/*************************************************************************** * Copyright (C) 2008 by * * Karl RobinSod <karl.robinsod@gmail.com> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ /*************************************************************************** * There are some things to notice * * You need to unprotect flash sectors each time you connect the OpenOCD * Dumping 1MB takes about 60 Seconds * Full erase (sectors 0-22 inclusive) takes 2-4 seconds * Writing 1MB takes 88 seconds * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "lpc288x.h" #include "binarybuffer.h" #define LOAD_TIMER_ERASE 0 #define LOAD_TIMER_WRITE 1 #define FLASH_PAGE_SIZE 512 /* LPC288X control registers */ #define DBGU_CIDR 0x8000507C /* LPC288X flash registers */ #define F_CTRL 0x80102000 /* Flash control register R/W 0x5 */ #define F_STAT 0x80102004 /* Flash status register RO 0x45 */ #define F_PROG_TIME 0x80102008 /* Flash program time register R/W 0 */ #define F_WAIT 0x80102010 /* Flash read wait state register R/W 0xC004 */ #define F_CLK_TIME 0x8010201C /* Flash clock divider for 66 kHz generation R/W 0 */ #define F_INTEN_CLR 0x80102FD8 /* Clear interrupt enable bits WO - */ #define F_INTEN_SET 0x80102FDC /* Set interrupt enable bits WO - */ #define F_INT_STAT 0x80102FE0 /* Interrupt status bits RO 0 */ #define F_INTEN 0x80102FE4 /* Interrupt enable bits RO 0 */ #define F_INT_CLR 0x80102FE8 /* Clear interrupt status bits WO */ #define F_INT_SET 0x80102FEC /* Set interrupt status bits WO - */ #define FLASH_PD 0x80005030 /* Allows turning off the Flash memory for power savings. R/W 1*/ #define FLASH_INIT 0x80005034 /* Monitors Flash readiness, such as recovery from Power Down mode. R/W -*/ /* F_CTRL bits */ #define FC_CS 0x0001 #define FC_FUNC 0x0002 #define FC_WEN 0x0004 #define FC_RD_LATCH 0x0020 #define FC_PROTECT 0x0080 #define FC_SET_DATA 0x0400 #define FC_RSSL 0x0800 #define FC_PROG_REQ 0x1000 #define FC_CLR_BUF 0x4000 #define FC_LOAD_REQ 0x8000 /* F_STAT bits */ #define FS_DONE 0x0001 #define FS_PROGGNT 0x0002 #define FS_RDY 0x0004 #define FS_ERR 0x0020 /* F_PROG_TIME */ #define FPT_TIME_MASK 0x7FFF #define FPT_ENABLE 0x8000 /* F_WAIT */ #define FW_WAIT_STATES_MASK 0x00FF #define FW_SET_MASK 0xC000 /* F_CLK_TIME */ #define FCT_CLK_DIV_MASK 0x0FFF static int lpc288x_register_commands(struct command_context_s *cmd_ctx); static int lpc288x_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank); static int lpc288x_erase(struct flash_bank_s *bank, int first, int last); static int lpc288x_protect(struct flash_bank_s *bank, int set, int first, int last); static int lpc288x_write(struct flash_bank_s *bank, uint8_t *buffer, uint32_t offset, uint32_t count); static int lpc288x_probe(struct flash_bank_s *bank); static int lpc288x_erase_check(struct flash_bank_s *bank); static int lpc288x_protect_check(struct flash_bank_s *bank); static int lpc288x_info(struct flash_bank_s *bank, char *buf, int buf_size); static uint32_t lpc288x_wait_status_busy(flash_bank_t *bank, int timeout); static void lpc288x_load_timer(int erase, struct target_s *target); static void lpc288x_set_flash_clk(struct flash_bank_s *bank); static uint32_t lpc288x_system_ready(struct flash_bank_s *bank); flash_driver_t lpc288x_flash = { .name = "lpc288x", .register_commands = lpc288x_register_commands, .flash_bank_command = lpc288x_flash_bank_command, .erase = lpc288x_erase, .protect = lpc288x_protect, .write = lpc288x_write, .probe = lpc288x_probe, .auto_probe = lpc288x_probe, .erase_check = lpc288x_erase_check, .protect_check = lpc288x_protect_check, .info = lpc288x_info }; static int lpc288x_register_commands(struct command_context_s *cmd_ctx) { return ERROR_OK; } static uint32_t lpc288x_wait_status_busy(flash_bank_t *bank, int timeout) { uint32_t status; target_t *target = bank->target; do { alive_sleep(1); timeout--; target_read_u32(target, F_STAT, &status); } while (((status & FS_DONE) == 0) && timeout); if (timeout == 0) { LOG_DEBUG("Timedout!"); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } /* Read device id register and fill in driver info structure */ static int lpc288x_read_part_info(struct flash_bank_s *bank) { lpc288x_flash_bank_t *lpc288x_info = bank->driver_priv; target_t *target = bank->target; uint32_t cidr; int i = 0; uint32_t offset; if (lpc288x_info->cidr == 0x0102100A) return ERROR_OK; /* already probed, multiple probes may cause memory leak, not allowed */ /* Read and parse chip identification register */ target_read_u32(target, DBGU_CIDR, &cidr); if (cidr != 0x0102100A) { LOG_WARNING("Cannot identify target as an LPC288X (%08" PRIx32 ")",cidr); return ERROR_FLASH_OPERATION_FAILED; } lpc288x_info->cidr = cidr; lpc288x_info->sector_size_break = 0x000F0000; lpc288x_info->target_name = "LPC288x"; /* setup the sector info... */ offset = bank->base; bank->num_sectors = 23; bank->sectors = malloc(sizeof(flash_sector_t) * 23); for (i = 0; i < 15; i++) { bank->sectors[i].offset = offset; bank->sectors[i].size = 64 * 1024; offset += bank->sectors[i].size; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 1; } for (i = 15; i < 23; i++) { bank->sectors[i].offset = offset; bank->sectors[i].size = 8 * 1024; offset += bank->sectors[i].size; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 1; } return ERROR_OK; } static int lpc288x_protect_check(struct flash_bank_s *bank) { return ERROR_OK; } /* flash_bank LPC288x 0 0 0 0 <target#> <cclk> */ static int lpc288x_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank) { lpc288x_flash_bank_t *lpc288x_info; if (argc < 6) { LOG_WARNING("incomplete flash_bank LPC288x configuration"); return ERROR_FLASH_BANK_INVALID; } lpc288x_info = malloc(sizeof(lpc288x_flash_bank_t)); bank->driver_priv = lpc288x_info; /* part wasn't probed for info yet */ lpc288x_info->cidr = 0; lpc288x_info->cclk = strtoul(args[6], NULL, 0); return ERROR_OK; } /* The frequency is the AHB clock frequency divided by (CLK_DIV ×3) + 1. * This must be programmed such that the Flash Programming clock frequency is 66 kHz ± 20%. * AHB = 12 MHz ? * 12000000/66000 = 182 * CLK_DIV = 60 ? */ static void lpc288x_set_flash_clk(struct flash_bank_s *bank) { uint32_t clk_time; lpc288x_flash_bank_t *lpc288x_info = bank->driver_priv; clk_time = (lpc288x_info->cclk / 66000) / 3; target_write_u32(bank->target, F_CTRL, FC_CS | FC_WEN); target_write_u32(bank->target, F_CLK_TIME, clk_time); } /* AHB tcyc (in ns) 83 ns * LOAD_TIMER_ERASE FPT_TIME = ((400,000,000 / AHB tcyc (in ns)) - 2) / 512 * = 9412 (9500) (AN10548 9375) * LOAD_TIMER_WRITE FPT_TIME = ((1,000,000 / AHB tcyc (in ns)) - 2) / 512 * = 23 (75) (AN10548 72 - is this wrong?) * TODO: Sort out timing calcs ;) */ static void lpc288x_load_timer(int erase, struct target_s *target) { if (erase == LOAD_TIMER_ERASE) { target_write_u32(target, F_PROG_TIME, FPT_ENABLE | 9500); } else { target_write_u32(target, F_PROG_TIME, FPT_ENABLE | 75); } } static uint32_t lpc288x_system_ready(struct flash_bank_s *bank) { lpc288x_flash_bank_t *lpc288x_info = bank->driver_priv; if (lpc288x_info->cidr == 0) { return ERROR_FLASH_BANK_NOT_PROBED; } if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } return ERROR_OK; } static int lpc288x_erase_check(struct flash_bank_s *bank) { uint32_t status = lpc288x_system_ready(bank); /* probed? halted? */ if (status != ERROR_OK) { LOG_INFO("Processor not halted/not probed"); return status; } return ERROR_OK; } static int lpc288x_erase(struct flash_bank_s *bank, int first, int last) { uint32_t status; int sector; target_t *target = bank->target; status = lpc288x_system_ready(bank); /* probed? halted? */ if (status != ERROR_OK) { return status; } if ((first < 0) || (last < first) || (last >= bank->num_sectors)) { LOG_INFO("Bad sector range"); return ERROR_FLASH_SECTOR_INVALID; } /* Configure the flash controller timing */ lpc288x_set_flash_clk(bank); for (sector = first; sector <= last; sector++) { if (lpc288x_wait_status_busy(bank, 1000) != ERROR_OK) { return ERROR_FLASH_OPERATION_FAILED; } lpc288x_load_timer(LOAD_TIMER_ERASE,target); target_write_u32(target, bank->sectors[sector].offset, 0x00); target_write_u32(target, F_CTRL, FC_PROG_REQ | FC_PROTECT | FC_CS); } if (lpc288x_wait_status_busy(bank, 1000) != ERROR_OK) { return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int lpc288x_write(struct flash_bank_s *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { uint8_t page_buffer[FLASH_PAGE_SIZE]; uint32_t status, source_offset,dest_offset; target_t *target = bank->target; uint32_t bytes_remaining = count; uint32_t first_sector, last_sector, sector, page; int i; /* probed? halted? */ status = lpc288x_system_ready(bank); if (status != ERROR_OK) { return status; } /* Initialise search indices */ first_sector = last_sector = 0xffffffff; /* validate the write range... */ for (i = 0; i < bank->num_sectors; i++) { if ((offset >= bank->sectors[i].offset) && (offset < (bank->sectors[i].offset + bank->sectors[i].size)) && (first_sector == 0xffffffff)) { first_sector = i; /* all writes must start on a sector boundary... */ if (offset % bank->sectors[i].size) { LOG_INFO("offset 0x%" PRIx32 " breaks required alignment 0x%" PRIx32 "", offset, bank->sectors[i].size); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } } if (((offset + count) > bank->sectors[i].offset) && ((offset + count) <= (bank->sectors[i].offset + bank->sectors[i].size)) && (last_sector == 0xffffffff)) { last_sector = i; } } /* Range check... */ if (first_sector == 0xffffffff || last_sector == 0xffffffff) { LOG_INFO("Range check failed %" PRIx32 " %" PRIx32 "", offset, count); return ERROR_FLASH_DST_OUT_OF_BANK; } /* Configure the flash controller timing */ lpc288x_set_flash_clk(bank); /* initialise the offsets */ source_offset = 0; dest_offset = 0; for (sector = first_sector; sector <= last_sector; sector++) { for (page = 0; page < bank->sectors[sector].size / FLASH_PAGE_SIZE; page++) { if (bytes_remaining == 0) { count = 0; memset(page_buffer, 0xFF, FLASH_PAGE_SIZE); } else if (bytes_remaining < FLASH_PAGE_SIZE) { count = bytes_remaining; memset(page_buffer, 0xFF, FLASH_PAGE_SIZE); memcpy(page_buffer, &buffer[source_offset], count); } else { count = FLASH_PAGE_SIZE; memcpy(page_buffer, &buffer[source_offset], count); } /* Wait for flash to become ready */ if (lpc288x_wait_status_busy(bank, 1000) != ERROR_OK) { return ERROR_FLASH_OPERATION_FAILED; } /* fill flash data latches with 1's */ target_write_u32(target, F_CTRL, FC_CS | FC_SET_DATA | FC_WEN | FC_FUNC); target_write_u32(target, F_CTRL, FC_CS | FC_WEN | FC_FUNC); /*would be better to use the clean target_write_buffer() interface but * it seems not to be a LOT slower.... * bulk_write_memory() is no quicker :(*/ #if 1 if (target_write_memory(target, offset + dest_offset, 4, 128, page_buffer) != ERROR_OK) { LOG_ERROR("Write failed s %" PRIx32 " p %" PRIx32 "", sector, page); return ERROR_FLASH_OPERATION_FAILED; } #else if (target_write_buffer(target, offset + dest_offset, FLASH_PAGE_SIZE, page_buffer) != ERROR_OK) { LOG_INFO("Write to flash buffer failed"); return ERROR_FLASH_OPERATION_FAILED; } #endif dest_offset += FLASH_PAGE_SIZE; source_offset += count; bytes_remaining -= count; lpc288x_load_timer(LOAD_TIMER_WRITE, target); target_write_u32(target, F_CTRL, FC_PROG_REQ | FC_PROTECT | FC_FUNC | FC_CS); } } return ERROR_OK; } static int lpc288x_probe(struct flash_bank_s *bank) { /* we only deal with LPC2888 so flash config is fixed */ lpc288x_flash_bank_t *lpc288x_info = bank->driver_priv; int retval; if (lpc288x_info->cidr != 0) { return ERROR_OK; /* already probed */ } if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = lpc288x_read_part_info(bank); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int lpc288x_info(struct flash_bank_s *bank, char *buf, int buf_size) { snprintf(buf, buf_size, "lpc288x flash driver"); return ERROR_OK; } static int lpc288x_protect(struct flash_bank_s *bank, int set, int first, int last) { int lockregion, status; uint32_t value; target_t *target = bank->target; /* probed? halted? */ status = lpc288x_system_ready(bank); if (status != ERROR_OK) { return status; } if ((first < 0) || (last < first) || (last >= bank->num_sectors)) { return ERROR_FLASH_SECTOR_INVALID; } /* Configure the flash controller timing */ lpc288x_set_flash_clk(bank); for (lockregion = first; lockregion <= last; lockregion++) { if (set) { /* write an odd value to base addy to protect... */ value = 0x01; } else { /* write an even value to base addy to unprotect... */ value = 0x00; } target_write_u32(target, bank->sectors[lockregion].offset, value); target_write_u32(target, F_CTRL, FC_LOAD_REQ | FC_PROTECT | FC_WEN | FC_FUNC | FC_CS); } return ERROR_OK; }