/*************************************************************************** * Copyright (C) 2009 by * * Rolf Meeser <rolfm_9dq@yahoo.de> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include <helper/binarybuffer.h> #include <target/algorithm.h> #include <target/arm.h> #include <target/image.h> /* 1024 bytes */ #define KiB 1024 /* Some flash constants */ #define FLASH_PAGE_SIZE 512 /* bytes */ #define FLASH_ERASE_TIME 100000 /* microseconds */ #define FLASH_PROGRAM_TIME 1000 /* microseconds */ /* Chip ID / Feature Registers */ #define CHIPID 0xE0000000 /* Chip ID */ #define FEAT0 0xE0000100 /* Chip feature 0 */ #define FEAT1 0xE0000104 /* Chip feature 1 */ #define FEAT2 0xE0000108 /* Chip feature 2 (contains flash size indicator) */ #define FEAT3 0xE000010C /* Chip feature 3 */ #define EXPECTED_CHIPID 0x209CE02B /* Chip ID of all LPC2900 devices */ /* Flash/EEPROM Control Registers */ #define FCTR 0x20200000 /* Flash control */ #define FPTR 0x20200008 /* Flash program-time */ #define FTCTR 0x2020000C /* Flash test control */ #define FBWST 0x20200010 /* Flash bridge wait-state */ #define FCRA 0x2020001C /* Flash clock divider */ #define FMSSTART 0x20200020 /* Flash Built-In Selft Test start address */ #define FMSSTOP 0x20200024 /* Flash Built-In Selft Test stop address */ #define FMS16 0x20200028 /* Flash 16-bit signature */ #define FMSW0 0x2020002C /* Flash 128-bit signature Word 0 */ #define FMSW1 0x20200030 /* Flash 128-bit signature Word 1 */ #define FMSW2 0x20200034 /* Flash 128-bit signature Word 2 */ #define FMSW3 0x20200038 /* Flash 128-bit signature Word 3 */ #define EECMD 0x20200080 /* EEPROM command */ #define EEADDR 0x20200084 /* EEPROM address */ #define EEWDATA 0x20200088 /* EEPROM write data */ #define EERDATA 0x2020008C /* EEPROM read data */ #define EEWSTATE 0x20200090 /* EEPROM wait state */ #define EECLKDIV 0x20200094 /* EEPROM clock divider */ #define EEPWRDWN 0x20200098 /* EEPROM power-down/start */ #define EEMSSTART 0x2020009C /* EEPROM BIST start address */ #define EEMSSTOP 0x202000A0 /* EEPROM BIST stop address */ #define EEMSSIG 0x202000A4 /* EEPROM 24-bit BIST signature */ #define INT_CLR_ENABLE 0x20200FD8 /* Flash/EEPROM interrupt clear enable */ #define INT_SET_ENABLE 0x20200FDC /* Flash/EEPROM interrupt set enable */ #define INT_STATUS 0x20200FE0 /* Flash/EEPROM interrupt status */ #define INT_ENABLE 0x20200FE4 /* Flash/EEPROM interrupt enable */ #define INT_CLR_STATUS 0x20200FE8 /* Flash/EEPROM interrupt clear status */ #define INT_SET_STATUS 0x20200FEC /* Flash/EEPROM interrupt set status */ /* Interrupt sources */ #define INTSRC_END_OF_PROG (1 << 28) #define INTSRC_END_OF_BIST (1 << 27) #define INTSRC_END_OF_RDWR (1 << 26) #define INTSRC_END_OF_MISR (1 << 2) #define INTSRC_END_OF_BURN (1 << 1) #define INTSRC_END_OF_ERASE (1 << 0) /* FCTR bits */ #define FCTR_FS_LOADREQ (1 << 15) #define FCTR_FS_CACHECLR (1 << 14) #define FCTR_FS_CACHEBYP (1 << 13) #define FCTR_FS_PROGREQ (1 << 12) #define FCTR_FS_RLS (1 << 11) #define FCTR_FS_PDL (1 << 10) #define FCTR_FS_PD (1 << 9) #define FCTR_FS_WPB (1 << 7) #define FCTR_FS_ISS (1 << 6) #define FCTR_FS_RLD (1 << 5) #define FCTR_FS_DCR (1 << 4) #define FCTR_FS_WEB (1 << 2) #define FCTR_FS_WRE (1 << 1) #define FCTR_FS_CS (1 << 0) /* FPTR bits */ #define FPTR_EN_T (1 << 15) /* FTCTR bits */ #define FTCTR_FS_BYPASS_R (1 << 29) #define FTCTR_FS_BYPASS_W (1 << 28) /* FMSSTOP bits */ #define FMSSTOP_MISR_START (1 << 17) /* EEMSSTOP bits */ #define EEMSSTOP_STRTBIST (1 << 31) /* Index sector */ #define ISS_CUSTOMER_START1 (0x830) #define ISS_CUSTOMER_END1 (0xA00) #define ISS_CUSTOMER_SIZE1 (ISS_CUSTOMER_END1 - ISS_CUSTOMER_START1) #define ISS_CUSTOMER_NWORDS1 (ISS_CUSTOMER_SIZE1 / 4) #define ISS_CUSTOMER_START2 (0xA40) #define ISS_CUSTOMER_END2 (0xC00) #define ISS_CUSTOMER_SIZE2 (ISS_CUSTOMER_END2 - ISS_CUSTOMER_START2) #define ISS_CUSTOMER_NWORDS2 (ISS_CUSTOMER_SIZE2 / 4) #define ISS_CUSTOMER_SIZE (ISS_CUSTOMER_SIZE1 + ISS_CUSTOMER_SIZE2) /** * Private data for \c lpc2900 flash driver. */ struct lpc2900_flash_bank { /** * This flag is set when the device has been successfully probed. */ bool is_probed; /** * Holds the value read from CHIPID register. * The driver will not load if the chipid doesn't match the expected * value of 0x209CE02B of the LPC2900 family. A probe will only be done * if the chipid does not yet contain the expected value. */ uint32_t chipid; /** * String holding device name. * This string is set by the probe function to the type number of the * device. It takes the form "LPC29xx". */ char * target_name; /** * System clock frequency. * Holds the clock frequency in Hz, as passed by the configuration file * to the <tt>flash bank</tt> command. */ uint32_t clk_sys_fmc; /** * Flag to indicate that dangerous operations are possible. * This flag can be set by passing the correct password to the * <tt>lpc2900 password</tt> command. If set, other dangerous commands, * which operate on the index sector, can be executed. */ uint32_t risky; /** * Maximum contiguous block of internal SRAM (bytes). * Autodetected by the driver. Not the total amount of SRAM, only the * the largest \em contiguous block! */ uint32_t max_ram_block; }; static uint32_t lpc2900_wait_status(struct flash_bank *bank, uint32_t mask, int timeout); static void lpc2900_setup(struct flash_bank *bank); static uint32_t lpc2900_is_ready(struct flash_bank *bank); static uint32_t lpc2900_read_security_status(struct flash_bank *bank); static uint32_t lpc2900_run_bist128(struct flash_bank *bank, uint32_t addr_from, uint32_t addr_to, uint32_t (*signature)[4] ); static uint32_t lpc2900_address2sector(struct flash_bank *bank, uint32_t offset); static uint32_t lpc2900_calc_tr(uint32_t clock_var, uint32_t time_var); /*********************** Helper functions **************************/ /** * Wait for an event in mask to occur in INT_STATUS. * * Return when an event occurs, or after a timeout. * * @param[in] bank Pointer to the flash bank descriptor * @param[in] mask Mask to be used for INT_STATUS * @param[in] timeout Timeout in ms */ static uint32_t lpc2900_wait_status( struct flash_bank *bank, uint32_t mask, int timeout ) { uint32_t int_status; struct target *target = bank->target; do { alive_sleep(1); timeout--; target_read_u32(target, INT_STATUS, &int_status); } while( ((int_status & mask) == 0) && (timeout != 0) ); if (timeout == 0) { LOG_DEBUG("Timeout!"); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } /** * Set up the flash for erase/program operations. * * Enable the flash, and set the correct CRA clock of 66 kHz. * * @param bank Pointer to the flash bank descriptor */ static void lpc2900_setup( struct flash_bank *bank ) { uint32_t fcra; struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; /* Power up the flash block */ target_write_u32( bank->target, FCTR, FCTR_FS_WEB | FCTR_FS_CS ); fcra = (lpc2900_info->clk_sys_fmc / (3 * 66000)) - 1; target_write_u32( bank->target, FCRA, fcra ); } /** * Check if device is ready. * * Check if device is ready for flash operation: * Must have been successfully probed. * Must be halted. */ static uint32_t lpc2900_is_ready( struct flash_bank *bank ) { struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; if( !lpc2900_info->is_probed ) { return ERROR_FLASH_BANK_NOT_PROBED; } if( bank->target->state != TARGET_HALTED ) { LOG_ERROR( "Target not halted" ); return ERROR_TARGET_NOT_HALTED; } return ERROR_OK; } /** * Read the status of sector security from the index sector. * * @param bank Pointer to the flash bank descriptor */ static uint32_t lpc2900_read_security_status( struct flash_bank *bank ) { uint32_t status; if( (status = lpc2900_is_ready( bank )) != ERROR_OK ) { return status; } struct target *target = bank->target; /* Enable ISS access */ target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB | FCTR_FS_ISS); /* Read the relevant block of memory from the ISS sector */ uint32_t iss_secured_field[ 0x230/16 ][ 4 ]; target_read_memory(target, bank->base + 0xC00, 4, 0x230/4, (uint8_t *)iss_secured_field); /* Disable ISS access */ target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB); /* Check status of each sector. Note that the sector numbering in the LPC2900 * is different from the logical sector numbers used in OpenOCD! * Refer to the user manual for details. * * All zeros (16x 0x00) are treated as a secured sector (is_protected = 1) * All ones (16x 0xFF) are treated as a non-secured sector (is_protected = 0) * Anything else is undefined (is_protected = -1). This is treated as * a protected sector! */ int sector; int index_t; for( sector = 0; sector < bank->num_sectors; sector++ ) { /* Convert logical sector number to physical sector number */ if( sector <= 4 ) { index_t = sector + 11; } else if( sector <= 7 ) { index_t = sector + 27; } else { index_t = sector - 8; } bank->sectors[sector].is_protected = -1; if ( (iss_secured_field[index_t][0] == 0x00000000) && (iss_secured_field[index_t][1] == 0x00000000) && (iss_secured_field[index_t][2] == 0x00000000) && (iss_secured_field[index_t][3] == 0x00000000) ) { bank->sectors[sector].is_protected = 1; } if ( (iss_secured_field[index_t][0] == 0xFFFFFFFF) && (iss_secured_field[index_t][1] == 0xFFFFFFFF) && (iss_secured_field[index_t][2] == 0xFFFFFFFF) && (iss_secured_field[index_t][3] == 0xFFFFFFFF) ) { bank->sectors[sector].is_protected = 0; } } return ERROR_OK; } /** * Use BIST to calculate a 128-bit hash value over a range of flash. * * @param bank Pointer to the flash bank descriptor * @param addr_from * @param addr_to * @param signature */ static uint32_t lpc2900_run_bist128(struct flash_bank *bank, uint32_t addr_from, uint32_t addr_to, uint32_t (*signature)[4] ) { struct target *target = bank->target; /* Clear END_OF_MISR interrupt status */ target_write_u32( target, INT_CLR_STATUS, INTSRC_END_OF_MISR ); /* Start address */ target_write_u32( target, FMSSTART, addr_from >> 4); /* End address, and issue start command */ target_write_u32( target, FMSSTOP, (addr_to >> 4) | FMSSTOP_MISR_START ); /* Poll for end of operation. Calculate a reasonable timeout. */ if( lpc2900_wait_status( bank, INTSRC_END_OF_MISR, 1000 ) != ERROR_OK ) { return ERROR_FLASH_OPERATION_FAILED; } /* Return the signature */ target_read_memory( target, FMSW0, 4, 4, (uint8_t *)signature ); return ERROR_OK; } /** * Return sector number for given address. * * Return the (logical) sector number for a given relative address. * No sanity check is done. It assumed that the address is valid. * * @param bank Pointer to the flash bank descriptor * @param offset Offset address relative to bank start */ static uint32_t lpc2900_address2sector( struct flash_bank *bank, uint32_t offset ) { uint32_t address = bank->base + offset; /* Run through all sectors of this bank */ int sector; for( sector = 0; sector < bank->num_sectors; sector++ ) { /* Return immediately if address is within the current sector */ if( address < (bank->sectors[sector].offset + bank->sectors[sector].size) ) { return sector; } } /* We should never come here. If we do, return an arbitrary sector number. */ return 0; } /** * Write one page to the index sector. * * @param bank Pointer to the flash bank descriptor * @param pagenum Page number (0...7) * @param page Page array (FLASH_PAGE_SIZE bytes) */ static int lpc2900_write_index_page( struct flash_bank *bank, int pagenum, uint8_t (*page)[FLASH_PAGE_SIZE] ) { /* Only pages 4...7 are user writable */ if ((pagenum < 4) || (pagenum > 7)) { LOG_ERROR("Refuse to burn index sector page %d", pagenum); return ERROR_COMMAND_ARGUMENT_INVALID; } /* Get target, and check if it's halted */ struct target *target = bank->target; if( target->state != TARGET_HALTED ) { LOG_ERROR( "Target not halted" ); return ERROR_TARGET_NOT_HALTED; } /* Private info */ struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; /* Enable flash block and set the correct CRA clock of 66 kHz */ lpc2900_setup( bank ); /* Un-protect the index sector */ target_write_u32( target, bank->base, 0 ); target_write_u32( target, FCTR, FCTR_FS_LOADREQ | FCTR_FS_WPB | FCTR_FS_ISS | FCTR_FS_WEB | FCTR_FS_WRE | FCTR_FS_CS ); /* Set latch load mode */ target_write_u32( target, FCTR, FCTR_FS_ISS | FCTR_FS_WEB | FCTR_FS_WRE | FCTR_FS_CS ); /* Write whole page to flash data latches */ if( target_write_memory( target, bank->base + pagenum * FLASH_PAGE_SIZE, 4, FLASH_PAGE_SIZE / 4, (uint8_t *)page) != ERROR_OK ) { LOG_ERROR("Index sector write failed @ page %d", pagenum); target_write_u32( target, FCTR, FCTR_FS_CS | FCTR_FS_WEB ); return ERROR_FLASH_OPERATION_FAILED; } /* Clear END_OF_BURN interrupt status */ target_write_u32( target, INT_CLR_STATUS, INTSRC_END_OF_BURN ); /* Set the program/erase time to FLASH_PROGRAM_TIME */ target_write_u32(target, FPTR, FPTR_EN_T | lpc2900_calc_tr( lpc2900_info->clk_sys_fmc, FLASH_PROGRAM_TIME )); /* Trigger flash write */ target_write_u32( target, FCTR, FCTR_FS_PROGREQ | FCTR_FS_ISS | FCTR_FS_WPB | FCTR_FS_WRE | FCTR_FS_CS ); /* Wait for the end of the write operation. If it's not over after one * second, something went dreadfully wrong... :-( */ if (lpc2900_wait_status(bank, INTSRC_END_OF_BURN, 1000) != ERROR_OK) { LOG_ERROR("Index sector write failed @ page %d", pagenum); target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB); return ERROR_FLASH_OPERATION_FAILED; } target_write_u32( target, FCTR, FCTR_FS_CS | FCTR_FS_WEB ); return ERROR_OK; } /** * Calculate FPTR.TR register value for desired program/erase time. * * @param clock System clock in Hz * @param time Program/erase time in µs */ static uint32_t lpc2900_calc_tr( uint32_t clock_var, uint32_t time_var ) { /* ((time[µs]/1e6) * f[Hz]) + 511 * FPTR.TR = ------------------------------- * 512 */ uint32_t tr_val = (uint32_t)((((time_var / 1e6) * clock_var) + 511.0) / 512.0); return tr_val; } /*********************** Private flash commands **************************/ /** * Command to determine the signature of the whole flash. * * Uses the Built-In-Self-Test (BIST) to generate a 128-bit hash value * of the flash content. */ COMMAND_HANDLER(lpc2900_handle_signature_command) { uint32_t status; uint32_t signature[4]; if( CMD_ARGC < 1 ) { LOG_WARNING( "Too few arguments. Call: lpc2900 signature <bank#>" ); return ERROR_FLASH_BANK_INVALID; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; if( bank->target->state != TARGET_HALTED ) { LOG_ERROR( "Target not halted" ); return ERROR_TARGET_NOT_HALTED; } /* Run BIST over whole flash range */ if( (status = lpc2900_run_bist128( bank, bank->base, bank->base + (bank->size - 1), &signature) ) != ERROR_OK ) { return status; } command_print( CMD_CTX, "signature: 0x%8.8" PRIx32 ":0x%8.8" PRIx32 ":0x%8.8" PRIx32 ":0x%8.8" PRIx32, signature[3], signature[2], signature[1], signature[0] ); return ERROR_OK; } /** * Store customer info in file. * * Read customer info from index sector, and store that block of data into * a disk file. The format is binary. */ COMMAND_HANDLER(lpc2900_handle_read_custom_command) { if( CMD_ARGC < 2 ) { return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; lpc2900_info->risky = 0; /* Get target, and check if it's halted */ struct target *target = bank->target; if( target->state != TARGET_HALTED ) { LOG_ERROR( "Target not halted" ); return ERROR_TARGET_NOT_HALTED; } /* Storage for customer info. Read in two parts */ uint32_t customer[ ISS_CUSTOMER_NWORDS1 + ISS_CUSTOMER_NWORDS2 ]; /* Enable access to index sector */ target_write_u32( target, FCTR, FCTR_FS_CS | FCTR_FS_WEB | FCTR_FS_ISS ); /* Read two parts */ target_read_memory( target, bank->base+ISS_CUSTOMER_START1, 4, ISS_CUSTOMER_NWORDS1, (uint8_t *)&customer[0] ); target_read_memory( target, bank->base+ISS_CUSTOMER_START2, 4, ISS_CUSTOMER_NWORDS2, (uint8_t *)&customer[ISS_CUSTOMER_NWORDS1] ); /* Deactivate access to index sector */ target_write_u32( target, FCTR, FCTR_FS_CS | FCTR_FS_WEB ); /* Try and open the file */ struct fileio fileio; const char *filename = CMD_ARGV[1]; int ret = fileio_open( &fileio, filename, FILEIO_WRITE, FILEIO_BINARY ); if( ret != ERROR_OK ) { LOG_WARNING( "Could not open file %s", filename ); return ret; } size_t nwritten; ret = fileio_write( &fileio, sizeof(customer), (const uint8_t *)customer, &nwritten ); if( ret != ERROR_OK ) { LOG_ERROR( "Write operation to file %s failed", filename ); fileio_close( &fileio ); return ret; } fileio_close( &fileio ); return ERROR_OK; } /** * Enter password to enable potentially dangerous options. */ COMMAND_HANDLER(lpc2900_handle_password_command) { if (CMD_ARGC < 2) { return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; #define ISS_PASSWORD "I_know_what_I_am_doing" lpc2900_info->risky = !strcmp( CMD_ARGV[1], ISS_PASSWORD ); if( !lpc2900_info->risky ) { command_print(CMD_CTX, "Wrong password (use '%s')", ISS_PASSWORD); return ERROR_COMMAND_ARGUMENT_INVALID; } command_print(CMD_CTX, "Potentially dangerous operation allowed in next command!"); return ERROR_OK; } /** * Write customer info from file to the index sector. */ COMMAND_HANDLER(lpc2900_handle_write_custom_command) { if (CMD_ARGC < 2) { return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; /* Check if command execution is allowed. */ if( !lpc2900_info->risky ) { command_print( CMD_CTX, "Command execution not allowed!" ); return ERROR_COMMAND_ARGUMENT_INVALID; } lpc2900_info->risky = 0; /* Get target, and check if it's halted */ struct target *target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* The image will always start at offset 0 */ struct image image; image.base_address_set = 1; image.base_address = 0; image.start_address_set = 0; const char *filename = CMD_ARGV[1]; const char *type = (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL; retval = image_open(&image, filename, type); if (retval != ERROR_OK) { return retval; } /* Do a sanity check: The image must be exactly the size of the customer programmable area. Any other size is rejected. */ if( image.num_sections != 1 ) { LOG_ERROR("Only one section allowed in image file."); return ERROR_COMMAND_SYNTAX_ERROR; } if( (image.sections[0].base_address != 0) || (image.sections[0].size != ISS_CUSTOMER_SIZE) ) { LOG_ERROR("Incorrect image file size. Expected %d, " "got %" PRIu32, ISS_CUSTOMER_SIZE, image.sections[0].size); return ERROR_COMMAND_SYNTAX_ERROR; } /* Well boys, I reckon this is it... */ /* Customer info is split into two blocks in pages 4 and 5. */ uint8_t page[FLASH_PAGE_SIZE]; /* Page 4 */ uint32_t offset = ISS_CUSTOMER_START1 % FLASH_PAGE_SIZE; memset( page, 0xff, FLASH_PAGE_SIZE ); size_t size_read; retval = image_read_section( &image, 0, 0, ISS_CUSTOMER_SIZE1, &page[offset], &size_read); if( retval != ERROR_OK ) { LOG_ERROR("couldn't read from file '%s'", filename); image_close(&image); return retval; } if( (retval = lpc2900_write_index_page( bank, 4, &page )) != ERROR_OK ) { image_close(&image); return retval; } /* Page 5 */ offset = ISS_CUSTOMER_START2 % FLASH_PAGE_SIZE; memset( page, 0xff, FLASH_PAGE_SIZE ); retval = image_read_section( &image, 0, ISS_CUSTOMER_SIZE1, ISS_CUSTOMER_SIZE2, &page[offset], &size_read); if( retval != ERROR_OK ) { LOG_ERROR("couldn't read from file '%s'", filename); image_close(&image); return retval; } if( (retval = lpc2900_write_index_page( bank, 5, &page )) != ERROR_OK ) { image_close(&image); return retval; } image_close(&image); return ERROR_OK; } /** * Activate 'sector security' for a range of sectors. */ COMMAND_HANDLER(lpc2900_handle_secure_sector_command) { if (CMD_ARGC < 3) { return ERROR_COMMAND_SYNTAX_ERROR; } /* Get the bank descriptor */ struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; /* Check if command execution is allowed. */ if( !lpc2900_info->risky ) { command_print( CMD_CTX, "Command execution not allowed! " "(use 'password' command first)"); return ERROR_COMMAND_ARGUMENT_INVALID; } lpc2900_info->risky = 0; /* Read sector range, and do a sanity check. */ int first, last; COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], first); COMMAND_PARSE_NUMBER(int, CMD_ARGV[2], last); if( (first >= bank->num_sectors) || (last >= bank->num_sectors) || (first > last) ) { command_print( CMD_CTX, "Illegal sector range" ); return ERROR_COMMAND_ARGUMENT_INVALID; } uint8_t page[FLASH_PAGE_SIZE]; int sector; /* Sectors in page 6 */ if( (first <= 4) || (last >= 8) ) { memset( &page, 0xff, FLASH_PAGE_SIZE ); for( sector = first; sector <= last; sector++ ) { if( sector <= 4 ) { memset( &page[0xB0 + 16*sector], 0, 16 ); } else if( sector >= 8 ) { memset( &page[0x00 + 16*(sector - 8)], 0, 16 ); } } if( (retval = lpc2900_write_index_page( bank, 6, &page )) != ERROR_OK ) { LOG_ERROR("failed to update index sector page 6"); return retval; } } /* Sectors in page 7 */ if( (first <= 7) && (last >= 5) ) { memset( &page, 0xff, FLASH_PAGE_SIZE ); for( sector = first; sector <= last; sector++ ) { if( (sector >= 5) && (sector <= 7) ) { memset( &page[0x00 + 16*(sector - 5)], 0, 16 ); } } if( (retval = lpc2900_write_index_page( bank, 7, &page )) != ERROR_OK ) { LOG_ERROR("failed to update index sector page 7"); return retval; } } command_print( CMD_CTX, "Sectors security will become effective after next power cycle"); /* Update the sector security status */ if ( lpc2900_read_security_status(bank) != ERROR_OK ) { LOG_ERROR( "Cannot determine sector security status" ); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } /** * Activate JTAG protection. */ COMMAND_HANDLER(lpc2900_handle_secure_jtag_command) { if (CMD_ARGC < 1) { return ERROR_COMMAND_SYNTAX_ERROR; } /* Get the bank descriptor */ struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; /* Check if command execution is allowed. */ if( !lpc2900_info->risky ) { command_print( CMD_CTX, "Command execution not allowed! " "(use 'password' command first)"); return ERROR_COMMAND_ARGUMENT_INVALID; } lpc2900_info->risky = 0; /* Prepare page */ uint8_t page[FLASH_PAGE_SIZE]; memset( &page, 0xff, FLASH_PAGE_SIZE ); /* Insert "soft" protection word */ page[0x30 + 15] = 0x7F; page[0x30 + 11] = 0x7F; page[0x30 + 7] = 0x7F; page[0x30 + 3] = 0x7F; /* Write to page 5 */ if( (retval = lpc2900_write_index_page( bank, 5, &page )) != ERROR_OK ) { LOG_ERROR("failed to update index sector page 5"); return retval; } LOG_INFO("JTAG security set. Good bye!"); return ERROR_OK; } /*********************** Flash interface functions **************************/ static const struct command_registration lpc2900_exec_command_handlers[] = { { .name = "signature", .handler = lpc2900_handle_signature_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Calculate and display signature of flash bank.", }, { .name = "read_custom", .handler = lpc2900_handle_read_custom_command, .mode = COMMAND_EXEC, .usage = "bank_id filename", .help = "Copies 912 bytes of customer information " "from index sector into file.", }, { .name = "password", .handler = lpc2900_handle_password_command, .mode = COMMAND_EXEC, .usage = "bank_id password", .help = "Enter fixed password to enable 'dangerous' options.", }, { .name = "write_custom", .handler = lpc2900_handle_write_custom_command, .mode = COMMAND_EXEC, .usage = "bank_id filename ('bin'|'ihex'|'elf'|'s19')", .help = "Copies 912 bytes of customer info from file " "to index sector.", }, { .name = "secure_sector", .handler = lpc2900_handle_secure_sector_command, .mode = COMMAND_EXEC, .usage = "bank_id first_sector last_sector", .help = "Activate sector security for a range of sectors. " "It will be effective after a power cycle.", }, { .name = "secure_jtag", .handler = lpc2900_handle_secure_jtag_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Disable the JTAG port. " "It will be effective after a power cycle.", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration lpc2900_command_handlers[] = { { .name = "lpc2900", .mode = COMMAND_ANY, .help = "LPC2900 flash command group", .chain = lpc2900_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; /// Evaluate flash bank command. FLASH_BANK_COMMAND_HANDLER(lpc2900_flash_bank_command) { struct lpc2900_flash_bank *lpc2900_info; if (CMD_ARGC < 6) { LOG_WARNING("incomplete flash_bank LPC2900 configuration"); return ERROR_FLASH_BANK_INVALID; } lpc2900_info = malloc(sizeof(struct lpc2900_flash_bank)); bank->driver_priv = lpc2900_info; /* Get flash clock. * Reject it if we can't meet the requirements for program time * (if clock too slow), or for erase time (clock too fast). */ uint32_t clk_sys_fmc; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[6], clk_sys_fmc); lpc2900_info->clk_sys_fmc = clk_sys_fmc * 1000; uint32_t clock_limit; /* Check program time limit */ clock_limit = 512000000l / FLASH_PROGRAM_TIME; if (lpc2900_info->clk_sys_fmc < clock_limit) { LOG_WARNING("flash clock must be at least %" PRIu32 " kHz", (clock_limit / 1000)); return ERROR_FLASH_BANK_INVALID; } /* Check erase time limit */ clock_limit = (uint32_t)((32767.0 * 512.0 * 1e6) / FLASH_ERASE_TIME); if (lpc2900_info->clk_sys_fmc > clock_limit) { LOG_WARNING("flash clock must be a maximum of %" PRIu32" kHz", (clock_limit / 1000)); return ERROR_FLASH_BANK_INVALID; } /* Chip ID will be obtained by probing the device later */ lpc2900_info->chipid = 0; lpc2900_info->is_probed = false; return ERROR_OK; } /** * Erase sector(s). * * @param bank Pointer to the flash bank descriptor * @param first First sector to be erased * @param last Last sector (including) to be erased */ static int lpc2900_erase(struct flash_bank *bank, int first, int last) { uint32_t status; int sector; int last_unsecured_sector; struct target *target = bank->target; struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; status = lpc2900_is_ready(bank); if (status != ERROR_OK) { return status; } /* Sanity check on sector range */ if ((first < 0) || (last < first) || (last >= bank->num_sectors)) { LOG_INFO("Bad sector range"); return ERROR_FLASH_SECTOR_INVALID; } /* Update the info about secured sectors */ lpc2900_read_security_status( bank ); /* The selected sector range might include secured sectors. An attempt * to erase such a sector will cause the erase to fail also for unsecured * sectors. It is necessary to determine the last unsecured sector now, * because we have to treat the last relevant sector in the list in * a special way. */ last_unsecured_sector = -1; for (sector = first; sector <= last; sector++) { if ( !bank->sectors[sector].is_protected ) { last_unsecured_sector = sector; } } /* Exit now, in case of the rare constellation where all sectors in range * are secured. This is regarded a success, since erasing/programming of * secured sectors shall be handled transparently. */ if ( last_unsecured_sector == -1 ) { return ERROR_OK; } /* Enable flash block and set the correct CRA clock of 66 kHz */ lpc2900_setup(bank); /* Clear END_OF_ERASE interrupt status */ target_write_u32(target, INT_CLR_STATUS, INTSRC_END_OF_ERASE); /* Set the program/erase timer to FLASH_ERASE_TIME */ target_write_u32(target, FPTR, FPTR_EN_T | lpc2900_calc_tr( lpc2900_info->clk_sys_fmc, FLASH_ERASE_TIME )); /* Sectors are marked for erasure, then erased all together */ for (sector = first; sector <= last_unsecured_sector; sector++) { /* Only mark sectors that aren't secured. Any attempt to erase a group * of sectors will fail if any single one of them is secured! */ if ( !bank->sectors[sector].is_protected ) { /* Unprotect the sector */ target_write_u32(target, bank->sectors[sector].offset, 0); target_write_u32(target, FCTR, FCTR_FS_LOADREQ | FCTR_FS_WPB | FCTR_FS_WEB | FCTR_FS_WRE | FCTR_FS_CS); /* Mark the sector for erasure. The last sector in the list triggers the erasure. */ target_write_u32(target, bank->sectors[sector].offset, 0); if ( sector == last_unsecured_sector ) { target_write_u32(target, FCTR, FCTR_FS_PROGREQ | FCTR_FS_WPB | FCTR_FS_CS); } else { target_write_u32(target, FCTR, FCTR_FS_LOADREQ | FCTR_FS_WPB | FCTR_FS_WEB | FCTR_FS_CS); } } } /* Wait for the end of the erase operation. If it's not over after two seconds, * something went dreadfully wrong... :-( */ if( lpc2900_wait_status(bank, INTSRC_END_OF_ERASE, 2000) != ERROR_OK ) { return ERROR_FLASH_OPERATION_FAILED; } /* Normal flash operating mode */ target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB); return ERROR_OK; } static int lpc2900_protect(struct flash_bank *bank, int set, int first, int last) { /* This command is not supported. * "Protection" in LPC2900 terms is handled transparently. Sectors will * automatically be unprotected as needed. * Instead we use the concept of sector security. A secured sector is shown * as "protected" in OpenOCD. Sector security is a permanent feature, and * cannot be disabled once activated. */ return ERROR_OK; } /** * Write data to flash. * * @param bank Pointer to the flash bank descriptor * @param buffer Buffer with data * @param offset Start address (relative to bank start) * @param count Number of bytes to be programmed */ static int lpc2900_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { uint8_t page[FLASH_PAGE_SIZE]; uint32_t status; uint32_t num_bytes; struct target *target = bank->target; struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; int sector; int retval; static const uint32_t write_target_code[] = { /* Set auto latch mode: FCTR=CS|WRE|WEB */ 0xe3a0a007, /* loop mov r10, #0x007 */ 0xe583a000, /* str r10,[r3,#0] */ /* Load complete page into latches */ 0xe3a06020, /* mov r6,#(512/16) */ 0xe8b00f00, /* next ldmia r0!,{r8-r11} */ 0xe8a10f00, /* stmia r1!,{r8-r11} */ 0xe2566001, /* subs r6,#1 */ 0x1afffffb, /* bne next */ /* Clear END_OF_BURN interrupt status */ 0xe3a0a002, /* mov r10,#(1 << 1) */ 0xe583afe8, /* str r10,[r3,#0xfe8] */ /* Set the erase time to FLASH_PROGRAM_TIME */ 0xe5834008, /* str r4,[r3,#8] */ /* Trigger flash write FCTR = CS | WRE | WPB | PROGREQ */ 0xe3a0a083, /* mov r10,#0x83 */ 0xe38aaa01, /* orr r10,#0x1000 */ 0xe583a000, /* str r10,[r3,#0] */ /* Wait for end of burn */ 0xe593afe0, /* wait ldr r10,[r3,#0xfe0] */ 0xe21aa002, /* ands r10,#(1 << 1) */ 0x0afffffc, /* beq wait */ /* End? */ 0xe2522001, /* subs r2,#1 */ 0x1affffed, /* bne loop */ 0xeafffffe /* done b done */ }; status = lpc2900_is_ready(bank); if (status != ERROR_OK) { return status; } /* Enable flash block and set the correct CRA clock of 66 kHz */ lpc2900_setup(bank); /* Update the info about secured sectors */ lpc2900_read_security_status( bank ); /* Unprotect all involved sectors */ for (sector = 0; sector < bank->num_sectors; sector++) { /* Start address in or before this sector? */ /* End address in or behind this sector? */ if ( ((bank->base + offset) < (bank->sectors[sector].offset + bank->sectors[sector].size)) && ((bank->base + (offset + count - 1)) >= bank->sectors[sector].offset) ) { /* This sector is involved and needs to be unprotected. * Don't do it for secured sectors. */ if ( !bank->sectors[sector].is_protected ) { target_write_u32(target, bank->sectors[sector].offset, 0); target_write_u32(target, FCTR, FCTR_FS_LOADREQ | FCTR_FS_WPB | FCTR_FS_WEB | FCTR_FS_WRE | FCTR_FS_CS); } } } /* Set the program/erase time to FLASH_PROGRAM_TIME */ uint32_t prog_time = FPTR_EN_T | lpc2900_calc_tr( lpc2900_info->clk_sys_fmc, FLASH_PROGRAM_TIME ); /* If there is a working area of reasonable size, use it to program via a target algorithm. If not, fall back to host programming. */ /* We need some room for target code. */ uint32_t target_code_size = sizeof(write_target_code); /* Try working area allocation. Start with a large buffer, and try with reduced size if that fails. */ struct working_area *warea; uint32_t buffer_size = lpc2900_info->max_ram_block - 1 * KiB; while( (retval = target_alloc_working_area_try(target, buffer_size + target_code_size, &warea)) != ERROR_OK ) { /* Try a smaller buffer now, and stop if it's too small. */ buffer_size -= 1 * KiB; if (buffer_size < 2 * KiB) { LOG_INFO( "no (large enough) working area" ", falling back to host mode" ); warea = NULL; break; } }; if( warea ) { struct reg_param reg_params[5]; struct arm_algorithm armv4_5_info; /* We can use target mode. Download the algorithm. */ retval = target_write_buffer( target, (warea->address)+buffer_size, target_code_size, (uint8_t *)write_target_code); if (retval != ERROR_OK) { LOG_ERROR("Unable to write block write code to target"); target_free_all_working_areas(target); return ERROR_FLASH_OPERATION_FAILED; } init_reg_param(®_params[0], "r0", 32, PARAM_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); init_reg_param(®_params[2], "r2", 32, PARAM_OUT); init_reg_param(®_params[3], "r3", 32, PARAM_OUT); init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* Write to flash in large blocks */ while ( count != 0 ) { uint32_t this_npages; uint8_t *this_buffer; int start_sector = lpc2900_address2sector( bank, offset ); /* First page / last page / rest */ if( offset % FLASH_PAGE_SIZE ) { /* Block doesn't start on page boundary. Burn first partial page separately. */ memset( &page, 0xff, sizeof(page) ); memcpy( &page[offset % FLASH_PAGE_SIZE], buffer, FLASH_PAGE_SIZE - (offset % FLASH_PAGE_SIZE) ); this_npages = 1; this_buffer = &page[0]; count = count + (offset % FLASH_PAGE_SIZE); offset = offset - (offset % FLASH_PAGE_SIZE); } else if( count < FLASH_PAGE_SIZE ) { /* Download last incomplete page separately. */ memset( &page, 0xff, sizeof(page) ); memcpy( &page, buffer, count ); this_npages = 1; this_buffer = &page[0]; count = FLASH_PAGE_SIZE; } else { /* Download as many full pages as possible */ this_npages = (count < buffer_size) ? count / FLASH_PAGE_SIZE : buffer_size / FLASH_PAGE_SIZE; this_buffer = buffer; /* Make sure we stop at the next secured sector */ sector = start_sector + 1; while( sector < bank->num_sectors ) { /* Secured? */ if( bank->sectors[sector].is_protected ) { /* Is that next sector within the current block? */ if( (bank->sectors[sector].offset - bank->base) < (offset + (this_npages * FLASH_PAGE_SIZE)) ) { /* Yes! Split the block */ this_npages = (bank->sectors[sector].offset - bank->base - offset) / FLASH_PAGE_SIZE; break; } } sector++; } } /* Skip the current sector if it is secured */ if (bank->sectors[start_sector].is_protected) { LOG_DEBUG("Skip secured sector %d", start_sector); /* Stop if this is the last sector */ if (start_sector == bank->num_sectors - 1) { break; } /* Skip */ uint32_t nskip = bank->sectors[start_sector].size - (offset % bank->sectors[start_sector].size); offset += nskip; buffer += nskip; count = (count >= nskip) ? (count - nskip) : 0; continue; } /* Execute buffer download */ if ((retval = target_write_buffer(target, warea->address, this_npages * FLASH_PAGE_SIZE, this_buffer)) != ERROR_OK) { LOG_ERROR("Unable to write data to target"); target_free_all_working_areas(target); return ERROR_FLASH_OPERATION_FAILED; } /* Prepare registers */ buf_set_u32(reg_params[0].value, 0, 32, warea->address); buf_set_u32(reg_params[1].value, 0, 32, offset); buf_set_u32(reg_params[2].value, 0, 32, this_npages); buf_set_u32(reg_params[3].value, 0, 32, FCTR); buf_set_u32(reg_params[4].value, 0, 32, FPTR_EN_T | prog_time); /* Execute algorithm, assume breakpoint for last instruction */ armv4_5_info.common_magic = ARM_COMMON_MAGIC; armv4_5_info.core_mode = ARM_MODE_SVC; armv4_5_info.core_state = ARM_STATE_ARM; retval = target_run_algorithm(target, 0, NULL, 5, reg_params, (warea->address) + buffer_size, (warea->address) + buffer_size + target_code_size - 4, 10000, /* 10s should be enough for max. 16 KiB of data */ &armv4_5_info); if (retval != ERROR_OK) { LOG_ERROR("Execution of flash algorithm failed."); target_free_all_working_areas(target); retval = ERROR_FLASH_OPERATION_FAILED; break; } count -= this_npages * FLASH_PAGE_SIZE; buffer += this_npages * FLASH_PAGE_SIZE; offset += this_npages * FLASH_PAGE_SIZE; } /* Free all resources */ destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); target_free_all_working_areas(target); } else { /* Write to flash memory page-wise */ while ( count != 0 ) { /* How many bytes do we copy this time? */ num_bytes = (count >= FLASH_PAGE_SIZE) ? FLASH_PAGE_SIZE - (offset % FLASH_PAGE_SIZE) : count; /* Don't do anything with it if the page is in a secured sector. */ if ( !bank->sectors[lpc2900_address2sector(bank, offset)].is_protected ) { /* Set latch load mode */ target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WRE | FCTR_FS_WEB); /* Always clear the buffer (a little overhead, but who cares) */ memset(page, 0xFF, FLASH_PAGE_SIZE); /* Copy them to the buffer */ memcpy( &page[offset % FLASH_PAGE_SIZE], &buffer[offset % FLASH_PAGE_SIZE], num_bytes ); /* Write whole page to flash data latches */ if (target_write_memory( target, bank->base + (offset - (offset % FLASH_PAGE_SIZE)), 4, FLASH_PAGE_SIZE / 4, page) != ERROR_OK) { LOG_ERROR("Write failed @ 0x%8.8" PRIx32, offset); target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB); return ERROR_FLASH_OPERATION_FAILED; } /* Clear END_OF_BURN interrupt status */ target_write_u32(target, INT_CLR_STATUS, INTSRC_END_OF_BURN); /* Set the programming time */ target_write_u32(target, FPTR, FPTR_EN_T | prog_time); /* Trigger flash write */ target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WRE | FCTR_FS_WPB | FCTR_FS_PROGREQ); /* Wait for the end of the write operation. If it's not over * after one second, something went dreadfully wrong... :-( */ if (lpc2900_wait_status(bank, INTSRC_END_OF_BURN, 1000) != ERROR_OK) { LOG_ERROR("Write failed @ 0x%8.8" PRIx32, offset); target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB); return ERROR_FLASH_OPERATION_FAILED; } } /* Update pointers and counters */ offset += num_bytes; buffer += num_bytes; count -= num_bytes; } retval = ERROR_OK; } /* Normal flash operating mode */ target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB); return retval; } /** * Try and identify the device. * * Determine type number and its memory layout. * * @param bank Pointer to the flash bank descriptor */ static int lpc2900_probe(struct flash_bank *bank) { struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv; struct target *target = bank->target; int i = 0; uint32_t offset; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* We want to do this only once. */ if (lpc2900_info->is_probed) { return ERROR_OK; } /* Probing starts with reading the CHIPID register. We will continue only * if this identifies as an LPC2900 device. */ target_read_u32(target, CHIPID, &lpc2900_info->chipid); if (lpc2900_info->chipid != EXPECTED_CHIPID) { LOG_WARNING("Device is not an LPC29xx"); return ERROR_FLASH_OPERATION_FAILED; } /* It's an LPC29xx device. Now read the feature register FEAT0...FEAT3. */ uint32_t feat0, feat1, feat2, feat3; target_read_u32(target, FEAT0, &feat0); target_read_u32(target, FEAT1, &feat1); target_read_u32(target, FEAT2, &feat2); target_read_u32(target, FEAT3, &feat3); /* Base address */ bank->base = 0x20000000; /* Determine flash layout from FEAT2 register */ uint32_t num_64k_sectors = (feat2 >> 16) & 0xFF; uint32_t num_8k_sectors = (feat2 >> 0) & 0xFF; bank->num_sectors = num_64k_sectors + num_8k_sectors; bank->size = KiB * (64 * num_64k_sectors + 8 * num_8k_sectors); /* Determine maximum contiguous RAM block */ lpc2900_info->max_ram_block = 16 * KiB; if( (feat1 & 0x30) == 0x30 ) { lpc2900_info->max_ram_block = 32 * KiB; if( (feat1 & 0x0C) == 0x0C ) { lpc2900_info->max_ram_block = 48 * KiB; } } /* Determine package code and ITCM size */ uint32_t package_code = feat0 & 0x0F; uint32_t itcm_code = (feat1 >> 16) & 0x1F; /* Determine the exact type number. */ uint32_t found = 1; if ( (package_code == 4) && (itcm_code == 5) ) { /* Old LPC2917 or LPC2919 (non-/01 devices) */ lpc2900_info->target_name = (bank->size == 768*KiB) ? "LPC2919" : "LPC2917"; } else { if ( package_code == 2 ) { /* 100-pin package */ if ( bank->size == 128*KiB ) { lpc2900_info->target_name = "LPC2921"; } else if ( bank->size == 256*KiB ) { lpc2900_info->target_name = "LPC2923"; } else if ( bank->size == 512*KiB ) { lpc2900_info->target_name = "LPC2925"; } else { found = 0; } } else if ( package_code == 4 ) { /* 144-pin package */ if ( (bank->size == 256*KiB) && (feat3 == 0xFFFFFFE9) ) { lpc2900_info->target_name = "LPC2926"; } else if ( (bank->size == 512*KiB) && (feat3 == 0xFFFFFCF0) ) { lpc2900_info->target_name = "LPC2917/01"; } else if ( (bank->size == 512*KiB) && (feat3 == 0xFFFFFFF1) ) { lpc2900_info->target_name = "LPC2927"; } else if ( (bank->size == 768*KiB) && (feat3 == 0xFFFFFCF8) ) { lpc2900_info->target_name = "LPC2919/01"; } else if ( (bank->size == 768*KiB) && (feat3 == 0xFFFFFFF9) ) { lpc2900_info->target_name = "LPC2929"; } else { found = 0; } } else if ( package_code == 5 ) { /* 208-pin package */ lpc2900_info->target_name = (bank->size == 0) ? "LPC2930" : "LPC2939"; } else { found = 0; } } if ( !found ) { LOG_WARNING("Unknown LPC29xx derivative" " (FEATx=" "%08" PRIx32 ":%08" PRIx32 ":%08" PRIx32 ":%08" PRIx32 ")", feat0, feat1, feat2, feat3 ); return ERROR_FLASH_OPERATION_FAILED; } /* Show detected device */ LOG_INFO("Flash bank %d" ": Device %s, %" PRIu32 " KiB in %d sectors", bank->bank_number, lpc2900_info->target_name, bank->size / KiB, bank->num_sectors); /* Flashless devices cannot be handled */ if ( bank->num_sectors == 0 ) { LOG_WARNING("Flashless device cannot be handled"); return ERROR_FLASH_OPERATION_FAILED; } /* Sector layout. * These are logical sector numbers. When doing real flash operations, * the logical flash number are translated into the physical flash numbers * of the device. */ bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors); offset = 0; for (i = 0; i < bank->num_sectors; i++) { bank->sectors[i].offset = offset; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = -1; if ( i <= 7 ) { bank->sectors[i].size = 8 * KiB; } else if ( i <= 18 ) { bank->sectors[i].size = 64 * KiB; } else { /* We shouldn't come here. But there might be a new part out there * that has more than 19 sectors. Politely ask for a fix then. */ bank->sectors[i].size = 0; LOG_ERROR("Never heard about sector %d", i); } offset += bank->sectors[i].size; } lpc2900_info->is_probed = true; /* Read sector security status */ if ( lpc2900_read_security_status(bank) != ERROR_OK ) { LOG_ERROR("Cannot determine sector security status"); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } /** * Run a blank check for each sector. * * For speed reasons, the device isn't read word by word. * A hash value is calculated by the hardware ("BIST") for each sector. * This value is then compared against the known hash of an empty sector. * * @param bank Pointer to the flash bank descriptor */ static int lpc2900_erase_check(struct flash_bank *bank) { uint32_t status = lpc2900_is_ready(bank); if (status != ERROR_OK) { LOG_INFO("Processor not halted/not probed"); return status; } /* Use the BIST (Built-In Selft Test) to generate a signature of each flash * sector. Compare against the expected signature of an empty sector. */ int sector; for ( sector = 0; sector < bank->num_sectors; sector++ ) { uint32_t signature[4]; if ( (status = lpc2900_run_bist128( bank, bank->sectors[sector].offset, bank->sectors[sector].offset + (bank->sectors[sector].size - 1), &signature)) != ERROR_OK ) { return status; } /* The expected signatures for an empty sector are different * for 8 KiB and 64 KiB sectors. */ if ( bank->sectors[sector].size == 8*KiB ) { bank->sectors[sector].is_erased = (signature[3] == 0x01ABAAAA) && (signature[2] == 0xAAAAAAAA) && (signature[1] == 0xAAAAAAAA) && (signature[0] == 0xAAA00AAA); } if ( bank->sectors[sector].size == 64*KiB ) { bank->sectors[sector].is_erased = (signature[3] == 0x11801222) && (signature[2] == 0xB88844FF) && (signature[1] == 0x11A22008) && (signature[0] == 0x2B1BFE44); } } return ERROR_OK; } /** * Get protection (sector security) status. * * Determine the status of "sector security" for each sector. * A secured sector is one that can never be erased/programmed again. * * @param bank Pointer to the flash bank descriptor */ static int lpc2900_protect_check(struct flash_bank *bank) { return lpc2900_read_security_status(bank); } /** * Print info about the driver (not the device). * * @param bank Pointer to the flash bank descriptor * @param buf Buffer to take the string * @param buf_size Maximum number of characters that the buffer can take */ static int lpc2900_info(struct flash_bank *bank, char *buf, int buf_size) { snprintf(buf, buf_size, "lpc2900 flash driver"); return ERROR_OK; } struct flash_driver lpc2900_flash = { .name = "lpc2900", .commands = lpc2900_command_handlers, .flash_bank_command = lpc2900_flash_bank_command, .erase = lpc2900_erase, .protect = lpc2900_protect, .write = lpc2900_write, .read = default_flash_read, .probe = lpc2900_probe, .auto_probe = lpc2900_probe, .erase_check = lpc2900_erase_check, .protect_check = lpc2900_protect_check, .info = lpc2900_info };