}), 16-bit halfwords (@command{mdh}), or 8-bit bytes (@command{mdb}). When the current target has an MMU which is present and active, @var{addr} is interpreted as a virtual address. Otherwise, or if the optional @var{phys} flag is specified, @var{addr} is interpreted as a physical address. If @var{count} is specified, displays that many units. (If you want to manipulate the data instead of displaying it, see the @code{mem2array} primitives.) @end deffn @deffn Command mww [phys] addr word @deffnx Command mwh [phys] addr halfword @deffnx Command mwb [phys] addr byte Writes the specified @var{word} (32 bits), @var{halfword} (16 bits), or @var{byte} (8-bit) value, at the specified address @var{addr}. When the current target has an MMU which is present and active, @var{addr} is interpreted as a virtual address. Otherwise, or if the optional @var{phys} flag is specified, @var{addr} is interpreted as a physical address. @end deffn @anchor{Image access} @section Image loading commands @cindex image loading @cindex image dumping @anchor{dump_image} @deffn Command {dump_image} filename address size Dump @var{size} bytes of target memory starting at @var{address} to the binary file named @var{filename}. @end deffn @deffn Command {fast_load} Loads an image stored in memory by @command{fast_load_image} to the current target. Must be preceeded by fast_load_image. @end deffn @deffn Command {fast_load_image} filename address [@option{bin}|@option{ihex}|@option{elf}] Normally you should be using @command{load_image} or GDB load. However, for testing purposes or when I/O overhead is significant(OpenOCD running on an embedded host), storing the image in memory and uploading the image to the target can be a way to upload e.g. multiple debug sessions when the binary does not change. Arguments are the same as @command{load_image}, but the image is stored in OpenOCD host memory, i.e. does not affect target. This approach is also useful when profiling target programming performance as I/O and target programming can easily be profiled separately. @end deffn @anchor{load_image} @deffn Command {load_image} filename address [@option{bin}|@option{ihex}|@option{elf}] Load image from file @var{filename} to target memory at @var{address}. The file format may optionally be specified (@option{bin}, @option{ihex}, or @option{elf}) @end deffn @deffn Command {test_image} filename [address [@option{bin}|@option{ihex}|@option{elf}]] Displays image section sizes and addresses as if @var{filename} were loaded into target memory starting at @var{address} (defaults to zero). The file format may optionally be specified (@option{bin}, @option{ihex}, or @option{elf}) @end deffn @deffn Command {verify_image} filename address [@option{bin}|@option{ihex}|@option{elf}] Verify @var{filename} against target memory starting at @var{address}. The file format may optionally be specified (@option{bin}, @option{ihex}, or @option{elf}) This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare. @end deffn @section Breakpoint and Watchpoint commands @cindex breakpoint @cindex watchpoint CPUs often make debug modules accessible through JTAG, with hardware support for a handful of code breakpoints and data watchpoints. In addition, CPUs almost always support software breakpoints. @deffn Command {bp} [address len [@option{hw}]] With no parameters, lists all active breakpoints. Else sets a breakpoint on code execution starting at @var{address} for @var{length} bytes. This is a software breakpoint, unless @option{hw} is specified in which case it will be a hardware breakpoint. (@xref{arm9 vector_catch}, or @pxref{xscale vector_catch}, for similar mechanisms that do not consume hardware breakpoints.) @end deffn @deffn Command {rbp} address Remove the breakpoint at @var{address}. @end deffn @deffn Command {rwp} address Remove data watchpoint on @var{address} @end deffn @deffn Command {wp} [address len [(@option{r}|@option{w}|@option{a}) [value [mask]]]] With no parameters, lists all active watchpoints. Else sets a data watchpoint on data from @var{address} for @var{length} bytes. The watch point is an "access" watchpoint unless the @option{r} or @option{w} parameter is provided, defining it as respectively a read or write watchpoint. If a @var{value} is provided, that value is used when determining if the watchpoint should trigger. The value may be first be masked using @var{mask} to mark ``don't care'' fields. @end deffn @section Misc Commands @cindex profiling @deffn Command {profile} seconds filename Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling. Saves up to 10000 sampines in @file{filename} using ``gmon.out'' format. @end deffn @deffn Command {version} Displays a string identifying the version of this OpenOCD server. @end deffn @deffn Command {virt2phys} virtual_address Requests the current target to map the specified @var{virtual_address} to its corresponding physical address, and displays the result. @end deffn @node Architecture and Core Commands @chapter Architecture and Core Commands @cindex Architecture Specific Commands @cindex Core Specific Commands Most CPUs have specialized JTAG operations to support debugging. OpenOCD packages most such operations in its standard command framework. Some of those operations don't fit well in that framework, so they are exposed here as architecture or implementation (core) specific commands. @anchor{ARM Hardware Tracing} @section ARM Hardware Tracing @cindex tracing @cindex ETM @cindex ETB CPUs based on ARM cores may include standard tracing interfaces, based on an ``Embedded Trace Module'' (ETM) which sends voluminous address and data bus trace records to a ``Trace Port''. @itemize @item Development-oriented boards will sometimes provide a high speed trace connector for collecting that data, when the particular CPU supports such an interface. (The standard connector is a 38-pin Mictor, with both JTAG and trace port support.) Those trace connectors are supported by higher end JTAG adapters and some logic analyzer modules; frequently those modules can buffer several megabytes of trace data. Configuring an ETM coupled to such an external trace port belongs in the board-specific configuration file. @item If the CPU doesn't provide an external interface, it probably has an ``Embedded Trace Buffer'' (ETB) on the chip, which is a dedicated SRAM. 4KBytes is one common ETB size. Configuring an ETM coupled only to an ETB belongs in the CPU-specific (target) configuration file, since it works the same on all boards. @end itemize ETM support in OpenOCD doesn't seem to be widely used yet. @quotation Issues ETM support may be buggy, and at least some @command{etm config} parameters should be detected by asking the ETM for them. ETM trigger events could also implement a kind of complex hardware breakpoint, much more powerful than the simple watchpoint hardware exported by EmbeddedICE modules. @emph{Such breakpoints can be triggered even when using the dummy trace port driver}. It seems like a GDB hookup should be possible, as well as tracing only during specific states (perhaps @emph{handling IRQ 23} or @emph{calls foo()}). There should be GUI tools to manipulate saved trace data and help analyse it in conjunction with the source code. It's unclear how much of a common interface is shared with the current XScale trace support, or should be shared with eventual Nexus-style trace module support. At this writing (November 2009) only ARM7, ARM9, and ARM11 support for ETM modules is available. The code should be able to work with some newer cores; but not all of them support this original style of JTAG access. @end quotation @subsection ETM Configuration ETM setup is coupled with the trace port driver configuration. @deffn {Config Command} {etm config} target width mode clocking driver Declares the ETM associated with @var{target}, and associates it with a given trace port @var{driver}. @xref{Trace Port Drivers}. Several of the parameters must reflect the trace port capabilities, which are a function of silicon capabilties (exposed later using @command{etm info}) and of what hardware is connected to that port (such as an external pod, or ETB). The @var{width} must be either 4, 8, or 16, except with ETMv3.0 and newer modules which may also support 1, 2, 24, 32, 48, and 64 bit widths. (With those versions, @command{etm info} also shows whether the selected port width and mode are supported.) The @var{mode} must be @option{normal}, @option{multiplexed}, or @option{demultiplexed}. The @var{clocking} must be @option{half} or @option{full}. @quotation Warning With ETMv3.0 and newer, the bits set with the @var{mode} and @var{clocking} parameters both control the mode. This modified mode does not map to the values supported by previous ETM modules, so this syntax is subject to change. @end quotation @quotation Note You can see the ETM registers using the @command{reg} command. Not all possible registers are present in every ETM. Most of the registers are write-only, and are used to configure what CPU activities are traced. @end quotation @end deffn @deffn Command {etm info} Displays information about the current target's ETM. This includes resource counts from the @code{ETM_CONFIG} register, as well as silicon capabilities (except on rather old modules). from the @code{ETM_SYS_CONFIG} register. @end deffn @deffn Command {etm status} Displays status of the current target's ETM and trace port driver: is the ETM idle, or is it collecting data? Did trace data overflow? Was it triggered? @end deffn @deffn Command {etm tracemode} [type context_id_bits cycle_accurate branch_output] Displays what data that ETM will collect. If arguments are provided, first configures that data. When the configuration changes, tracing is stopped and any buffered trace data is invalidated. @itemize @item @var{type} ... describing how data accesses are traced, when they pass any ViewData filtering that that was set up. The value is one of @option{none} (save nothing), @option{data} (save data), @option{address} (save addresses), @option{all} (save data and addresses) @item @var{context_id_bits} ... 0, 8, 16, or 32 @item @var{cycle_accurate} ... @option{enable} or @option{disable} cycle-accurate instruction tracing. Before ETMv3, enabling this causes much extra data to be recorded. @item @var{branch_output} ... @option{enable} or @option{disable}. Disable this unless you need to try reconstructing the instruction trace stream without an image of the code. @end itemize @end deffn @deffn Command {etm trigger_debug} (@option{enable}|@option{disable}) Displays whether ETM triggering debug entry (like a breakpoint) is enabled or disabled, after optionally modifying that configuration. The default behaviour is @option{disable}. Any change takes effect after the next @command{etm start}. By using script commands to configure ETM registers, you can make the processor enter debug state automatically when certain conditions, more complex than supported by the breakpoint hardware, happen. @end deffn @subsection ETM Trace Operation After setting up the ETM, you can use it to collect data. That data can be exported to files for later analysis. It can also be parsed with OpenOCD, for basic sanity checking. To configure what is being traced, you will need to write various trace registers using @command{reg ETM_*} commands. For the definitions of these registers, read ARM publication @emph{IHI 0014, ``Embedded Trace Macrocell, Architecture Specification''}. Be aware that most of the relevant registers are write-only, and that ETM resources are limited. There are only a handful of address comparators, data comparators, counters, and so on. Examples of scenarios you might arrange to trace include: @itemize @item Code flow within a function, @emph{excluding} subroutines it calls. Use address range comparators to enable tracing for instruction access within that function's body. @item Code flow within a function, @emph{including} subroutines it calls. Use the sequencer and address comparators to activate tracing on an ``entered function'' state, then deactivate it by exiting that state when the function's exit code is invoked. @item Code flow starting at the fifth invocation of a function, combining one of the above models with a counter. @item CPU data accesses to the registers for a particular device, using address range comparators and the ViewData logic. @item Such data accesses only during IRQ handling, combining the above model with sequencer triggers which on entry and exit to the IRQ handler. @item @emph{... more} @end itemize At this writing, September 2009, there are no Tcl utility procedures to help set up any common tracing scenarios. @deffn Command {etm analyze} Reads trace data into memory, if it wasn't already present. Decodes and prints the data that was collected. @end deffn @deffn Command {etm dump} filename Stores the captured trace data in @file{filename}. @end deffn @deffn Command {etm image} filename [base_address] [type] Opens an image file. @end deffn @deffn Command {etm load} filename Loads captured trace data from @file{filename}. @end deffn @deffn Command {etm start} Starts trace data collection. @end deffn @deffn Command {etm stop} Stops trace data collection. @end deffn @anchor{Trace Port Drivers} @subsection Trace Port Drivers To use an ETM trace port it must be associated with a driver. @deffn {Trace Port Driver} dummy Use the @option{dummy} driver if you are configuring an ETM that's not connected to anything (on-chip ETB or off-chip trace connector). @emph{This driver lets OpenOCD talk to the ETM, but it does not expose any trace data collection.} @deffn {Config Command} {etm_dummy config} target Associates the ETM for @var{target} with a dummy driver. @end deffn @end deffn @deffn {Trace Port Driver} etb Use the @option{etb} driver if you are configuring an ETM to use on-chip ETB memory. @deffn {Config Command} {etb config} target etb_tap Associates the ETM for @var{target} with the ETB at @var{etb_tap}. You can see the ETB registers using the @command{reg} command. @end deffn @deffn Command {etb trigger_percent} [percent] This displays, or optionally changes, ETB behavior after the ETM's configured @emph{trigger} event fires. It controls how much more trace data is saved after the (single) trace trigger becomes active. @itemize @item The default corresponds to @emph{trace around} usage, recording 50 percent data before the event and the rest afterwards. @item The minimum value of @var{percent} is 2 percent, recording almost exclusively data before the trigger. Such extreme @emph{trace before} usage can help figure out what caused that event to happen. @item The maximum value of @var{percent} is 100 percent, recording data almost exclusively after the event. This extreme @emph{trace after} usage might help sort out how the event caused trouble. @end itemize @c REVISIT allow "break" too -- enter debug mode. @end deffn @end deffn @deffn {Trace Port Driver} oocd_trace This driver isn't available unless OpenOCD was explicitly configured with the @option{--enable-oocd_trace} option. You probably don't want to configure it unless you've built the appropriate prototype hardware; it's @emph{proof-of-concept} software. Use the @option{oocd_trace} driver if you are configuring an ETM that's connected to an off-chip trace connector. @deffn {Config Command} {oocd_trace config} target tty Associates the ETM for @var{target} with a trace driver which collects data through the serial port @var{tty}. @end deffn @deffn Command {oocd_trace resync} Re-synchronizes with the capture clock. @end deffn @deffn Command {oocd_trace status} Reports whether the capture clock is locked or not. @end deffn @end deffn @section Generic ARM @cindex ARM These commands should be available on all ARM processors. They are available in addition to other core-specific commands that may be available. @deffn Command {arm core_state} [@option{arm}|@option{thumb}] Displays the core_state, optionally changing it to process either @option{arm} or @option{thumb} instructions. The target may later be resumed in the currently set core_state. (Processors may also support the Jazelle state, but that is not currently supported in OpenOCD.) @end deffn @deffn Command {arm disassemble} address [count [@option{thumb}]] @cindex disassemble Disassembles @var{count} instructions starting at @var{address}. If @var{count} is not specified, a single instruction is disassembled. If @option{thumb} is specified, or the low bit of the address is set, Thumb2 (mixed 16/32-bit) instructions are used; else ARM (32-bit) instructions are used. (Processors may also support the Jazelle state, but those instructions are not currently understood by OpenOCD.) Note that all Thumb instructions are Thumb2 instructions, so older processors (without Thumb2 support) will still see correct disassembly of Thumb code. Also, ThumbEE opcodes are the same as Thumb2, with a handful of exceptions. ThumbEE disassembly currently has no explicit support. @end deffn @deffn Command {arm mcr} pX op1 CRn CRm op2 value Write @var{value} to a coprocessor @var{pX} register passing parameters @var{CRn}, @var{CRm}, opcodes @var{opc1} and @var{opc2}, and using the MCR instruction. (Parameter sequence matches the ARM instruction, but omits an ARM register.) @end deffn @deffn Command {arm mrc} pX coproc op1 CRn CRm op2 Read a coprocessor @var{pX} register passing parameters @var{CRn}, @var{CRm}, opcodes @var{opc1} and @var{opc2}, and the MRC instruction. Returns the result so it can be manipulated by Jim scripts. (Parameter sequence matches the ARM instruction, but omits an ARM register.) @end deffn @deffn Command {arm reg} Display a table of all banked core registers, fetching the current value from every core mode if necessary. @end deffn @section ARMv4 and ARMv5 Architecture @cindex ARMv4 @cindex ARMv5 The ARMv4 and ARMv5 architectures are widely used in embedded systems, and introduced core parts of the instruction set in use today. That includes the Thumb instruction set, introduced in the ARMv4T variant. @subsection ARM7 and ARM9 specific commands @cindex ARM7 @cindex ARM9 These commands are specific to ARM7 and ARM9 cores, like ARM7TDMI, ARM720T, ARM9TDMI, ARM920T or ARM926EJ-S. They are available in addition to the ARM commands, and any other core-specific commands that may be available. @deffn Command {arm7_9 dbgrq} [@option{enable}|@option{disable}] Displays the value of the flag controlling use of the the EmbeddedIce DBGRQ signal to force entry into debug mode, instead of breakpoints. If a boolean parameter is provided, first assigns that flag. This should be safe for all but ARM7TDMI-S cores (like NXP LPC). This feature is enabled by default on most ARM9 cores, including ARM9TDMI, ARM920T, and ARM926EJ-S. @end deffn @deffn Command {arm7_9 dcc_downloads} [@option{enable}|@option{disable}] @cindex DCC Displays the value of the flag controlling use of the debug communications channel (DCC) to write larger (>128 byte) amounts of memory. If a boolean parameter is provided, first assigns that flag. DCC downloads offer a huge speed increase, but might be unsafe, especially with targets running at very low speeds. This command was introduced with OpenOCD rev. 60, and requires a few bytes of working area. @end deffn @anchor{arm7_9 fast_memory_access} @deffn Command {arm7_9 fast_memory_access} [@option{enable}|@option{disable}] Displays the value of the flag controlling use of memory writes and reads that don't check completion of the operation. If a boolean parameter is provided, first assigns that flag. This provides a huge speed increase, especially with USB JTAG cables (FT2232), but might be unsafe if used with targets running at very low speeds, like the 32kHz startup clock of an AT91RM9200. @end deffn @deffn Command {arm7_9 semihosting} [@option{enable}|@option{disable}] @cindex ARM semihosting Display status of semihosting, after optionally changing that status. Semihosting allows for code executing on an ARM target to use the I/O facilities on the host computer i.e. the system where OpenOCD is running. The target application must be linked against a library implementing the ARM semihosting convention that forwards operation requests by using a special SVC instruction that is trapped at the Supervisor Call vector by OpenOCD. @end deffn @subsection ARM720T specific commands @cindex ARM720T These commands are available to ARM720T based CPUs, which are implementations of the ARMv4T architecture based on the ARM7TDMI-S integer core. They are available in addition to the ARM and ARM7/ARM9 commands. @deffn Command {arm720t cp15} opcode [value] @emph{DEPRECATED -- avoid using this. Use the @command{arm mrc} or @command{arm mcr} commands instead.} Display cp15 register returned by the ARM instruction @var{opcode}; else if a @var{value} is provided, that value is written to that register. The @var{opcode} should be the value of either an MRC or MCR instruction. @end deffn @subsection ARM9 specific commands @cindex ARM9 ARM9-family cores are built around ARM9TDMI or ARM9E (including ARM9EJS) integer processors. Such cores include the ARM920T, ARM926EJ-S, and ARM966. @c 9-june-2009: tried this on arm920t, it didn't work. @c no-params always lists nothing caught, and that's how it acts. @c 23-oct-2009: doesn't work _consistently_ ... as if the ICE @c versions have different rules about when they commit writes. @anchor{arm9 vector_catch} @deffn Command {arm9 vector_catch} [@option{all}|@option{none}|list] @cindex vector_catch Vector Catch hardware provides a sort of dedicated breakpoint for hardware events such as reset, interrupt, and abort. You can use this to conserve normal breakpoint resources, so long as you're not concerned with code that branches directly to those hardware vectors. This always finishes by listing the current configuration. If parameters are provided, it first reconfigures the vector catch hardware to intercept @option{all} of the hardware vectors, @option{none} of them, or a list with one or more of the following: @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{irq} @option{fiq}. @end deffn @subsection ARM920T specific commands @cindex ARM920T These commands are available to ARM920T based CPUs, which are implementations of the ARMv4T architecture built using the ARM9TDMI integer core. They are available in addition to the ARM, ARM7/ARM9, and ARM9 commands. @deffn Command {arm920t cache_info} Print information about the caches found. This allows to see whether your target is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache). @end deffn @deffn Command {arm920t cp15} regnum [value] Display cp15 register @var{regnum}; else if a @var{value} is provided, that value is written to that register. This uses "physical access" and the register number is as shown in bits 38..33 of table 9-9 in the ARM920T TRM. (Not all registers can be written.) @end deffn @deffn Command {arm920t cp15i} opcode [value [address]] @emph{DEPRECATED -- avoid using this. Use the @command{arm mrc} or @command{arm mcr} commands instead.} Interpreted access using ARM instruction @var{opcode}, which should be the value of either an MRC or MCR instruction (as shown tables 9-11, 9-12, and 9-13 in the ARM920T TRM). If no @var{value} is provided, the result is displayed. Else if that value is written using the specified @var{address}, or using zero if no other address is provided. @end deffn @deffn Command {arm920t read_cache} filename Dump the content of ICache and DCache to a file named @file{filename}. @end deffn @deffn Command {arm920t read_mmu} filename Dump the content of the ITLB and DTLB to a file named @file{filename}. @end deffn @subsection ARM926ej-s specific commands @cindex ARM926ej-s These commands are available to ARM926ej-s based CPUs, which are implementations of the ARMv5TEJ architecture based on the ARM9EJ-S integer core. They are available in addition to the ARM, ARM7/ARM9, and ARM9 commands. The Feroceon cores also support these commands, although they are not built from ARM926ej-s designs. @deffn Command {arm926ejs cache_info} Print information about the caches found. @end deffn @subsection ARM966E specific commands @cindex ARM966E These commands are available to ARM966 based CPUs, which are implementations of the ARMv5TE architecture. They are available in addition to the ARM, ARM7/ARM9, and ARM9 commands. @deffn Command {arm966e cp15} regnum [value] Display cp15 register @var{regnum}; else if a @var{value} is provided, that value is written to that register. The six bit @var{regnum} values are bits 37..32 from table 7-2 of the ARM966E-S TRM. There is no current control over bits 31..30 from that table, as required for BIST support. @end deffn @subsection XScale specific commands @cindex XScale Some notes about the debug implementation on the XScale CPUs: The XScale CPU provides a special debug-only mini-instruction cache (mini-IC) in which exception vectors and target-resident debug handler code are placed by OpenOCD. In order to get access to the CPU, OpenOCD must point vector 0 (the reset vector) to the entry of the debug handler. However, this means that the complete first cacheline in the mini-IC is marked valid, which makes the CPU fetch all exception handlers from the mini-IC, ignoring the code in RAM. OpenOCD currently does not sync the mini-IC entries with the RAM contents (which would fail anyway while the target is running), so the user must provide appropriate values using the @code{xscale vector_table} command. It is recommended to place a pc-relative indirect branch in the vector table, and put the branch destination somewhere in memory. Doing so makes sure the code in the vector table stays constant regardless of code layout in memory: @example _vectors: ldr pc,[pc,#0x100-8] ldr pc,[pc,#0x100-8] ldr pc,[pc,#0x100-8] ldr pc,[pc,#0x100-8] ldr pc,[pc,#0x100-8] ldr pc,[pc,#0x100-8] ldr pc,[pc,#0x100-8] ldr pc,[pc,#0x100-8] .org 0x100 .long real_reset_vector .long real_ui_handler .long real_swi_handler .long real_pf_abort .long real_data_abort .long 0 /* unused */ .long real_irq_handler .long real_fiq_handler @end example The debug handler must be placed somewhere in the address space using the @code{xscale debug_handler} command. The allowed locations for the debug handler are either (0x800 - 0x1fef800) or (0xfe000800 - 0xfffff800). The default value is 0xfe000800. These commands are available to XScale based CPUs, which are implementations of the ARMv5TE architecture. @deffn Command {xscale analyze_trace} Displays the contents of the trace buffer. @end deffn @deffn Command {xscale cache_clean_address} address Changes the address used when cleaning the data cache. @end deffn @deffn Command {xscale cache_info} Displays information about the CPU caches. @end deffn @deffn Command {xscale cp15} regnum [value] Display cp15 register @var{regnum}; else if a @var{value} is provided, that value is written to that register. @end deffn @deffn Command {xscale debug_handler} target address Changes the address used for the specified target's debug handler. @end deffn @deffn Command {xscale dcache} [@option{enable}|@option{disable}] Enables or disable the CPU's data cache. @end deffn @deffn Command {xscale dump_trace} filename Dumps the raw contents of the trace buffer to @file{filename}. @end deffn @deffn Command {xscale icache} [@option{enable}|@option{disable}] Enables or disable the CPU's instruction cache. @end deffn @deffn Command {xscale mmu} [@option{enable}|@option{disable}] Enables or disable the CPU's memory management unit. @end deffn @deffn Command {xscale trace_buffer} [@option{enable}|@option{disable} [@option{fill} [n] | @option{wrap}]] Displays the trace buffer status, after optionally enabling or disabling the trace buffer and modifying how it is emptied. @end deffn @deffn Command {xscale trace_image} filename [offset [type]] Opens a trace image from @file{filename}, optionally rebasing its segment addresses by @var{offset}. The image @var{type} may be one of @option{bin} (binary), @option{ihex} (Intel hex), @option{elf} (ELF file), @option{s19} (Motorola s19), @option{mem}, or @option{builder}. @end deffn @anchor{xscale vector_catch} @deffn Command {xscale vector_catch} [mask] @cindex vector_catch Display a bitmask showing the hardware vectors to catch. If the optional parameter is provided, first set the bitmask to that value. The mask bits correspond with bit 16..23 in the DCSR: @example 0x01 Trap Reset 0x02 Trap Undefined Instructions 0x04 Trap Software Interrupt 0x08 Trap Prefetch Abort 0x10 Trap Data Abort 0x20 reserved 0x40 Trap IRQ 0x80 Trap FIQ @end example @end deffn @anchor{xscale vector_table} @deffn Command {xscale vector_table} [(@option{low}|@option{high}) index value] @cindex vector_table Set an entry in the mini-IC vector table. There are two tables: one for low vectors (at 0x00000000), and one for high vectors (0xFFFF0000), each holding the 8 exception vectors. @var{index} can be 1-7, because vector 0 points to the debug handler entry and can not be overwritten. @var{value} holds the 32-bit opcode that is placed in the mini-IC. Without arguments, the current settings are displayed. @end deffn @section ARMv6 Architecture @cindex ARMv6 @subsection ARM11 specific commands @cindex ARM11 @deffn Command {arm11 memwrite burst} [@option{enable}|@option{disable}] Displays the value of the memwrite burst-enable flag, which is enabled by default. If a boolean parameter is provided, first assigns that flag. Burst writes are only used for memory writes larger than 1 word. They improve performance by assuming that the CPU has read each data word over JTAG and completed its write before the next word arrives, instead of polling for a status flag to verify that completion. This is usually safe, because JTAG runs much slower than the CPU. @end deffn @deffn Command {arm11 memwrite error_fatal} [@option{enable}|@option{disable}] Displays the value of the memwrite error_fatal flag, which is enabled by default. If a boolean parameter is provided, first assigns that flag. When set, certain memory write errors cause earlier transfer termination. @end deffn @deffn Command {arm11 step_irq_enable} [@option{enable}|@option{disable}] Displays the value of the flag controlling whether IRQs are enabled during single stepping; they are disabled by default. If a boolean parameter is provided, first assigns that. @end deffn @deffn Command {arm11 vcr} [value] @cindex vector_catch Displays the value of the @emph{Vector Catch Register (VCR)}, coprocessor 14 register 7. If @var{value} is defined, first assigns that. Vector Catch hardware provides dedicated breakpoints for certain hardware events. The specific bit values are core-specific (as in fact is using coprocessor 14 register 7 itself) but all current ARM11 cores @emph{except the ARM1176} use the same six bits. @end deffn @section ARMv7 Architecture @cindex ARMv7 @subsection ARMv7 Debug Access Port (DAP) specific commands @cindex Debug Access Port @cindex DAP These commands are specific to ARM architecture v7 Debug Access Port (DAP), included on Cortex-M3 and Cortex-A8 systems. They are available in addition to other core-specific commands that may be available. @deffn Command {dap apid} [num] Displays ID register from AP @var{num}, defaulting to the currently selected AP. @end deffn @deffn Command {dap apsel} [num] Select AP @var{num}, defaulting to 0. @end deffn @deffn Command {dap baseaddr} [num] Displays debug base address from MEM-AP @var{num}, defaulting to the currently selected AP. @end deffn @deffn Command {dap info} [num] Displays the ROM table for MEM-AP @var{num}, defaulting to the currently selected AP. @end deffn @deffn Command {dap memaccess} [value] Displays the number of extra tck cycles in the JTAG idle to use for MEM-AP memory bus access [0-255], giving additional time to respond to reads. If @var{value} is defined, first assigns that. @end deffn @subsection Cortex-M3 specific commands @cindex Cortex-M3 @deffn Command {cortex_m3 disassemble} address [count] @cindex disassemble Disassembles @var{count} Thumb2 instructions starting at @var{address}. If @var{count} is not specified, a single instruction is disassembled. @end deffn @deffn Command {cortex_m3 maskisr} (@option{on}|@option{off}) Control masking (disabling) interrupts during target step/resume. @end deffn @deffn Command {cortex_m3 vector_catch} [@option{all}|@option{none}|list] @cindex vector_catch Vector Catch hardware provides dedicated breakpoints for certain hardware events. Parameters request interception of @option{all} of these hardware event vectors, @option{none} of them, or one or more of the following: @option{hard_err} for a HardFault exception; @option{mm_err} for a MemManage exception; @option{bus_err} for a BusFault exception; @option{irq_err}, @option{state_err}, @option{chk_err}, or @option{nocp_err} for various UsageFault exceptions; or @option{reset}. If NVIC setup code does not enable them, MemManage, BusFault, and UsageFault exceptions are mapped to HardFault. UsageFault checks for divide-by-zero and unaligned access must also be explicitly enabled. This finishes by listing the current vector catch configuration. @end deffn @anchor{Software Debug Messages and Tracing} @section Software Debug Messages and Tracing @cindex Linux-ARM DCC support @cindex tracing @cindex libdcc @cindex DCC OpenOCD can process certain requests from target software, when the target uses appropriate libraries. The most powerful mechanism is semihosting, but there is also a lighter weight mechanism using only the DCC channel. Currently @command{target_request debugmsgs} is supported only for @option{arm7_9} and @option{cortex_m3} cores. These messages are received as part of target polling, so you need to have @command{poll on} active to receive them. They are intrusive in that they will affect program execution times. If that is a problem, @pxref{ARM Hardware Tracing}. See @file{libdcc} in the contrib dir for more details. In addition to sending strings, characters, and arrays of various size integers from the target, @file{libdcc} also exports a software trace point mechanism. The target being debugged may issue trace messages which include a 24-bit @dfn{trace point} number. Trace point support includes two distinct mechanisms, each supported by a command: @itemize @item @emph{History} ... A circular buffer of trace points can be set up, and then displayed at any time. This tracks where code has been, which can be invaluable in finding out how some fault was triggered. The buffer may overflow, since it collects records continuously. It may be useful to use some of the 24 bits to represent a particular event, and other bits to hold data. @item @emph{Counting} ... An array of counters can be set up, and then displayed at any time. This can help establish code coverage and identify hot spots. The array of counters is directly indexed by the trace point number, so trace points with higher numbers are not counted. @end itemize Linux-ARM kernels have a ``Kernel low-level debugging via EmbeddedICE DCC channel'' option (CONFIG_DEBUG_ICEDCC, depends on CONFIG_DEBUG_LL) which uses this mechanism to deliver messages before a serial console can be activated. This is not the same format used by @file{libdcc}. Other software, such as the U-Boot boot loader, sometimes does the same thing. @deffn Command {target_request debugmsgs} [@option{enable}|@option{disable}|@option{charmsg}] Displays current handling of target DCC message requests. These messages may be sent to the debugger while the target is running. The optional @option{enable} and @option{charmsg} parameters both enable the messages, while @option{disable} disables them. With @option{charmsg} the DCC words each contain one character, as used by Linux with CONFIG_DEBUG_ICEDCC; otherwise the libdcc format is used. @end deffn @deffn Command {trace history} [@option{clear}|count] With no parameter, displays all the trace points that have triggered in the order they triggered. With the parameter @option{clear}, erases all current trace history records. With a @var{count} parameter, allocates space for that many history records. @end deffn @deffn Command {trace point} [@option{clear}|identifier] With no parameter, displays all trace point identifiers and how many times they have been triggered. With the parameter @option{clear}, erases all current trace point counters. With a numeric @var{identifier} parameter, creates a new a trace point counter and associates it with that identifier. @emph{Important:} The identifier and the trace point number are not related except by this command. These trace point numbers always start at zero (from server startup, or after @command{trace point clear}) and count up from there. @end deffn @node JTAG Commands @chapter JTAG Commands @cindex JTAG Commands Most general purpose JTAG commands have been presented earlier. (@xref{JTAG Speed}, @ref{Reset Configuration}, and @ref{TAP Declaration}.) Lower level JTAG commands, as presented here, may be needed to work with targets which require special attention during operations such as reset or initialization. To use these commands you will need to understand some of the basics of JTAG, including: @itemize @bullet @item A JTAG scan chain consists of a sequence of individual TAP devices such as a CPUs. @item Control operations involve moving each TAP through the same standard state machine (in parallel) using their shared TMS and clock signals. @item Data transfer involves shifting data through the chain of instruction or data registers of each TAP, writing new register values while the reading previous ones. @item Data register sizes are a function of the instruction active in a given TAP, while instruction register sizes are fixed for each TAP. All TAPs support a BYPASS instruction with a single bit data register. @item The way OpenOCD differentiates between TAP devices is by shifting different instructions into (and out of) their instruction registers. @end itemize @section Low Level JTAG Commands These commands are used by developers who need to access JTAG instruction or data registers, possibly controlling the order of TAP state transitions. If you're not debugging OpenOCD internals, or bringing up a new JTAG adapter or a new type of TAP device (like a CPU or JTAG router), you probably won't need to use these commands. @deffn Command {drscan} tap [numbits value]+ [@option{-endstate} tap_state] Loads the data register of @var{tap} with a series of bit fields that specify the entire register. Each field is @var{numbits} bits long with a numeric @var{value} (hexadecimal encouraged). The return value holds the original value of each of those fields. For example, a 38 bit number might be specified as one field of 32 bits then one of 6 bits. @emph{For portability, never pass fields which are more than 32 bits long. Many OpenOCD implementations do not support 64-bit (or larger) integer values.} All TAPs other than @var{tap} must be in BYPASS mode. The single bit in their data registers does not matter. When @var{tap_state} is specified, the JTAG state machine is left in that state. For example @sc{drpause} might be specified, so that more instructions can be issued before re-entering the @sc{run/idle} state. If the end state is not specified, the @sc{run/idle} state is entered. @quotation Warning OpenOCD does not record information about data register lengths, so @emph{it is important that you get the bit field lengths right}. Remember that different JTAG instructions refer to different data registers, which may have different lengths. Moreover, those lengths may not be fixed; the SCAN_N instruction can change the length of the register accessed by the INTEST instruction (by connecting a different scan chain). @end quotation @end deffn @deffn Command {flush_count} Returns the number of times the JTAG queue has been flushed. This may be used for performance tuning. For example, flushing a queue over USB involves a minimum latency, often several milliseconds, which does not change with the amount of data which is written. You may be able to identify performance problems by finding tasks which waste bandwidth by flushing small transfers too often, instead of batching them into larger operations. @end deffn @deffn Command {irscan} [tap instruction]+ [@option{-endstate} tap_state] For each @var{tap} listed, loads the instruction register with its associated numeric @var{instruction}. (The number of bits in that instruction may be displayed using the @command{scan_chain} command.) For other TAPs, a BYPASS instruction is loaded. When @var{tap_state} is specified, the JTAG state machine is left in that state. For example @sc{irpause} might be specified, so the data register can be loaded before re-entering the @sc{run/idle} state. If the end state is not specified, the @sc{run/idle} state is entered. @quotation Note OpenOCD currently supports only a single field for instruction register values, unlike data register values. For TAPs where the instruction register length is more than 32 bits, portable scripts currently must issue only BYPASS instructions. @end quotation @end deffn @deffn Command {jtag_reset} trst srst Set values of reset signals. The @var{trst} and @var{srst} parameter values may be @option{0}, indicating that reset is inactive (pulled or driven high), or @option{1}, indicating it is active (pulled or driven low). The @command{reset_config} command should already have been used to configure how the board and JTAG adapter treat these two signals, and to say if either signal is even present. @xref{Reset Configuration}. Note that TRST is specially handled. It actually signifies JTAG's @sc{reset} state. So if the board doesn't support the optional TRST signal, or it doesn't support it along with the specified SRST value, JTAG reset is triggered with TMS and TCK signals instead of the TRST signal. And no matter how that JTAG reset is triggered, once the scan chain enters @sc{reset} with TRST inactive, TAP @code{post-reset} events are delivered to all TAPs with handlers for that event. @end deffn @deffn Command {pathmove} start_state [next_state ...] Start by moving to @var{start_state}, which must be one of the @emph{stable} states. Unless it is the only state given, this will often be the current state, so that no TCK transitions are needed. Then, in a series of single state transitions (conforming to the JTAG state machine) shift to each @var{next_state} in sequence, one per TCK cycle. The final state must also be stable. @end deffn @deffn Command {runtest} @var{num_cycles} Move to the @sc{run/idle} state, and execute at least @var{num_cycles} of the JTAG clock (TCK). Instructions often need some time to execute before they take effect. @end deffn @c tms_sequence (short|long) @c ... temporary, debug-only, other than USBprog bug workaround... @deffn Command {verify_ircapture} (@option{enable}|@option{disable}) Verify values captured during @sc{ircapture} and returned during IR scans. Default is enabled, but this can be overridden by @command{verify_jtag}. This flag is ignored when validating JTAG chain configuration. @end deffn @deffn Command {verify_jtag} (@option{enable}|@option{disable}) Enables verification of DR and IR scans, to help detect programming errors. For IR scans, @command{verify_ircapture} must also be enabled. Default is enabled. @end deffn @section TAP state names @cindex TAP state names The @var{tap_state} names used by OpenOCD in the @command{drscan}, @command{irscan}, and @command{pathmove} commands are the same as those used in SVF boundary scan documents, except that SVF uses @sc{idle} instead of @sc{run/idle}. @itemize @bullet @item @b{RESET} ... @emph{stable} (with TMS high); acts as if TRST were pulsed @item @b{RUN/IDLE} ... @emph{stable}; don't assume this always means IDLE @item @b{DRSELECT} @item @b{DRCAPTURE} @item @b{DRSHIFT} ... @emph{stable}; TDI/TDO shifting through the data register @item @b{DREXIT1} @item @b{DRPAUSE} ... @emph{stable}; data register ready for update or more shifting @item @b{DREXIT2} @item @b{DRUPDATE} @item @b{IRSELECT} @item @b{IRCAPTURE} @item @b{IRSHIFT} ... @emph{stable}; TDI/TDO shifting through the instruction register @item @b{IREXIT1} @item @b{IRPAUSE} ... @emph{stable}; instruction register ready for update or more shifting @item @b{IREXIT2} @item @b{IRUPDATE} @end itemize Note that only six of those states are fully ``stable'' in the face of TMS fixed (low except for @sc{reset}) and a free-running JTAG clock. For all the others, the next TCK transition changes to a new state. @itemize @bullet @item From @sc{drshift} and @sc{irshift}, clock transitions will produce side effects by changing register contents. The values to be latched in upcoming @sc{drupdate} or @sc{irupdate} states may not be as expected. @item @sc{run/idle}, @sc{drpause}, and @sc{irpause} are reasonable choices after @command{drscan} or @command{irscan} commands, since they are free of JTAG side effects. @item @sc{run/idle} may have side effects that appear at non-JTAG levels, such as advancing the ARM9E-S instruction pipeline. Consult the documentation for the TAP(s) you are working with. @end itemize @node Boundary Scan Commands @chapter Boundary Scan Commands One of the original purposes of JTAG was to support boundary scan based hardware testing. Although its primary focus is to support On-Chip Debugging, OpenOCD also includes some boundary scan commands. @section SVF: Serial Vector Format @cindex Serial Vector Format @cindex SVF The Serial Vector Format, better known as @dfn{SVF}, is a way to represent JTAG test patterns in text files. OpenOCD supports running such test files. @deffn Command {svf} filename [@option{quiet}] This issues a JTAG reset (Test-Logic-Reset) and then runs the SVF script from @file{filename}. Unless the @option{quiet} option is specified, each command is logged before it is executed. @end deffn @section XSVF: Xilinx Serial Vector Format @cindex Xilinx Serial Vector Format @cindex XSVF The Xilinx Serial Vector Format, better known as @dfn{XSVF}, is a binary representation of SVF which is optimized for use with Xilinx devices. OpenOCD supports running such test files. @quotation Important Not all XSVF commands are supported. @end quotation @deffn Command {xsvf} (tapname|@option{plain}) filename [@option{virt2}] [@option{quiet}] This issues a JTAG reset (Test-Logic-Reset) and then runs the XSVF script from @file{filename}. When a @var{tapname} is specified, the commands are directed at that TAP. When @option{virt2} is specified, the @sc{xruntest} command counts are interpreted as TCK cycles instead of microseconds. Unless the @option{quiet} option is specified, messages are logged for comments and some retries. @end deffn The OpenOCD sources also include two utility scripts for working with XSVF; they are not currently installed after building the software. You may find them useful: @itemize @item @emph{svf2xsvf} ... converts SVF files into the extended XSVF syntax understood by the @command{xsvf} command; see notes below. @item @emph{xsvfdump} ... converts XSVF files into a text output format; understands the OpenOCD extensions. @end itemize The input format accepts a handful of non-standard extensions. These include three opcodes corresponding to SVF extensions from Lattice Semiconductor (LCOUNT, LDELAY, LDSR), and two opcodes supporting a more accurate translation of SVF (XTRST, XWAITSTATE). If @emph{xsvfdump} shows a file is using those opcodes, it probably will not be usable with other XSVF tools. @node TFTP @chapter TFTP @cindex TFTP If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can be used to access files on PCs (either the developer's PC or some other PC). The way this works on the ZY1000 is to prefix a filename by "/tftp/ip/" and append the TFTP path on the TFTP server (tftpd). For example, @example load_image /tftp/10.0.0.96/c:\temp\abc.elf @end example will load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as if the file was hosted on the embedded host. In order to achieve decent performance, you must choose a TFTP server that supports a packet size bigger than the default packet size (512 bytes). There are numerous TFTP servers out there (free and commercial) and you will have to do a bit of googling to find something that fits your requirements. @node GDB and OpenOCD @chapter GDB and OpenOCD @cindex GDB OpenOCD complies with the remote gdbserver protocol, and as such can be used to debug remote targets. Setting up GDB to work with OpenOCD can involve several components: @itemize @item The OpenOCD server support for GDB may need to be configured. @xref{GDB Configuration}. @item GDB's support for OpenOCD may need configuration, as shown in this chapter. @item If you have a GUI environment like Eclipse, that also will probably need to be configured. @end itemize Of course, the version of GDB you use will need to be one which has been built to know about the target CPU you're using. It's probably part of the tool chain you're using. For example, if you are doing cross-development for ARM on an x86 PC, instead of using the native x86 @command{gdb} command you might use @command{arm-none-eabi-gdb} if that's the tool chain used to compile your code. @anchor{Connecting to GDB} @section Connecting to GDB @cindex Connecting to GDB Use GDB 6.7 or newer with OpenOCD if you run into trouble. For instance GDB 6.3 has a known bug that produces bogus memory access errors, which has since been fixed; see @url{http://osdir.com/ml/gdb.bugs.discuss/2004-12/msg00018.html} OpenOCD can communicate with GDB in two ways: @enumerate @item A socket (TCP/IP) connection is typically started as follows: @example target remote localhost:3333 @end example This would cause GDB to connect to the gdbserver on the local pc using port 3333. @item A pipe connection is typically started as follows: @example target remote | openocd --pipe @end example This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout). Using this method has the advantage of GDB starting/stopping OpenOCD for the debug session. @end enumerate To list the available OpenOCD commands type @command{monitor help} on the GDB command line. @section Sample GDB session startup With the remote protocol, GDB sessions start a little differently than they do when you're debugging locally. Here's an examples showing how to start a debug session with a small ARM program. In this case the program was linked to be loaded into SRAM on a Cortex-M3. Most programs would be written into flash (address 0) and run from there. @example $ arm-none-eabi-gdb example.elf (gdb) target remote localhost:3333 Remote debugging using localhost:3333 ... (gdb) monitor reset halt ... (gdb) load Loading section .vectors, size 0x100 lma 0x20000000 Loading section .text, size 0x5a0 lma 0x20000100 Loading section .data, size 0x18 lma 0x200006a0 Start address 0x2000061c, load size 1720 Transfer rate: 22 KB/sec, 573 bytes/write. (gdb) continue Continuing. ... @end example You could then interrupt the GDB session to make the program break, type @command{where} to show the stack, @command{list} to show the code around the program counter, @command{step} through code, set breakpoints or watchpoints, and so on. @section Configuring GDB for OpenOCD OpenOCD supports the gdb @option{qSupported} packet, this enables information to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes packet size and the device's memory map. You do not need to configure the packet size by hand, and the relevant parts of the memory map should be automatically set up when you declare (NOR) flash banks. However, there are other things which GDB can't currently query. You may need to set those up by hand. As OpenOCD starts up, you will often see a line reporting something like: @example Info : lm3s.cpu: hardware has 6 breakpoints, 4 watchpoints @end example You can pass that information to GDB with these commands: @example set remote hardware-breakpoint-limit 6 set remote hardware-watchpoint-limit 4 @end example With that particular hardware (Cortex-M3) the hardware breakpoints only work for code running from flash memory. Most other ARM systems do not have such restrictions. Another example of useful GDB configuration came from a user who found that single stepping his Cortex-M3 didn't work well with IRQs and an RTOS until he told GDB to disable the IRQs while stepping: @example define hook-step mon cortex_m3 maskisr on end define hookpost-step mon cortex_m3 maskisr off end @end example Rather than typing such commands interactively, you may prefer to save them in a file and have GDB execute them as it starts, perhaps using a @file{.gdbinit} in your project directory or starting GDB using @command{gdb -x filename}. @section Programming using GDB @cindex Programming using GDB By default the target memory map is sent to GDB. This can be disabled by the following OpenOCD configuration option: @example gdb_memory_map disable @end example For this to function correctly a valid flash configuration must also be set in OpenOCD. For faster performance you should also configure a valid working area. Informing GDB of the memory map of the target will enable GDB to protect any flash areas of the target and use hardware breakpoints by default. This means that the OpenOCD option @command{gdb_breakpoint_override} is not required when using a memory map. @xref{gdb_breakpoint_override}. To view the configured memory map in GDB, use the GDB command @option{info mem} All other unassigned addresses within GDB are treated as RAM. GDB 6.8 and higher set any memory area not in the memory map as inaccessible. This can be changed to the old behaviour by using the following GDB command @example set mem inaccessible-by-default off @end example If @command{gdb_flash_program enable} is also used, GDB will be able to program any flash memory using the vFlash interface. GDB will look at the target memory map when a load command is given, if any areas to be programmed lie within the target flash area the vFlash packets will be used. If the target needs configuring before GDB programming, an event script can be executed: @example $_TARGETNAME configure -event EVENTNAME BODY @end example To verify any flash programming the GDB command @option{compare-sections} can be used. @node Tcl Scripting API @chapter Tcl Scripting API @cindex Tcl Scripting API @cindex Tcl scripts @section API rules The commands are stateless. E.g. the telnet command line has a concept of currently active target, the Tcl API proc's take this sort of state information as an argument to each proc. There are three main types of return values: single value, name value pair list and lists. Name value pair. The proc 'foo' below returns a name/value pair list. @verbatim > set foo(me) Duane > set foo(you) Oyvind > set foo(mouse) Micky > set foo(duck) Donald If one does this: > set foo The result is: me Duane you Oyvind mouse Micky duck Donald Thus, to get the names of the associative array is easy: foreach { name value } [set foo] { puts "Name: $name, Value: $value" } @end verbatim Lists returned must be relatively small. Otherwise a range should be passed in to the proc in question. @section Internal low-level Commands By low-level, the intent is a human would not directly use these commands. Low-level commands are (should be) prefixed with "ocd_", e.g. @command{ocd_flash_banks} is the low level API upon which @command{flash banks} is implemented. @itemize @bullet @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}> Read memory and return as a Tcl array for script processing @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}> Convert a Tcl array to memory locations and write the values @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...] Return information about the flash banks @end itemize OpenOCD commands can consist of two words, e.g. "flash banks". The @file{startup.tcl} "unknown" proc will translate this into a Tcl proc called "flash_banks". @section OpenOCD specific Global Variables Real Tcl has ::tcl_platform(), and platform::identify, and many other variables. JimTCL, as implemented in OpenOCD creates $ocd_HOSTOS which holds one of the following values: @itemize @bullet @item @b{cygwin} Running under Cygwin @item @b{darwin} Darwin (Mac-OS) is the underlying operating sytem. @item @b{freebsd} Running under FreeBSD @item @b{linux} Linux is the underlying operating sytem @item @b{mingw32} Running under MingW32 @item @b{winxx} Built using Microsoft Visual Studio @item @b{other} Unknown, none of the above. @end itemize Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64. @quotation Note We should add support for a variable like Tcl variable @code{tcl_platform(platform)}, it should be called @code{jim_platform} (because it is jim, not real tcl). @end quotation @node FAQ @chapter FAQ @cindex faq @enumerate @anchor{FAQ RTCK} @item @b{RTCK, also known as: Adaptive Clocking - What is it?} @cindex RTCK @cindex adaptive clocking @* In digital circuit design it is often refered to as ``clock synchronisation'' the JTAG interface uses one clock (TCK or TCLK) operating at some speed, your CPU target is operating at another. The two clocks are not synchronised, they are ``asynchronous'' In order for the two to work together they must be synchronised well enough to work; JTAG can't go ten times faster than the CPU, for example. There are 2 basic options: @enumerate @item Use a special "adaptive clocking" circuit to change the JTAG clock rate to match what the CPU currently supports. @item The JTAG clock must be fixed at some speed that's enough slower than the CPU clock that all TMS and TDI transitions can be detected. @end enumerate @b{Does this really matter?} For some chips and some situations, this is a non-issue, like a 500MHz ARM926 with a 5 MHz JTAG link; the CPU has no difficulty keeping up with JTAG. Startup sequences are often problematic though, as are other situations where the CPU clock rate changes (perhaps to save power). For example, Atmel AT91SAM chips start operation from reset with a 32kHz system clock. Boot firmware may activate the main oscillator and PLL before switching to a faster clock (perhaps that 500 MHz ARM926 scenario). If you're using JTAG to debug that startup sequence, you must slow the JTAG clock to sometimes 1 to 4kHz. After startup completes, JTAG can use a faster clock. Consider also debugging a 500MHz ARM926 hand held battery powered device that enters a low power ``deep sleep'' mode, at 32kHz CPU clock, between keystrokes unless it has work to do. When would that 5 MHz JTAG clock be usable? @b{Solution #1 - A special circuit} In order to make use of this, both your CPU and your JTAG dongle must support the RTCK feature. Not all dongles support this - keep reading! The RTCK ("Return TCK") signal in some ARM chips is used to help with this problem. ARM has a good description of the problem described at this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic work? / how does adaptive clocking work?''. The nice thing about adaptive clocking is that ``battery powered hand held device example'' - the adaptiveness works perfectly all the time. One can set a break point or halt the system in the deep power down code, slow step out until the system speeds up. Note that adaptive clocking may also need to work at the board level, when a board-level scan chain has multiple chips. Parallel clock voting schemes are good way to implement this, both within and between chips, and can easily be implemented with a CPLD. It's not difficult to have logic fan a module's input TCK signal out to each TAP in the scan chain, and then wait until each TAP's RTCK comes back with the right polarity before changing the output RTCK signal. Texas Instruments makes some clock voting logic available for free (with no support) in VHDL form; see @url{http://tiexpressdsp.com/index.php/Adaptive_Clocking} @b{Solution #2 - Always works - but may be slower} Often this is a perfectly acceptable solution. In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of the target clock speed. But what that ``magic division'' is varies depending on the chips on your board. @b{ARM rule of thumb} Most ARM based systems require an 6:1 division; ARM11 cores use an 8:1 division. @b{Xilinx rule of thumb} is 1/12 the clock speed. Note: Many FTDI2232C based JTAG dongles are limited to 6MHz. You can still debug the 'low power' situations - you just need to either use a fixed and very slow JTAG clock rate ... or else manually adjust the clock speed at every step. (Adjusting is painful and tedious, and is not always practical.) It is however easy to ``code your way around it'' - i.e.: Cheat a little, have a special debug mode in your application that does a ``high power sleep''. If you are careful - 98% of your problems can be debugged this way. Note that on ARM you may need to avoid using the @emph{wait for interrupt} operation in your idle loops even if you don't otherwise change the CPU clock rate. That operation gates the CPU clock, and thus the JTAG clock; which prevents JTAG access. One consequence is not being able to @command{halt} cores which are executing that @emph{wait for interrupt} operation. To set the JTAG frequency use the command: @example # Example: 1.234MHz jtag_khz 1234 @end example @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths? OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @} around Windows filenames. @example > echo \a > echo @{\a@} \a > echo "\a" > @end example @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll. Make sure you have Cygwin installed, or at least a version of OpenOCD that claims to come with all the necessary DLLs. When using Cygwin, try launching OpenOCD from the Cygwin shell. @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled". GDB issues software breakpoints when a normal breakpoint is requested, or to implement source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T, software breakpoints consume one of the two available hardware breakpoints. @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random. Make sure the core frequency specified in the @option{flash lpc2000} line matches the clock at the time you're programming the flash. If you've specified the crystal's frequency, make sure the PLL is disabled. If you've specified the full core speed (e.g. 60MHz), make sure the PLL is enabled. @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration, I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed out while waiting for end of scan, rtck was disabled". Make sure your PC's parallel port operates in EPP mode. You might have to try several settings in your PC BIOS (ECP, EPP, and different versions of those). @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse), I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory(): memory read caused data abort". The errors are non-fatal, and are the result of GDB trying to trace stack frames beyond the last valid frame. It might be possible to prevent this by setting up a proper "initial" stack frame, if you happen to know what exactly has to be done, feel free to add this here. @b{Simple:} In your startup code - push 8 registers of zeros onto the stack before calling main(). What GDB is doing is ``climbing'' the run time stack by reading various values on the stack using the standard call frame for the target. GDB keeps going - until one of 2 things happen @b{#1} an invalid frame is found, or @b{#2} some huge number of stackframes have been processed. By pushing zeros on the stack, GDB gracefully stops. @b{Debugging Interrupt Service Routines} - In your ISR before you call your C code, do the same - artifically push some zeros onto the stack, remember to pop them off when the ISR is done. @b{Also note:} If you have a multi-threaded operating system, they often do not @b{in the intrest of saving memory} waste these few bytes. Painful... @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file): "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too". This warning doesn't indicate any serious problem, as long as you don't want to debug your core right out of reset. Your .cfg file specified @option{jtag_reset trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board, your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals independently. With this setup, it's not possible to halt the core right out of reset, everything else should work fine. @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be unstable. When single-stepping over large blocks of code, GDB and OpenOCD quit with an error message. Is there a stability issue with OpenOCD? No, this is not a stability issue concerning OpenOCD. Most users have solved this issue by simply using a self-powered USB hub, which they connect their Amontec JTAGkey to. Apparently, some computers do not provide a USB power supply stable enough for the Amontec JTAGkey to be operated. @b{Laptops running on battery have this problem too...} @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned: 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232". What does that mean and what might be the reason for this? First of all, the reason might be the USB power supply. Try using a self-powered hub instead of a direct connection to your computer. Secondly, the error code 4 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB chip ran into some sort of error - this points us to a USB problem. @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054". What does that mean and what might be the reason for this? Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB) has closed the connection to OpenOCD. This might be a GDB issue. @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations are described, there is a parameter for specifying the clock frequency for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be specified in kilohertz. However, I do have a quartz crystal of a frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz). Is it possible to specify real numbers for the clock frequency? No. The clock frequency specified here must be given as an integral number. However, this clock frequency is used by the In-Application-Programming (IAP) routines of the LPC2000 family only, which seems to be very tolerant concerning the given clock frequency, so a slight difference between the specified clock frequency and the actual clock frequency will not cause any trouble. @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file? Well, yes and no. Commands can be given in arbitrary order, yet the devices listed for the JTAG scan chain must be given in the right order (jtag newdevice), with the device closest to the TDO-Pin being listed first. In general, whenever objects of the same type exist which require an index number, then these objects must be given in the right order (jtag newtap, targets and flash banks - a target references a jtag newtap and a flash bank references a target). You can use the ``scan_chain'' command to verify and display the tap order. Also, some commands can't execute until after @command{init} has been processed. Such commands include @command{nand probe} and everything else that needs to write to controller registers, perhaps for setting up DRAM and loading it with code. @anchor{FAQ TAP Order} @item @b{JTAG TAP Order} Do I have to declare the TAPS in some particular order? Yes; whenever you have more than one, you must declare them in the same order used by the hardware. Many newer devices have multiple JTAG TAPs. For example: ST Microsystems STM32 chips have two TAPs, a ``boundary scan TAP'' and ``Cortex-M3'' TAP. Example: The STM32 reference manual, Document ID: RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is connected to the boundary scan TAP, which then connects to the Cortex-M3 TAP, which then connects to the TDO pin. Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then (2) The boundary scan TAP. If your board includes an additional JTAG chip in the scan chain (for example a Xilinx CPLD or FPGA) you could place it before or after the STM32 chip in the chain. For example: @itemize @bullet @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input) @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input) @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input) @item Xilinx TDO Pin -> OpenOCD TDO (input) @end itemize The ``jtag device'' commands would thus be in the order shown below. Note: @itemize @bullet @item jtag newtap Xilinx tap -irlen ... @item jtag newtap stm32 cpu -irlen ... @item jtag newtap stm32 bs -irlen ... @item # Create the debug target and say where it is @item target create stm32.cpu -chain-position stm32.cpu ... @end itemize @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the log file, I can see these error messages: Error: arm7_9_common.c:561 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP TODO. @end enumerate @node Tcl Crash Course @chapter Tcl Crash Course @cindex Tcl Not everyone knows Tcl - this is not intended to be a replacement for learning Tcl, the intent of this chapter is to give you some idea of how the Tcl scripts work. This chapter is written with two audiences in mind. (1) OpenOCD users who need to understand a bit more of how JIM-Tcl works so they can do something useful, and (2) those that want to add a new command to OpenOCD. @section Tcl Rule #1 There is a famous joke, it goes like this: @enumerate @item Rule #1: The wife is always correct @item Rule #2: If you think otherwise, See Rule #1 @end enumerate The Tcl equal is this: @enumerate @item Rule #1: Everything is a string @item Rule #2: If you think otherwise, See Rule #1 @end enumerate As in the famous joke, the consequences of Rule #1 are profound. Once you understand Rule #1, you will understand Tcl. @section Tcl Rule #1b There is a second pair of rules. @enumerate @item Rule #1: Control flow does not exist. Only commands @* For example: the classic FOR loop or IF statement is not a control flow item, they are commands, there is no such thing as control flow in Tcl. @item Rule #2: If you think otherwise, See Rule #1 @* Actually what happens is this: There are commands that by convention, act like control flow key words in other languages. One of those commands is the word ``for'', another command is ``if''. @end enumerate @section Per Rule #1 - All Results are strings Every Tcl command results in a string. The word ``result'' is used deliberatly. No result is just an empty string. Remember: @i{Rule #1 - Everything is a string} @section Tcl Quoting Operators In life of a Tcl script, there are two important periods of time, the difference is subtle. @enumerate @item Parse Time @item Evaluation Time @end enumerate The two key items here are how ``quoted things'' work in Tcl. Tcl has three primary quoting constructs, the [square-brackets] the @{curly-braces@} and ``double-quotes'' By now you should know $VARIABLES always start with a $DOLLAR sign. BTW: To set a variable, you actually use the command ``set'', as in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x = 1'' statement, but without the equal sign. @itemize @bullet @item @b{[square-brackets]} @* @b{[square-brackets]} are command substitutions. It operates much like Unix Shell `back-ticks`. The result of a [square-bracket] operation is exactly 1 string. @i{Remember Rule #1 - Everything is a string}. These two statements are roughly identical: @example # bash example X=`date` echo "The Date is: $X" # Tcl example set X [date] puts "The Date is: $X" @end example @item @b{``double-quoted-things''} @* @b{``double-quoted-things''} are just simply quoted text. $VARIABLES and [square-brackets] are expanded in place - the result however is exactly 1 string. @i{Remember Rule #1 - Everything is a string} @example set x "Dinner" puts "It is now \"[date]\", $x is in 1 hour" @end example @item @b{@{Curly-Braces@}} @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are parsed, but are NOT expanded or executed. @{Curly-Braces@} are like 'single-quote' operators in BASH shell scripts, with the added feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is nested 3 times@}@}@} NOTE: [date] is a bad example; at this writing, Jim/OpenOCD does not have a date command. @end itemize @section Consequences of Rule 1/2/3/4 The consequences of Rule 1 are profound. @subsection Tokenisation & Execution. Of course, whitespace, blank lines and #comment lines are handled in the normal way. As a script is parsed, each (multi) line in the script file is tokenised and according to the quoting rules. After tokenisation, that line is immedatly executed. Multi line statements end with one or more ``still-open'' @{curly-braces@} which - eventually - closes a few lines later. @subsection Command Execution Remember earlier: There are no ``control flow'' statements in Tcl. Instead there are COMMANDS that simply act like control flow operators. Commands are executed like this: @enumerate @item Parse the next line into (argc) and (argv[]). @item Look up (argv[0]) in a table and call its function. @item Repeat until End Of File. @end enumerate It sort of works like this: @example for(;;)@{ ReadAndParse( &argc, &argv ); cmdPtr = LookupCommand( argv[0] ); (*cmdPtr->Execute)( argc, argv ); @} @end example When the command ``proc'' is parsed (which creates a procedure function) it gets 3 parameters on the command line. @b{1} the name of the proc (function), @b{2} the list of parameters, and @b{3} the body of the function. Not the choice of words: LIST and BODY. The PROC command stores these items in a table somewhere so it can be found by ``LookupCommand()'' @subsection The FOR command The most interesting command to look at is the FOR command. In Tcl, the FOR command is normally implemented in C. Remember, FOR is a command just like any other command. When the ascii text containing the FOR command is parsed, the parser produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they are: @enumerate 0 @item The ascii text 'for' @item The start text @item The test expression @item The next text @item The body text @end enumerate Sort of reminds you of ``main( int argc, char **argv )'' does it not? Remember @i{Rule #1 - Everything is a string.} The key point is this: Often many of those parameters are in @{curly-braces@} - thus the variables inside are not expanded or replaced until later. Remember that every Tcl command looks like the classic ``main( argc, argv )'' function in C. In JimTCL - they actually look like this: @example int MyCommand( Jim_Interp *interp, int *argc, Jim_Obj * const *argvs ); @end example Real Tcl is nearly identical. Although the newer versions have introduced a byte-code parser and intepreter, but at the core, it still operates in the same basic way. @subsection FOR command implementation To understand Tcl it is perhaps most helpful to see the FOR command. Remember, it is a COMMAND not a control flow structure. In Tcl there are two underlying C helper functions. Remember Rule #1 - You are a string. The @b{first} helper parses and executes commands found in an ascii string. Commands can be seperated by semicolons, or newlines. While parsing, variables are expanded via the quoting rules. The @b{second} helper evaluates an ascii string as a numerical expression and returns a value. Here is an example of how the @b{FOR} command could be implemented. The pseudo code below does not show error handling. @example void Execute_AsciiString( void *interp, const char *string ); int Evaluate_AsciiExpression( void *interp, const char *string ); int MyForCommand( void *interp, int argc, char **argv ) @{ if( argc != 5 )@{ SetResult( interp, "WRONG number of parameters"); return ERROR; @} // argv[0] = the ascii string just like C // Execute the start statement. Execute_AsciiString( interp, argv[1] ); // Top of loop test for(;;)@{ i = Evaluate_AsciiExpression(interp, argv[2]); if( i == 0 ) break; // Execute the body Execute_AsciiString( interp, argv[3] ); // Execute the LOOP part Execute_AsciiString( interp, argv[4] ); @} // Return no error SetResult( interp, "" ); return SUCCESS; @} @end example Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works in the same basic way. @section OpenOCD Tcl Usage @subsection source and find commands @b{Where:} In many configuration files @* Example: @b{ source [find FILENAME] } @*Remember the parsing rules @enumerate @item The FIND command is in square brackets. @* The FIND command is executed with the parameter FILENAME. It should find the full path to the named file. The RESULT is a string, which is substituted on the orginal command line. @item The command source is executed with the resulting filename. @* SOURCE reads a file and executes as a script. @end enumerate @subsection format command @b{Where:} Generally occurs in numerous places. @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like @b{sprintf()}. @b{Example} @example set x 6 set y 7 puts [format "The answer: %d" [expr $x * $y]] @end example @enumerate @item The SET command creates 2 variables, X and Y. @item The double [nested] EXPR command performs math @* The EXPR command produces numerical result as a string. @* Refer to Rule #1 @item The format command is executed, producing a single string @* Refer to Rule #1. @item The PUTS command outputs the text. @end enumerate @subsection Body or Inlined Text @b{Where:} Various TARGET scripts. @example #1 Good proc someproc @{@} @{ ... multiple lines of stuff ... @} $_TARGETNAME configure -event FOO someproc #2 Good - no variables $_TARGETNAME confgure -event foo "this ; that;" #3 Good Curly Braces $_TARGETNAME configure -event FOO @{ puts "Time: [date]" @} #4 DANGER DANGER DANGER $_TARGETNAME configure -event foo "puts \"Time: [date]\"" @end example @enumerate @item The $_TARGETNAME is an OpenOCD variable convention. @*@b{$_TARGETNAME} represents the last target created, the value changes each time a new target is created. Remember the parsing rules. When the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string, the name of the target which happens to be a TARGET (object) command. @item The 2nd parameter to the @option{-event} parameter is a TCBODY @*There are 4 examples: @enumerate @item The TCLBODY is a simple string that happens to be a proc name @item The TCLBODY is several simple commands seperated by semicolons @item The TCLBODY is a multi-line @{curly-brace@} quoted string @item The TCLBODY is a string with variables that get expanded. @end enumerate In the end, when the target event FOO occurs the TCLBODY is evaluated. Method @b{#1} and @b{#2} are functionally identical. For Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY? Remember the parsing rules. In case #3, @{curly-braces@} mean the $VARS and [square-brackets] are expanded later, when the EVENT occurs, and the text is evaluated. In case #4, they are replaced before the ``Target Object Command'' is executed. This occurs at the same time $_TARGETNAME is replaced. In case #4 the date will never change. @{BTW: [date] is a bad example; at this writing, Jim/OpenOCD does not have a date command@} @end enumerate @subsection Global Variables @b{Where:} You might discover this when writing your own procs @* In simple terms: Inside a PROC, if you need to access a global variable you must say so. See also ``upvar''. Example: @example proc myproc @{ @} @{ set y 0 #Local variable Y global x #Global variable X puts [format "X=%d, Y=%d" $x $y] @} @end example @section Other Tcl Hacks @b{Dynamic variable creation} @example # Dynamically create a bunch of variables. for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{ # Create var name set vn [format "BIT%d" $x] # Make it a global global $vn # Set it. set $vn [expr (1 << $x)] @} @end example @b{Dynamic proc/command creation} @example # One "X" function - 5 uart functions. foreach who @{A B C D E@} proc [format "show_uart%c" $who] @{ @} "show_UARTx $who" @} @end example @include fdl.texi @node OpenOCD Concept Index @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename @comment case issue with ``Index.html'' and ``index.html'' @comment Occurs when creating ``--html --no-split'' output @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html @unnumbered OpenOCD Concept Index @printindex cp @node Command and Driver Index @unnumbered Command and Driver Index @printindex fn @bye