/*************************************************************************** * Copyright (C) 2005, 2007 by Dominic Rath * * Dominic.Rath@gmx.de * * Copyright (C) 2009 Michael Schwingen * * michael@schwingen.org * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "cfi.h" #include "non_cfi.h" #include "armv4_5.h" #include "binarybuffer.h" static int cfi_register_commands(struct command_context_s *cmd_ctx); static int cfi_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank); static int cfi_erase(struct flash_bank_s *bank, int first, int last); static int cfi_protect(struct flash_bank_s *bank, int set, int first, int last); static int cfi_write(struct flash_bank_s *bank, uint8_t *buffer, uint32_t offset, uint32_t count); static int cfi_probe(struct flash_bank_s *bank); static int cfi_auto_probe(struct flash_bank_s *bank); static int cfi_protect_check(struct flash_bank_s *bank); static int cfi_info(struct flash_bank_s *bank, char *buf, int buf_size); //static int cfi_handle_part_id_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); #define CFI_MAX_BUS_WIDTH 4 #define CFI_MAX_CHIP_WIDTH 4 /* defines internal maximum size for code fragment in cfi_intel_write_block() */ #define CFI_MAX_INTEL_CODESIZE 256 flash_driver_t cfi_flash = { .name = "cfi", .register_commands = cfi_register_commands, .flash_bank_command = cfi_flash_bank_command, .erase = cfi_erase, .protect = cfi_protect, .write = cfi_write, .probe = cfi_probe, .auto_probe = cfi_auto_probe, .erase_check = default_flash_blank_check, .protect_check = cfi_protect_check, .info = cfi_info }; static cfi_unlock_addresses_t cfi_unlock_addresses[] = { [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa }, [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa }, }; /* CFI fixups foward declarations */ static void cfi_fixup_0002_erase_regions(flash_bank_t *flash, void *param); static void cfi_fixup_0002_unlock_addresses(flash_bank_t *flash, void *param); static void cfi_fixup_atmel_reversed_erase_regions(flash_bank_t *flash, void *param); /* fixup after reading cmdset 0002 primary query table */ static cfi_fixup_t cfi_0002_fixups[] = { {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL}, {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]}, {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]}, {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]}, {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL}, {0, 0, NULL, NULL} }; /* fixup after reading cmdset 0001 primary query table */ static cfi_fixup_t cfi_0001_fixups[] = { {0, 0, NULL, NULL} }; static void cfi_fixup(flash_bank_t *bank, cfi_fixup_t *fixups) { cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_fixup_t *f; for (f = fixups; f->fixup; f++) { if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) && ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id))) { f->fixup(bank, f->param); } } } /* inline uint32_t flash_address(flash_bank_t *bank, int sector, uint32_t offset) */ static __inline__ uint32_t flash_address(flash_bank_t *bank, int sector, uint32_t offset) { cfi_flash_bank_t *cfi_info = bank->driver_priv; if (cfi_info->x16_as_x8) offset *= 2; /* while the sector list isn't built, only accesses to sector 0 work */ if (sector == 0) return bank->base + offset * bank->bus_width; else { if (!bank->sectors) { LOG_ERROR("BUG: sector list not yet built"); exit(-1); } return bank->base + bank->sectors[sector].offset + offset * bank->bus_width; } } static void cfi_command(flash_bank_t *bank, uint8_t cmd, uint8_t *cmd_buf) { int i; /* clear whole buffer, to ensure bits that exceed the bus_width * are set to zero */ for (i = 0; i < CFI_MAX_BUS_WIDTH; i++) cmd_buf[i] = 0; if (bank->target->endianness == TARGET_LITTLE_ENDIAN) { for (i = bank->bus_width; i > 0; i--) { *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd; } } else { for (i = 1; i <= bank->bus_width; i++) { *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd; } } } /* read unsigned 8-bit value from the bank * flash banks are expected to be made of similar chips * the query result should be the same for all */ static uint8_t cfi_query_u8(flash_bank_t *bank, int sector, uint32_t offset) { target_t *target = bank->target; uint8_t data[CFI_MAX_BUS_WIDTH]; target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data); if (bank->target->endianness == TARGET_LITTLE_ENDIAN) return data[0]; else return data[bank->bus_width - 1]; } /* read unsigned 8-bit value from the bank * in case of a bank made of multiple chips, * the individual values are ORed */ static uint8_t cfi_get_u8(flash_bank_t *bank, int sector, uint32_t offset) { target_t *target = bank->target; uint8_t data[CFI_MAX_BUS_WIDTH]; int i; target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data); if (bank->target->endianness == TARGET_LITTLE_ENDIAN) { for (i = 0; i < bank->bus_width / bank->chip_width; i++) data[0] |= data[i]; return data[0]; } else { uint8_t value = 0; for (i = 0; i < bank->bus_width / bank->chip_width; i++) value |= data[bank->bus_width - 1 - i]; return value; } } static uint16_t cfi_query_u16(flash_bank_t *bank, int sector, uint32_t offset) { target_t *target = bank->target; cfi_flash_bank_t *cfi_info = bank->driver_priv; uint8_t data[CFI_MAX_BUS_WIDTH * 2]; if (cfi_info->x16_as_x8) { uint8_t i; for (i = 0;i < 2;i++) target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1, &data[i*bank->bus_width]); } else target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data); if (bank->target->endianness == TARGET_LITTLE_ENDIAN) return data[0] | data[bank->bus_width] << 8; else return data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8; } static uint32_t cfi_query_u32(flash_bank_t *bank, int sector, uint32_t offset) { target_t *target = bank->target; cfi_flash_bank_t *cfi_info = bank->driver_priv; uint8_t data[CFI_MAX_BUS_WIDTH * 4]; if (cfi_info->x16_as_x8) { uint8_t i; for (i = 0;i < 4;i++) target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1, &data[i*bank->bus_width]); } else target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data); if (bank->target->endianness == TARGET_LITTLE_ENDIAN) return data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24; else return data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 | data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24; } static void cfi_intel_clear_status_register(flash_bank_t *bank) { target_t *target = bank->target; uint8_t command[8]; if (target->state != TARGET_HALTED) { LOG_ERROR("BUG: attempted to clear status register while target wasn't halted"); exit(-1); } cfi_command(bank, 0x50, command); target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command); } uint8_t cfi_intel_wait_status_busy(flash_bank_t *bank, int timeout) { uint8_t status; while ((!((status = cfi_get_u8(bank, 0, 0x0)) & 0x80)) && (timeout-- > 0)) { LOG_DEBUG("status: 0x%x", status); alive_sleep(1); } /* mask out bit 0 (reserved) */ status = status & 0xfe; LOG_DEBUG("status: 0x%x", status); if ((status & 0x80) != 0x80) { LOG_ERROR("timeout while waiting for WSM to become ready"); } else if (status != 0x80) { LOG_ERROR("status register: 0x%x", status); if (status & 0x2) LOG_ERROR("Block Lock-Bit Detected, Operation Abort"); if (status & 0x4) LOG_ERROR("Program suspended"); if (status & 0x8) LOG_ERROR("Low Programming Voltage Detected, Operation Aborted"); if (status & 0x10) LOG_ERROR("Program Error / Error in Setting Lock-Bit"); if (status & 0x20) LOG_ERROR("Error in Block Erasure or Clear Lock-Bits"); if (status & 0x40) LOG_ERROR("Block Erase Suspended"); cfi_intel_clear_status_register(bank); } return status; } int cfi_spansion_wait_status_busy(flash_bank_t *bank, int timeout) { uint8_t status, oldstatus; cfi_flash_bank_t *cfi_info = bank->driver_priv; oldstatus = cfi_get_u8(bank, 0, 0x0); do { status = cfi_get_u8(bank, 0, 0x0); if ((status ^ oldstatus) & 0x40) { if (status & cfi_info->status_poll_mask & 0x20) { oldstatus = cfi_get_u8(bank, 0, 0x0); status = cfi_get_u8(bank, 0, 0x0); if ((status ^ oldstatus) & 0x40) { LOG_ERROR("dq5 timeout, status: 0x%x", status); return(ERROR_FLASH_OPERATION_FAILED); } else { LOG_DEBUG("status: 0x%x", status); return(ERROR_OK); } } } else { /* no toggle: finished, OK */ LOG_DEBUG("status: 0x%x", status); return(ERROR_OK); } oldstatus = status; alive_sleep(1); } while (timeout-- > 0); LOG_ERROR("timeout, status: 0x%x", status); return(ERROR_FLASH_BUSY); } static int cfi_read_intel_pri_ext(flash_bank_t *bank) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_intel_pri_ext_t *pri_ext = malloc(sizeof(cfi_intel_pri_ext_t)); target_t *target = bank->target; uint8_t command[8]; cfi_info->pri_ext = pri_ext; pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0); pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1); pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2); if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) { cfi_command(bank, 0xf0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0xff, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("Could not read bank flash bank information"); return ERROR_FLASH_BANK_INVALID; } pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3); pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4); LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version); pri_ext->feature_support = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5); pri_ext->suspend_cmd_support = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9); pri_ext->blk_status_reg_mask = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa); LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask); pri_ext->vcc_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc); pri_ext->vpp_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd); LOG_DEBUG("Vcc opt: %1.1x.%1.1x, Vpp opt: %1.1x.%1.1x", (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f, (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f); pri_ext->num_protection_fields = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe); if (pri_ext->num_protection_fields != 1) { LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields); } pri_ext->prot_reg_addr = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf); pri_ext->fact_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11); pri_ext->user_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12); LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size); return ERROR_OK; } static int cfi_read_spansion_pri_ext(flash_bank_t *bank) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = malloc(sizeof(cfi_spansion_pri_ext_t)); target_t *target = bank->target; uint8_t command[8]; cfi_info->pri_ext = pri_ext; pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0); pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1); pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2); if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) { cfi_command(bank, 0xf0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("Could not read spansion bank information"); return ERROR_FLASH_BANK_INVALID; } pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3); pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4); LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version); pri_ext->SiliconRevision = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5); pri_ext->EraseSuspend = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6); pri_ext->BlkProt = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7); pri_ext->TmpBlkUnprotect = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8); pri_ext->BlkProtUnprot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9); pri_ext->SimultaneousOps = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10); pri_ext->BurstMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11); pri_ext->PageMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12); pri_ext->VppMin = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13); pri_ext->VppMax = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14); pri_ext->TopBottom = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15); LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt); LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect, pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps); LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode); LOG_DEBUG("Vpp min: %2.2d.%1.1d, Vpp max: %2.2d.%1.1x", (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f, (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f); LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom); /* default values for implementation specific workarounds */ pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1; pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2; pri_ext->_reversed_geometry = 0; return ERROR_OK; } static int cfi_read_atmel_pri_ext(flash_bank_t *bank) { int retval; cfi_atmel_pri_ext_t atmel_pri_ext; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = malloc(sizeof(cfi_spansion_pri_ext_t)); target_t *target = bank->target; uint8_t command[8]; /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion, * but a different primary extended query table. * We read the atmel table, and prepare a valid AMD/Spansion query table. */ memset(pri_ext, 0, sizeof(cfi_spansion_pri_ext_t)); cfi_info->pri_ext = pri_ext; atmel_pri_ext.pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0); atmel_pri_ext.pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1); atmel_pri_ext.pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2); if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I')) { cfi_command(bank, 0xf0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("Could not read atmel bank information"); return ERROR_FLASH_BANK_INVALID; } pri_ext->pri[0] = atmel_pri_ext.pri[0]; pri_ext->pri[1] = atmel_pri_ext.pri[1]; pri_ext->pri[2] = atmel_pri_ext.pri[2]; atmel_pri_ext.major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3); atmel_pri_ext.minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4); LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version); pri_ext->major_version = atmel_pri_ext.major_version; pri_ext->minor_version = atmel_pri_ext.minor_version; atmel_pri_ext.features = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5); atmel_pri_ext.bottom_boot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6); atmel_pri_ext.burst_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7); atmel_pri_ext.page_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8); LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x", atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode); if (atmel_pri_ext.features & 0x02) pri_ext->EraseSuspend = 2; if (atmel_pri_ext.bottom_boot) pri_ext->TopBottom = 2; else pri_ext->TopBottom = 3; pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1; pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2; return ERROR_OK; } static int cfi_read_0002_pri_ext(flash_bank_t *bank) { cfi_flash_bank_t *cfi_info = bank->driver_priv; if (cfi_info->manufacturer == CFI_MFR_ATMEL) { return cfi_read_atmel_pri_ext(bank); } else { return cfi_read_spansion_pri_ext(bank); } } static int cfi_spansion_info(struct flash_bank_s *bank, char *buf, int buf_size) { int printed; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext; printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n"); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n", (pri_ext->SiliconRevision) >> 2, (pri_ext->SiliconRevision) & 0x03); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n", pri_ext->EraseSuspend, pri_ext->BlkProt); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "VppMin: %2.2d.%1.1x, VppMax: %2.2d.%1.1x\n", (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f, (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f); return ERROR_OK; } static int cfi_intel_info(struct flash_bank_s *bank, char *buf, int buf_size) { int printed; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext; printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n"); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "Vcc opt: %1.1x.%1.1x, Vpp opt: %1.1x.%1.1x\n", (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f, (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size); return ERROR_OK; } static int cfi_register_commands(struct command_context_s *cmd_ctx) { /*command_t *cfi_cmd = */ register_command(cmd_ctx, NULL, "cfi", NULL, COMMAND_ANY, "flash bank cfi <base> <size> <chip_width> <bus_width> <targetNum> [jedec_probe/x16_as_x8]"); /* register_command(cmd_ctx, cfi_cmd, "part_id", cfi_handle_part_id_command, COMMAND_EXEC, "print part id of cfi flash bank <num>"); */ return ERROR_OK; } /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options] */ static int cfi_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank) { cfi_flash_bank_t *cfi_info; int i; (void) cmd_ctx; (void) cmd; if (argc < 6) { LOG_WARNING("incomplete flash_bank cfi configuration"); return ERROR_FLASH_BANK_INVALID; } if ((strtoul(args[4], NULL, 0) > CFI_MAX_CHIP_WIDTH) || (strtoul(args[3], NULL, 0) > CFI_MAX_BUS_WIDTH)) { LOG_ERROR("chip and bus width have to specified in bytes"); return ERROR_FLASH_BANK_INVALID; } cfi_info = malloc(sizeof(cfi_flash_bank_t)); cfi_info->probed = 0; bank->driver_priv = cfi_info; cfi_info->write_algorithm = NULL; cfi_info->x16_as_x8 = 0; cfi_info->jedec_probe = 0; cfi_info->not_cfi = 0; for (i = 6; i < argc; i++) { if (strcmp(args[i], "x16_as_x8") == 0) { cfi_info->x16_as_x8 = 1; } else if (strcmp(args[i], "jedec_probe") == 0) { cfi_info->jedec_probe = 1; } } cfi_info->write_algorithm = NULL; /* bank wasn't probed yet */ cfi_info->qry[0] = -1; return ERROR_OK; } static int cfi_intel_erase(struct flash_bank_s *bank, int first, int last) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; target_t *target = bank->target; uint8_t command[8]; int i; cfi_intel_clear_status_register(bank); for (i = first; i <= last; i++) { cfi_command(bank, 0x20, command); if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0xd0, command); if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == 0x80) bank->sectors[i].is_erased = 1; else { cfi_command(bank, 0xff, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base); return ERROR_FLASH_OPERATION_FAILED; } } cfi_command(bank, 0xff, command); return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command); } static int cfi_spansion_erase(struct flash_bank_s *bank, int first, int last) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext; target_t *target = bank->target; uint8_t command[8]; int i; for (i = first; i <= last; i++) { cfi_command(bank, 0xaa, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x55, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x80, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0xaa, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x55, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x30, command); if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK) bank->sectors[i].is_erased = 1; else { cfi_command(bank, 0xf0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32, i, bank->base); return ERROR_FLASH_OPERATION_FAILED; } } cfi_command(bank, 0xf0, command); return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command); } static int cfi_erase(struct flash_bank_s *bank, int first, int last) { cfi_flash_bank_t *cfi_info = bank->driver_priv; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first < 0) || (last < first) || (last >= bank->num_sectors)) { return ERROR_FLASH_SECTOR_INVALID; } if (cfi_info->qry[0] != 'Q') return ERROR_FLASH_BANK_NOT_PROBED; switch (cfi_info->pri_id) { case 1: case 3: return cfi_intel_erase(bank, first, last); break; case 2: return cfi_spansion_erase(bank, first, last); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } return ERROR_OK; } static int cfi_intel_protect(struct flash_bank_s *bank, int set, int first, int last) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext; target_t *target = bank->target; uint8_t command[8]; int retry = 0; int i; /* if the device supports neither legacy lock/unlock (bit 3) nor * instant individual block locking (bit 5). */ if (!(pri_ext->feature_support & 0x28)) return ERROR_FLASH_OPERATION_FAILED; cfi_intel_clear_status_register(bank); for (i = first; i <= last; i++) { cfi_command(bank, 0x60, command); LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command)); if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if (set) { cfi_command(bank, 0x01, command); LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32 , flash_address(bank, i, 0x0), target_buffer_get_u32(target, command)); if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } bank->sectors[i].is_protected = 1; } else { cfi_command(bank, 0xd0, command); LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command)); if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } bank->sectors[i].is_protected = 0; } /* instant individual block locking doesn't require reading of the status register */ if (!(pri_ext->feature_support & 0x20)) { /* Clear lock bits operation may take up to 1.4s */ cfi_intel_wait_status_busy(bank, 1400); } else { uint8_t block_status; /* read block lock bit, to verify status */ cfi_command(bank, 0x90, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } block_status = cfi_get_u8(bank, i, 0x2); if ((block_status & 0x1) != set) { LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status); cfi_command(bank, 0x70, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_intel_wait_status_busy(bank, 10); if (retry > 10) return ERROR_FLASH_OPERATION_FAILED; else { i--; retry++; } } } } /* if the device doesn't support individual block lock bits set/clear, * all blocks have been unlocked in parallel, so we set those that should be protected */ if ((!set) && (!(pri_ext->feature_support & 0x20))) { for (i = 0; i < bank->num_sectors; i++) { if (bank->sectors[i].is_protected == 1) { cfi_intel_clear_status_register(bank); cfi_command(bank, 0x60, command); if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x01, command); if ((retval = target_write_memory(target, flash_address(bank, i, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_intel_wait_status_busy(bank, 100); } } } cfi_command(bank, 0xff, command); return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command); } static int cfi_protect(struct flash_bank_s *bank, int set, int first, int last) { cfi_flash_bank_t *cfi_info = bank->driver_priv; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first < 0) || (last < first) || (last >= bank->num_sectors)) { return ERROR_FLASH_SECTOR_INVALID; } if (cfi_info->qry[0] != 'Q') return ERROR_FLASH_BANK_NOT_PROBED; switch (cfi_info->pri_id) { case 1: case 3: cfi_intel_protect(bank, set, first, last); break; default: LOG_ERROR("protect: cfi primary command set %i unsupported", cfi_info->pri_id); break; } return ERROR_OK; } /* FIXME Replace this by a simple memcpy() - still unsure about sideeffects */ static void cfi_add_byte(struct flash_bank_s *bank, uint8_t *word, uint8_t byte) { /* target_t *target = bank->target; */ int i; /* NOTE: * The data to flash must not be changed in endian! We write a bytestrem in * target byte order already. Only the control and status byte lane of the flash * WSM is interpreted by the CPU in different ways, when read a uint16_t or uint32_t * word (data seems to be in the upper or lower byte lane for uint16_t accesses). */ #if 0 if (target->endianness == TARGET_LITTLE_ENDIAN) { #endif /* shift bytes */ for (i = 0; i < bank->bus_width - 1; i++) word[i] = word[i + 1]; word[bank->bus_width - 1] = byte; #if 0 } else { /* shift bytes */ for (i = bank->bus_width - 1; i > 0; i--) word[i] = word[i - 1]; word[0] = byte; } #endif } /* Convert code image to target endian */ /* FIXME create general block conversion fcts in target.c?) */ static void cfi_fix_code_endian(target_t *target, uint8_t *dest, const uint32_t *src, uint32_t count) { uint32_t i; for (i = 0; i< count; i++) { target_buffer_set_u32(target, dest, *src); dest += 4; src++; } } static uint32_t cfi_command_val(flash_bank_t *bank, uint8_t cmd) { target_t *target = bank->target; uint8_t buf[CFI_MAX_BUS_WIDTH]; cfi_command(bank, cmd, buf); switch (bank->bus_width) { case 1 : return buf[0]; break; case 2 : return target_buffer_get_u16(target, buf); break; case 4 : return target_buffer_get_u32(target, buf); break; default : LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width); return 0; } } static int cfi_intel_write_block(struct flash_bank_s *bank, uint8_t *buffer, uint32_t address, uint32_t count) { cfi_flash_bank_t *cfi_info = bank->driver_priv; target_t *target = bank->target; reg_param_t reg_params[7]; armv4_5_algorithm_t armv4_5_info; working_area_t *source; uint32_t buffer_size = 32768; uint32_t write_command_val, busy_pattern_val, error_pattern_val; /* algorithm register usage: * r0: source address (in RAM) * r1: target address (in Flash) * r2: count * r3: flash write command * r4: status byte (returned to host) * r5: busy test pattern * r6: error test pattern */ static const uint32_t word_32_code[] = { 0xe4904004, /* loop: ldr r4, [r0], #4 */ 0xe5813000, /* str r3, [r1] */ 0xe5814000, /* str r4, [r1] */ 0xe5914000, /* busy: ldr r4, [r1] */ 0xe0047005, /* and r7, r4, r5 */ 0xe1570005, /* cmp r7, r5 */ 0x1afffffb, /* bne busy */ 0xe1140006, /* tst r4, r6 */ 0x1a000003, /* bne done */ 0xe2522001, /* subs r2, r2, #1 */ 0x0a000001, /* beq done */ 0xe2811004, /* add r1, r1 #4 */ 0xeafffff2, /* b loop */ 0xeafffffe /* done: b -2 */ }; static const uint32_t word_16_code[] = { 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */ 0xe1c130b0, /* strh r3, [r1] */ 0xe1c140b0, /* strh r4, [r1] */ 0xe1d140b0, /* busy ldrh r4, [r1] */ 0xe0047005, /* and r7, r4, r5 */ 0xe1570005, /* cmp r7, r5 */ 0x1afffffb, /* bne busy */ 0xe1140006, /* tst r4, r6 */ 0x1a000003, /* bne done */ 0xe2522001, /* subs r2, r2, #1 */ 0x0a000001, /* beq done */ 0xe2811002, /* add r1, r1 #2 */ 0xeafffff2, /* b loop */ 0xeafffffe /* done: b -2 */ }; static const uint32_t word_8_code[] = { 0xe4d04001, /* loop: ldrb r4, [r0], #1 */ 0xe5c13000, /* strb r3, [r1] */ 0xe5c14000, /* strb r4, [r1] */ 0xe5d14000, /* busy ldrb r4, [r1] */ 0xe0047005, /* and r7, r4, r5 */ 0xe1570005, /* cmp r7, r5 */ 0x1afffffb, /* bne busy */ 0xe1140006, /* tst r4, r6 */ 0x1a000003, /* bne done */ 0xe2522001, /* subs r2, r2, #1 */ 0x0a000001, /* beq done */ 0xe2811001, /* add r1, r1 #1 */ 0xeafffff2, /* b loop */ 0xeafffffe /* done: b -2 */ }; uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE]; const uint32_t *target_code_src; uint32_t target_code_size; int retval = ERROR_OK; cfi_intel_clear_status_register(bank); armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC; armv4_5_info.core_mode = ARMV4_5_MODE_SVC; armv4_5_info.core_state = ARMV4_5_STATE_ARM; /* If we are setting up the write_algorith, we need target_code_src */ /* if not we only need target_code_size. */ /* */ /* However, we don't want to create multiple code paths, so we */ /* do the unecessary evaluation of target_code_src, which the */ /* compiler will probably nicely optimize away if not needed */ /* prepare algorithm code for target endian */ switch (bank->bus_width) { case 1 : target_code_src = word_8_code; target_code_size = sizeof(word_8_code); break; case 2 : target_code_src = word_16_code; target_code_size = sizeof(word_16_code); break; case 4 : target_code_src = word_32_code; target_code_size = sizeof(word_32_code); break; default: LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* flash write code */ if (!cfi_info->write_algorithm) { if (target_code_size > sizeof(target_code)) { LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile."); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4); /* Get memory for block write handler */ retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm); if (retval != ERROR_OK) { LOG_WARNING("No working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; /* write algorithm code to working area */ retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code); if (retval != ERROR_OK) { LOG_ERROR("Unable to write block write code to target"); goto cleanup; } } /* Get a workspace buffer for the data to flash starting with 32k size. Half size until buffer would be smaller 256 Bytem then fail back */ /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */ while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { LOG_WARNING("no large enough working area available, can't do block memory writes"); retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; goto cleanup; } }; /* setup algo registers */ init_reg_param(®_params[0], "r0", 32, PARAM_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); init_reg_param(®_params[2], "r2", 32, PARAM_OUT); init_reg_param(®_params[3], "r3", 32, PARAM_OUT); init_reg_param(®_params[4], "r4", 32, PARAM_IN); init_reg_param(®_params[5], "r5", 32, PARAM_OUT); init_reg_param(®_params[6], "r6", 32, PARAM_OUT); /* prepare command and status register patterns */ write_command_val = cfi_command_val(bank, 0x40); busy_pattern_val = cfi_command_val(bank, 0x80); error_pattern_val = cfi_command_val(bank, 0x7e); LOG_INFO("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32, source->address, buffer_size); /* Programming main loop */ while (count > 0) { uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count; uint32_t wsm_error; if ((retval = target_write_buffer(target, source->address, thisrun_count, buffer)) != ERROR_OK) { goto cleanup; } buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, address); buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width); buf_set_u32(reg_params[3].value, 0, 32, write_command_val); buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val); buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val); LOG_INFO("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address); /* Execute algorithm, assume breakpoint for last instruction */ retval = target_run_algorithm(target, 0, NULL, 7, reg_params, cfi_info->write_algorithm->address, cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t), 10000, /* 10s should be enough for max. 32k of data */ &armv4_5_info); /* On failure try a fall back to direct word writes */ if (retval != ERROR_OK) { cfi_intel_clear_status_register(bank); LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report."); retval = ERROR_FLASH_OPERATION_FAILED; /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */ /* FIXME To allow fall back or recovery, we must save the actual status somewhere, so that a higher level code can start recovery. */ goto cleanup; } /* Check return value from algo code */ wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val; if (wsm_error) { /* read status register (outputs debug inforation) */ cfi_intel_wait_status_busy(bank, 100); cfi_intel_clear_status_register(bank); retval = ERROR_FLASH_OPERATION_FAILED; goto cleanup; } buffer += thisrun_count; address += thisrun_count; count -= thisrun_count; } /* free up resources */ cleanup: if (source) target_free_working_area(target, source); if (cfi_info->write_algorithm) { target_free_working_area(target, cfi_info->write_algorithm); cfi_info->write_algorithm = NULL; } destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); destroy_reg_param(®_params[5]); destroy_reg_param(®_params[6]); return retval; } static int cfi_spansion_write_block(struct flash_bank_s *bank, uint8_t *buffer, uint32_t address, uint32_t count) { cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext; target_t *target = bank->target; reg_param_t reg_params[10]; armv4_5_algorithm_t armv4_5_info; working_area_t *source; uint32_t buffer_size = 32768; uint32_t status; int retval, retvaltemp; int exit_code = ERROR_OK; /* input parameters - */ /* R0 = source address */ /* R1 = destination address */ /* R2 = number of writes */ /* R3 = flash write command */ /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */ /* output parameters - */ /* R5 = 0x80 ok 0x00 bad */ /* temp registers - */ /* R6 = value read from flash to test status */ /* R7 = holding register */ /* unlock registers - */ /* R8 = unlock1_addr */ /* R9 = unlock1_cmd */ /* R10 = unlock2_addr */ /* R11 = unlock2_cmd */ static const uint32_t word_32_code[] = { /* 00008100 <sp_32_code>: */ 0xe4905004, /* ldr r5, [r0], #4 */ 0xe5889000, /* str r9, [r8] */ 0xe58ab000, /* str r11, [r10] */ 0xe5883000, /* str r3, [r8] */ 0xe5815000, /* str r5, [r1] */ 0xe1a00000, /* nop */ /* */ /* 00008110 <sp_32_busy>: */ 0xe5916000, /* ldr r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */ 0xe0166124, /* ands r6, r6, r4, lsr #2 */ 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */ 0xe5916000, /* ldr r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */ 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */ 0x1a000004, /* bne 8154 <sp_32_done> */ /* */ /* 00008140 <sp_32_cont>: */ 0xe2522001, /* subs r2, r2, #1 ; 0x1 */ 0x03a05080, /* moveq r5, #128 ; 0x80 */ 0x0a000001, /* beq 8154 <sp_32_done> */ 0xe2811004, /* add r1, r1, #4 ; 0x4 */ 0xeaffffe8, /* b 8100 <sp_32_code> */ /* */ /* 00008154 <sp_32_done>: */ 0xeafffffe /* b 8154 <sp_32_done> */ }; static const uint32_t word_16_code[] = { /* 00008158 <sp_16_code>: */ 0xe0d050b2, /* ldrh r5, [r0], #2 */ 0xe1c890b0, /* strh r9, [r8] */ 0xe1cab0b0, /* strh r11, [r10] */ 0xe1c830b0, /* strh r3, [r8] */ 0xe1c150b0, /* strh r5, [r1] */ 0xe1a00000, /* nop (mov r0,r0) */ /* */ /* 00008168 <sp_16_busy>: */ 0xe1d160b0, /* ldrh r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000007, /* beq 8198 <sp_16_cont> */ 0xe0166124, /* ands r6, r6, r4, lsr #2 */ 0x0afffff9, /* beq 8168 <sp_16_busy> */ 0xe1d160b0, /* ldrh r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000001, /* beq 8198 <sp_16_cont> */ 0xe3a05000, /* mov r5, #0 ; 0x0 */ 0x1a000004, /* bne 81ac <sp_16_done> */ /* */ /* 00008198 <sp_16_cont>: */ 0xe2522001, /* subs r2, r2, #1 ; 0x1 */ 0x03a05080, /* moveq r5, #128 ; 0x80 */ 0x0a000001, /* beq 81ac <sp_16_done> */ 0xe2811002, /* add r1, r1, #2 ; 0x2 */ 0xeaffffe8, /* b 8158 <sp_16_code> */ /* */ /* 000081ac <sp_16_done>: */ 0xeafffffe /* b 81ac <sp_16_done> */ }; static const uint32_t word_8_code[] = { /* 000081b0 <sp_16_code_end>: */ 0xe4d05001, /* ldrb r5, [r0], #1 */ 0xe5c89000, /* strb r9, [r8] */ 0xe5cab000, /* strb r11, [r10] */ 0xe5c83000, /* strb r3, [r8] */ 0xe5c15000, /* strb r5, [r1] */ 0xe1a00000, /* nop (mov r0,r0) */ /* */ /* 000081c0 <sp_8_busy>: */ 0xe5d16000, /* ldrb r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000007, /* beq 81f0 <sp_8_cont> */ 0xe0166124, /* ands r6, r6, r4, lsr #2 */ 0x0afffff9, /* beq 81c0 <sp_8_busy> */ 0xe5d16000, /* ldrb r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000001, /* beq 81f0 <sp_8_cont> */ 0xe3a05000, /* mov r5, #0 ; 0x0 */ 0x1a000004, /* bne 8204 <sp_8_done> */ /* */ /* 000081f0 <sp_8_cont>: */ 0xe2522001, /* subs r2, r2, #1 ; 0x1 */ 0x03a05080, /* moveq r5, #128 ; 0x80 */ 0x0a000001, /* beq 8204 <sp_8_done> */ 0xe2811001, /* add r1, r1, #1 ; 0x1 */ 0xeaffffe8, /* b 81b0 <sp_16_code_end> */ /* */ /* 00008204 <sp_8_done>: */ 0xeafffffe /* b 8204 <sp_8_done> */ }; armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC; armv4_5_info.core_mode = ARMV4_5_MODE_SVC; armv4_5_info.core_state = ARMV4_5_STATE_ARM; /* flash write code */ if (!cfi_info->write_algorithm) { uint8_t *target_code; int target_code_size; const uint32_t *src; /* convert bus-width dependent algorithm code to correct endiannes */ switch (bank->bus_width) { case 1: src = word_8_code; target_code_size = sizeof(word_8_code); break; case 2: src = word_16_code; target_code_size = sizeof(word_16_code); break; case 4: src = word_32_code; target_code_size = sizeof(word_32_code); break; default: LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width); return ERROR_FLASH_OPERATION_FAILED; } target_code = malloc(target_code_size); cfi_fix_code_endian(target, target_code, src, target_code_size / 4); /* allocate working area */ retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm); if (retval != ERROR_OK) { free(target_code); return retval; } /* write algorithm code to working area */ if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code)) != ERROR_OK) { free(target_code); return retval; } free(target_code); } /* the following code still assumes target code is fixed 24*4 bytes */ while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */ if (cfi_info->write_algorithm) target_free_working_area(target, cfi_info->write_algorithm); LOG_WARNING("not enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } }; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); init_reg_param(®_params[2], "r2", 32, PARAM_OUT); init_reg_param(®_params[3], "r3", 32, PARAM_OUT); init_reg_param(®_params[4], "r4", 32, PARAM_OUT); init_reg_param(®_params[5], "r5", 32, PARAM_IN); init_reg_param(®_params[6], "r8", 32, PARAM_OUT); init_reg_param(®_params[7], "r9", 32, PARAM_OUT); init_reg_param(®_params[8], "r10", 32, PARAM_OUT); init_reg_param(®_params[9], "r11", 32, PARAM_OUT); while (count > 0) { uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count; retvaltemp = target_write_buffer(target, source->address, thisrun_count, buffer); buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, address); buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width); buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0)); buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80)); buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1)); buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa); buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2)); buf_set_u32(reg_params[9].value, 0, 32, 0x55555555); retval = target_run_algorithm(target, 0, NULL, 10, reg_params, cfi_info->write_algorithm->address, cfi_info->write_algorithm->address + ((24 * 4) - 4), 10000, &armv4_5_info); status = buf_get_u32(reg_params[5].value, 0, 32); if ((retval != ERROR_OK) || (retvaltemp != ERROR_OK) || status != 0x80) { LOG_DEBUG("status: 0x%" PRIx32 , status); exit_code = ERROR_FLASH_OPERATION_FAILED; break; } buffer += thisrun_count; address += thisrun_count; count -= thisrun_count; } target_free_working_area(target, source); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); destroy_reg_param(®_params[5]); destroy_reg_param(®_params[6]); destroy_reg_param(®_params[7]); destroy_reg_param(®_params[8]); destroy_reg_param(®_params[9]); return exit_code; } static int cfi_intel_write_word(struct flash_bank_s *bank, uint8_t *word, uint32_t address) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; target_t *target = bank->target; uint8_t command[8]; cfi_intel_clear_status_register(bank); cfi_command(bank, 0x40, command); if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK) { return retval; } if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != 0x80) { cfi_command(bank, 0xff, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int cfi_intel_write_words(struct flash_bank_s *bank, uint8_t *word, uint32_t wordcount, uint32_t address) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; target_t *target = bank->target; uint8_t command[8]; /* Calculate buffer size and boundary mask */ uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width); uint32_t buffermask = buffersize-1; uint32_t bufferwsize; /* Check for valid range */ if (address & buffermask) { LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size); return ERROR_FLASH_OPERATION_FAILED; } switch (bank->chip_width) { case 4 : bufferwsize = buffersize / 4; break; case 2 : bufferwsize = buffersize / 2; break; case 1 : bufferwsize = buffersize; break; default: LOG_ERROR("Unsupported chip width %d", bank->chip_width); return ERROR_FLASH_OPERATION_FAILED; } bufferwsize/=(bank->bus_width / bank->chip_width); /* Check for valid size */ if (wordcount > bufferwsize) { LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32 , wordcount, buffersize); return ERROR_FLASH_OPERATION_FAILED; } /* Write to flash buffer */ cfi_intel_clear_status_register(bank); /* Initiate buffer operation _*/ cfi_command(bank, 0xE8, command); if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80) { cfi_command(bank, 0xff, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address); return ERROR_FLASH_OPERATION_FAILED; } /* Write buffer wordcount-1 and data words */ cfi_command(bank, bufferwsize-1, command); if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK) { return retval; } /* Commit write operation */ cfi_command(bank, 0xd0, command); if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80) { cfi_command(bank, 0xff, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("Buffer write at base 0x%" PRIx32 ", address %" PRIx32 " failed.", bank->base, address); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int cfi_spansion_write_word(struct flash_bank_s *bank, uint8_t *word, uint32_t address) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext; target_t *target = bank->target; uint8_t command[8]; cfi_command(bank, 0xaa, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x55, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0xa0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK) { return retval; } if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK) { cfi_command(bank, 0xf0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int cfi_spansion_write_words(struct flash_bank_s *bank, uint8_t *word, uint32_t wordcount, uint32_t address) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; target_t *target = bank->target; uint8_t command[8]; cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext; /* Calculate buffer size and boundary mask */ uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width); uint32_t buffermask = buffersize-1; uint32_t bufferwsize; /* Check for valid range */ if (address & buffermask) { LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size); return ERROR_FLASH_OPERATION_FAILED; } switch (bank->chip_width) { case 4 : bufferwsize = buffersize / 4; break; case 2 : bufferwsize = buffersize / 2; break; case 1 : bufferwsize = buffersize; break; default: LOG_ERROR("Unsupported chip width %d", bank->chip_width); return ERROR_FLASH_OPERATION_FAILED; } bufferwsize/=(bank->bus_width / bank->chip_width); /* Check for valid size */ if (wordcount > bufferwsize) { LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize); return ERROR_FLASH_OPERATION_FAILED; } // Unlock cfi_command(bank, 0xaa, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x55, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } // Buffer load command cfi_command(bank, 0x25, command); if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK) { return retval; } /* Write buffer wordcount-1 and data words */ cfi_command(bank, bufferwsize-1, command); if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK) { return retval; } /* Commit write operation */ cfi_command(bank, 0x29, command); if ((retval = target_write_memory(target, address, bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK) { cfi_command(bank, 0xf0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("couldn't write block at base 0x%" PRIx32 ", address %" PRIx32 ", size %" PRIx32 , bank->base, address, bufferwsize); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int cfi_write_word(struct flash_bank_s *bank, uint8_t *word, uint32_t address) { cfi_flash_bank_t *cfi_info = bank->driver_priv; switch (cfi_info->pri_id) { case 1: case 3: return cfi_intel_write_word(bank, word, address); break; case 2: return cfi_spansion_write_word(bank, word, address); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } return ERROR_FLASH_OPERATION_FAILED; } static int cfi_write_words(struct flash_bank_s *bank, uint8_t *word, uint32_t wordcount, uint32_t address) { cfi_flash_bank_t *cfi_info = bank->driver_priv; switch (cfi_info->pri_id) { case 1: case 3: return cfi_intel_write_words(bank, word, wordcount, address); break; case 2: return cfi_spansion_write_words(bank, word, wordcount, address); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } return ERROR_FLASH_OPERATION_FAILED; } int cfi_write(struct flash_bank_s *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { cfi_flash_bank_t *cfi_info = bank->driver_priv; target_t *target = bank->target; uint32_t address = bank->base + offset; /* address of first byte to be programmed */ uint32_t write_p, copy_p; int align; /* number of unaligned bytes */ int blk_count; /* number of bus_width bytes for block copy */ uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */ int i; int retval; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset + count > bank->size) return ERROR_FLASH_DST_OUT_OF_BANK; if (cfi_info->qry[0] != 'Q') return ERROR_FLASH_BANK_NOT_PROBED; /* start at the first byte of the first word (bus_width size) */ write_p = address & ~(bank->bus_width - 1); if ((align = address - write_p) != 0) { LOG_INFO("Fixup %d unaligned head bytes", align); for (i = 0; i < bank->bus_width; i++) current_word[i] = 0; copy_p = write_p; /* copy bytes before the first write address */ for (i = 0; i < align; ++i, ++copy_p) { uint8_t byte; if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK) { return retval; } cfi_add_byte(bank, current_word, byte); } /* add bytes from the buffer */ for (; (i < bank->bus_width) && (count > 0); i++) { cfi_add_byte(bank, current_word, *buffer++); count--; copy_p++; } /* if the buffer is already finished, copy bytes after the last write address */ for (; (count == 0) && (i < bank->bus_width); ++i, ++copy_p) { uint8_t byte; if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK) { return retval; } cfi_add_byte(bank, current_word, byte); } retval = cfi_write_word(bank, current_word, write_p); if (retval != ERROR_OK) return retval; write_p = copy_p; } /* handle blocks of bus_size aligned bytes */ blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */ switch (cfi_info->pri_id) { /* try block writes (fails without working area) */ case 1: case 3: retval = cfi_intel_write_block(bank, buffer, write_p, blk_count); break; case 2: retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); retval = ERROR_FLASH_OPERATION_FAILED; break; } if (retval == ERROR_OK) { /* Increment pointers and decrease count on succesful block write */ buffer += blk_count; write_p += blk_count; count -= blk_count; } else { if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { //adjust buffersize for chip width uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width); uint32_t buffermask = buffersize-1; uint32_t bufferwsize; switch (bank->chip_width) { case 4 : bufferwsize = buffersize / 4; break; case 2 : bufferwsize = buffersize / 2; break; case 1 : bufferwsize = buffersize; break; default: LOG_ERROR("Unsupported chip width %d", bank->chip_width); return ERROR_FLASH_OPERATION_FAILED; } bufferwsize/=(bank->bus_width / bank->chip_width); /* fall back to memory writes */ while (count >= (uint32_t)bank->bus_width) { int fallback; if ((write_p & 0xff) == 0) { LOG_INFO("Programming at %08" PRIx32 ", count %08" PRIx32 " bytes remaining", write_p, count); } fallback = 1; if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask)) { retval = cfi_write_words(bank, buffer, bufferwsize, write_p); if (retval == ERROR_OK) { buffer += buffersize; write_p += buffersize; count -= buffersize; fallback = 0; } } /* try the slow way? */ if (fallback) { for (i = 0; i < bank->bus_width; i++) current_word[i] = 0; for (i = 0; i < bank->bus_width; i++) { cfi_add_byte(bank, current_word, *buffer++); } retval = cfi_write_word(bank, current_word, write_p); if (retval != ERROR_OK) return retval; write_p += bank->bus_width; count -= bank->bus_width; } } } else return retval; } /* return to read array mode, so we can read from flash again for padding */ cfi_command(bank, 0xf0, current_word); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word)) != ERROR_OK) { return retval; } cfi_command(bank, 0xff, current_word); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word)) != ERROR_OK) { return retval; } /* handle unaligned tail bytes */ if (count > 0) { LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count); copy_p = write_p; for (i = 0; i < bank->bus_width; i++) current_word[i] = 0; for (i = 0; (i < bank->bus_width) && (count > 0); ++i, ++copy_p) { cfi_add_byte(bank, current_word, *buffer++); count--; } for (; i < bank->bus_width; ++i, ++copy_p) { uint8_t byte; if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK) { return retval; } cfi_add_byte(bank, current_word, byte); } retval = cfi_write_word(bank, current_word, write_p); if (retval != ERROR_OK) return retval; } /* return to read array mode */ cfi_command(bank, 0xf0, current_word); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word)) != ERROR_OK) { return retval; } cfi_command(bank, 0xff, current_word); return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, current_word); } static void cfi_fixup_atmel_reversed_erase_regions(flash_bank_t *bank, void *param) { (void) param; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext; pri_ext->_reversed_geometry = 1; } static void cfi_fixup_0002_erase_regions(flash_bank_t *bank, void *param) { int i; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext; (void) param; if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) { LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device"); for (i = 0; i < cfi_info->num_erase_regions / 2; i++) { int j = (cfi_info->num_erase_regions - 1) - i; uint32_t swap; swap = cfi_info->erase_region_info[i]; cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j]; cfi_info->erase_region_info[j] = swap; } } } static void cfi_fixup_0002_unlock_addresses(flash_bank_t *bank, void *param) { cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext; cfi_unlock_addresses_t *unlock_addresses = param; pri_ext->_unlock1 = unlock_addresses->unlock1; pri_ext->_unlock2 = unlock_addresses->unlock2; } static int cfi_probe(struct flash_bank_s *bank) { cfi_flash_bank_t *cfi_info = bank->driver_priv; target_t *target = bank->target; uint8_t command[8]; int num_sectors = 0; int i; int sector = 0; uint32_t unlock1 = 0x555; uint32_t unlock2 = 0x2aa; int retval; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } cfi_info->probed = 0; /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses, * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa */ if (cfi_info->jedec_probe) { unlock1 = 0x5555; unlock2 = 0x2aaa; } /* switch to read identifier codes mode ("AUTOSELECT") */ cfi_command(bank, 0xaa, command); if ((retval = target_write_memory(target, flash_address(bank, 0, unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x55, command); if ((retval = target_write_memory(target, flash_address(bank, 0, unlock2), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x90, command); if ((retval = target_write_memory(target, flash_address(bank, 0, unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } if (bank->chip_width == 1) { uint8_t manufacturer, device_id; if ((retval = target_read_u8(target, flash_address(bank, 0, 0x00), &manufacturer)) != ERROR_OK) { return retval; } if ((retval = target_read_u8(target, flash_address(bank, 0, 0x01), &device_id)) != ERROR_OK) { return retval; } cfi_info->manufacturer = manufacturer; cfi_info->device_id = device_id; } else if (bank->chip_width == 2) { if ((retval = target_read_u16(target, flash_address(bank, 0, 0x00), &cfi_info->manufacturer)) != ERROR_OK) { return retval; } if ((retval = target_read_u16(target, flash_address(bank, 0, 0x02), &cfi_info->device_id)) != ERROR_OK) { return retval; } } LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x", cfi_info->manufacturer, cfi_info->device_id); /* switch back to read array mode */ cfi_command(bank, 0xf0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0xff, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } /* check device/manufacturer ID for known non-CFI flashes. */ cfi_fixup_non_cfi(bank); /* query only if this is a CFI compatible flash, * otherwise the relevant info has already been filled in */ if (cfi_info->not_cfi == 0) { /* enter CFI query mode * according to JEDEC Standard No. 68.01, * a single bus sequence with address = 0x55, data = 0x98 should put * the device into CFI query mode. * * SST flashes clearly violate this, and we will consider them incompatbile for now */ cfi_command(bank, 0x98, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_info->qry[0] = cfi_query_u8(bank, 0, 0x10); cfi_info->qry[1] = cfi_query_u8(bank, 0, 0x11); cfi_info->qry[2] = cfi_query_u8(bank, 0, 0x12); LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]); if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) { cfi_command(bank, 0xf0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0xff, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } LOG_ERROR("Could not probe bank: no QRY"); return ERROR_FLASH_BANK_INVALID; } cfi_info->pri_id = cfi_query_u16(bank, 0, 0x13); cfi_info->pri_addr = cfi_query_u16(bank, 0, 0x15); cfi_info->alt_id = cfi_query_u16(bank, 0, 0x17); cfi_info->alt_addr = cfi_query_u16(bank, 0, 0x19); LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr); cfi_info->vcc_min = cfi_query_u8(bank, 0, 0x1b); cfi_info->vcc_max = cfi_query_u8(bank, 0, 0x1c); cfi_info->vpp_min = cfi_query_u8(bank, 0, 0x1d); cfi_info->vpp_max = cfi_query_u8(bank, 0, 0x1e); cfi_info->word_write_timeout_typ = cfi_query_u8(bank, 0, 0x1f); cfi_info->buf_write_timeout_typ = cfi_query_u8(bank, 0, 0x20); cfi_info->block_erase_timeout_typ = cfi_query_u8(bank, 0, 0x21); cfi_info->chip_erase_timeout_typ = cfi_query_u8(bank, 0, 0x22); cfi_info->word_write_timeout_max = cfi_query_u8(bank, 0, 0x23); cfi_info->buf_write_timeout_max = cfi_query_u8(bank, 0, 0x24); cfi_info->block_erase_timeout_max = cfi_query_u8(bank, 0, 0x25); cfi_info->chip_erase_timeout_max = cfi_query_u8(bank, 0, 0x26); LOG_DEBUG("Vcc min: %1.1x.%1.1x, Vcc max: %1.1x.%1.1x, Vpp min: %1.1x.%1.1x, Vpp max: %1.1x.%1.1x", (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f, (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f, (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f, (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f); LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ, 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ); LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ), (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ), (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ), (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ)); cfi_info->dev_size = 1 << cfi_query_u8(bank, 0, 0x27); cfi_info->interface_desc = cfi_query_u16(bank, 0, 0x28); cfi_info->max_buf_write_size = cfi_query_u16(bank, 0, 0x2a); cfi_info->num_erase_regions = cfi_query_u8(bank, 0, 0x2c); LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x", cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size)); if (cfi_info->num_erase_regions) { cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions); for (i = 0; i < cfi_info->num_erase_regions; i++) { cfi_info->erase_region_info[i] = cfi_query_u32(bank, 0, 0x2d + (4 * i)); LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "", i, (cfi_info->erase_region_info[i] & 0xffff) + 1, (cfi_info->erase_region_info[i] >> 16) * 256); } } else { cfi_info->erase_region_info = NULL; } /* We need to read the primary algorithm extended query table before calculating * the sector layout to be able to apply fixups */ switch (cfi_info->pri_id) { /* Intel command set (standard and extended) */ case 0x0001: case 0x0003: cfi_read_intel_pri_ext(bank); break; /* AMD/Spansion, Atmel, ... command set */ case 0x0002: cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */ cfi_read_0002_pri_ext(bank); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } /* return to read array mode * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command */ cfi_command(bank, 0xf0, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0xff, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } } /* end CFI case */ /* apply fixups depending on the primary command set */ switch (cfi_info->pri_id) { /* Intel command set (standard and extended) */ case 0x0001: case 0x0003: cfi_fixup(bank, cfi_0001_fixups); break; /* AMD/Spansion, Atmel, ... command set */ case 0x0002: cfi_fixup(bank, cfi_0002_fixups); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) { LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32 " size flash was found", bank->size, cfi_info->dev_size); } if (cfi_info->num_erase_regions == 0) { /* a device might have only one erase block, spanning the whole device */ bank->num_sectors = 1; bank->sectors = malloc(sizeof(flash_sector_t)); bank->sectors[sector].offset = 0x0; bank->sectors[sector].size = bank->size; bank->sectors[sector].is_erased = -1; bank->sectors[sector].is_protected = -1; } else { uint32_t offset = 0; for (i = 0; i < cfi_info->num_erase_regions; i++) { num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1; } bank->num_sectors = num_sectors; bank->sectors = malloc(sizeof(flash_sector_t) * num_sectors); for (i = 0; i < cfi_info->num_erase_regions; i++) { uint32_t j; for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) { bank->sectors[sector].offset = offset; bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width; offset += bank->sectors[sector].size; bank->sectors[sector].is_erased = -1; bank->sectors[sector].is_protected = -1; sector++; } } if (offset != cfi_info->dev_size) { LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", cfi_info->dev_size, offset); } } cfi_info->probed = 1; return ERROR_OK; } static int cfi_auto_probe(struct flash_bank_s *bank) { cfi_flash_bank_t *cfi_info = bank->driver_priv; if (cfi_info->probed) return ERROR_OK; return cfi_probe(bank); } static int cfi_intel_protect_check(struct flash_bank_s *bank) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_intel_pri_ext_t *pri_ext = cfi_info->pri_ext; target_t *target = bank->target; uint8_t command[CFI_MAX_BUS_WIDTH]; int i; /* check if block lock bits are supported on this device */ if (!(pri_ext->blk_status_reg_mask & 0x1)) return ERROR_FLASH_OPERATION_FAILED; cfi_command(bank, 0x90, command); if ((retval = target_write_memory(target, flash_address(bank, 0, 0x55), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } for (i = 0; i < bank->num_sectors; i++) { uint8_t block_status = cfi_get_u8(bank, i, 0x2); if (block_status & 1) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } cfi_command(bank, 0xff, command); return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command); } static int cfi_spansion_protect_check(struct flash_bank_s *bank) { int retval; cfi_flash_bank_t *cfi_info = bank->driver_priv; cfi_spansion_pri_ext_t *pri_ext = cfi_info->pri_ext; target_t *target = bank->target; uint8_t command[8]; int i; cfi_command(bank, 0xaa, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x55, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock2), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } cfi_command(bank, 0x90, command); if ((retval = target_write_memory(target, flash_address(bank, 0, pri_ext->_unlock1), bank->bus_width, 1, command)) != ERROR_OK) { return retval; } for (i = 0; i < bank->num_sectors; i++) { uint8_t block_status = cfi_get_u8(bank, i, 0x2); if (block_status & 1) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } cfi_command(bank, 0xf0, command); return target_write_memory(target, flash_address(bank, 0, 0x0), bank->bus_width, 1, command); } static int cfi_protect_check(struct flash_bank_s *bank) { cfi_flash_bank_t *cfi_info = bank->driver_priv; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (cfi_info->qry[0] != 'Q') return ERROR_FLASH_BANK_NOT_PROBED; switch (cfi_info->pri_id) { case 1: case 3: return cfi_intel_protect_check(bank); break; case 2: return cfi_spansion_protect_check(bank); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } return ERROR_OK; } static int cfi_info(struct flash_bank_s *bank, char *buf, int buf_size) { int printed; cfi_flash_bank_t *cfi_info = bank->driver_priv; if (cfi_info->qry[0] == (char)-1) { printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n"); return ERROR_OK; } if (cfi_info->not_cfi == 0) printed = snprintf(buf, buf_size, "\ncfi information:\n"); else printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n"); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n", cfi_info->manufacturer, cfi_info->device_id); buf += printed; buf_size -= printed; if (cfi_info->not_cfi == 0) { printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "Vcc min: %1.1x.%1.1x, Vcc max: %1.1x.%1.1x, Vpp min: %1.1x.%1.1x, Vpp max: %1.1x.%1.1x\n", (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f, (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f, (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f, (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ, 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ), (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ), (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ), (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ)); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x\n", cfi_info->dev_size, cfi_info->interface_desc, 1 << cfi_info->max_buf_write_size); buf += printed; buf_size -= printed; switch (cfi_info->pri_id) { case 1: case 3: cfi_intel_info(bank, buf, buf_size); break; case 2: cfi_spansion_info(bank, buf, buf_size); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } } return ERROR_OK; }