/*************************************************************************** * Copyright (C) 2007,2008 by Christopher Kilgour * * techie |_at_| whiterocker |_dot_| com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" /* ---------------------------------------------------------------------- Internal Support, Helpers ---------------------------------------------------------------------- */ struct tms470_flash_bank { unsigned ordinal; /* device identification register */ uint32_t device_ident_reg; uint32_t silicon_version; uint32_t technology_family; uint32_t rom_flash; uint32_t part_number; const char * part_name; }; static const struct flash_sector TMS470R1A256_SECTORS[] = { {0x00000000, 0x00002000, -1, -1}, {0x00002000, 0x00002000, -1, -1}, {0x00004000, 0x00002000, -1, -1}, {0x00006000, 0x00002000, -1, -1}, {0x00008000, 0x00008000, -1, -1}, {0x00010000, 0x00008000, -1, -1}, {0x00018000, 0x00008000, -1, -1}, {0x00020000, 0x00008000, -1, -1}, {0x00028000, 0x00008000, -1, -1}, {0x00030000, 0x00008000, -1, -1}, {0x00038000, 0x00002000, -1, -1}, {0x0003A000, 0x00002000, -1, -1}, {0x0003C000, 0x00002000, -1, -1}, {0x0003E000, 0x00002000, -1, -1}, }; #define TMS470R1A256_NUM_SECTORS \ ARRAY_SIZE(TMS470R1A256_SECTORS) static const struct flash_sector TMS470R1A288_BANK0_SECTORS[] = { {0x00000000, 0x00002000, -1, -1}, {0x00002000, 0x00002000, -1, -1}, {0x00004000, 0x00002000, -1, -1}, {0x00006000, 0x00002000, -1, -1}, }; #define TMS470R1A288_BANK0_NUM_SECTORS \ ARRAY_SIZE(TMS470R1A288_BANK0_SECTORS) static const struct flash_sector TMS470R1A288_BANK1_SECTORS[] = { {0x00040000, 0x00010000, -1, -1}, {0x00050000, 0x00010000, -1, -1}, {0x00060000, 0x00010000, -1, -1}, {0x00070000, 0x00010000, -1, -1}, }; #define TMS470R1A288_BANK1_NUM_SECTORS \ ARRAY_SIZE(TMS470R1A288_BANK1_SECTORS) static const struct flash_sector TMS470R1A384_BANK0_SECTORS[] = { {0x00000000, 0x00002000, -1, -1}, {0x00002000, 0x00002000, -1, -1}, {0x00004000, 0x00004000, -1, -1}, {0x00008000, 0x00004000, -1, -1}, {0x0000C000, 0x00004000, -1, -1}, {0x00010000, 0x00004000, -1, -1}, {0x00014000, 0x00004000, -1, -1}, {0x00018000, 0x00002000, -1, -1}, {0x0001C000, 0x00002000, -1, -1}, {0x0001E000, 0x00002000, -1, -1}, }; #define TMS470R1A384_BANK0_NUM_SECTORS \ ARRAY_SIZE(TMS470R1A384_BANK0_SECTORS) static const struct flash_sector TMS470R1A384_BANK1_SECTORS[] = { {0x00020000, 0x00008000, -1, -1}, {0x00028000, 0x00008000, -1, -1}, {0x00030000, 0x00008000, -1, -1}, {0x00038000, 0x00008000, -1, -1}, }; #define TMS470R1A384_BANK1_NUM_SECTORS \ ARRAY_SIZE(TMS470R1A384_BANK1_SECTORS) static const struct flash_sector TMS470R1A384_BANK2_SECTORS[] = { {0x00040000, 0x00008000, -1, -1}, {0x00048000, 0x00008000, -1, -1}, {0x00050000, 0x00008000, -1, -1}, {0x00058000, 0x00008000, -1, -1}, }; #define TMS470R1A384_BANK2_NUM_SECTORS \ ARRAY_SIZE(TMS470R1A384_BANK2_SECTORS) /* ---------------------------------------------------------------------- */ static int tms470_read_part_info(struct flash_bank *bank) { struct tms470_flash_bank *tms470_info = bank->driver_priv; struct target *target = bank->target; uint32_t device_ident_reg; uint32_t silicon_version; uint32_t technology_family; uint32_t rom_flash; uint32_t part_number; const char *part_name; /* we shall not rely on the caller in this test, this function allocates memory, thus and executing the code more than once may cause memory leak */ if (tms470_info->device_ident_reg) return ERROR_OK; /* read and parse the device identification register */ target_read_u32(target, 0xFFFFFFF0, &device_ident_reg); LOG_INFO("device_ident_reg = 0x%08" PRIx32 "", device_ident_reg); if ((device_ident_reg & 7) == 0) { LOG_WARNING("Cannot identify target as a TMS470 family."); return ERROR_FLASH_OPERATION_FAILED; } silicon_version = (device_ident_reg >> 12) & 0xF; technology_family = (device_ident_reg >> 11) & 1; rom_flash = (device_ident_reg >> 10) & 1; part_number = (device_ident_reg >> 3) & 0x7f; if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } /* * If the part number is known, determine if the flash bank is valid * based on the base address being within the known flash bank * ranges. Then fixup/complete the remaining fields of the flash * bank structure. */ switch (part_number) { case 0x0a: part_name = "TMS470R1A256"; if (bank->base >= 0x00040000) { LOG_ERROR("No %s flash bank contains base address 0x%08" PRIx32 ".", part_name, bank->base); return ERROR_FLASH_OPERATION_FAILED; } tms470_info->ordinal = 0; bank->base = 0x00000000; bank->size = 256 * 1024; bank->num_sectors = TMS470R1A256_NUM_SECTORS; bank->sectors = malloc(sizeof(TMS470R1A256_SECTORS)); if (!bank->sectors) { return ERROR_FLASH_OPERATION_FAILED; } (void)memcpy(bank->sectors, TMS470R1A256_SECTORS, sizeof(TMS470R1A256_SECTORS)); break; case 0x2b: part_name = "TMS470R1A288"; if (bank->base < 0x00008000) { tms470_info->ordinal = 0; bank->base = 0x00000000; bank->size = 32 * 1024; bank->num_sectors = TMS470R1A288_BANK0_NUM_SECTORS; bank->sectors = malloc(sizeof(TMS470R1A288_BANK0_SECTORS)); if (!bank->sectors) { return ERROR_FLASH_OPERATION_FAILED; } (void)memcpy(bank->sectors, TMS470R1A288_BANK0_SECTORS, sizeof(TMS470R1A288_BANK0_SECTORS)); } else if ((bank->base >= 0x00040000) && (bank->base < 0x00080000)) { tms470_info->ordinal = 1; bank->base = 0x00040000; bank->size = 256 * 1024; bank->num_sectors = TMS470R1A288_BANK1_NUM_SECTORS; bank->sectors = malloc(sizeof(TMS470R1A288_BANK1_SECTORS)); if (!bank->sectors) { return ERROR_FLASH_OPERATION_FAILED; } (void)memcpy(bank->sectors, TMS470R1A288_BANK1_SECTORS, sizeof(TMS470R1A288_BANK1_SECTORS)); } else { LOG_ERROR("No %s flash bank contains base address 0x%08" PRIx32 ".", part_name, bank->base); return ERROR_FLASH_OPERATION_FAILED; } break; case 0x2d: part_name = "TMS470R1A384"; if (bank->base < 0x00020000) { tms470_info->ordinal = 0; bank->base = 0x00000000; bank->size = 128 * 1024; bank->num_sectors = TMS470R1A384_BANK0_NUM_SECTORS; bank->sectors = malloc(sizeof(TMS470R1A384_BANK0_SECTORS)); if (!bank->sectors) { return ERROR_FLASH_OPERATION_FAILED; } (void)memcpy(bank->sectors, TMS470R1A384_BANK0_SECTORS, sizeof(TMS470R1A384_BANK0_SECTORS)); } else if ((bank->base >= 0x00020000) && (bank->base < 0x00040000)) { tms470_info->ordinal = 1; bank->base = 0x00020000; bank->size = 128 * 1024; bank->num_sectors = TMS470R1A384_BANK1_NUM_SECTORS; bank->sectors = malloc(sizeof(TMS470R1A384_BANK1_SECTORS)); if (!bank->sectors) { return ERROR_FLASH_OPERATION_FAILED; } (void)memcpy(bank->sectors, TMS470R1A384_BANK1_SECTORS, sizeof(TMS470R1A384_BANK1_SECTORS)); } else if ((bank->base >= 0x00040000) && (bank->base < 0x00060000)) { tms470_info->ordinal = 2; bank->base = 0x00040000; bank->size = 128 * 1024; bank->num_sectors = TMS470R1A384_BANK2_NUM_SECTORS; bank->sectors = malloc(sizeof(TMS470R1A384_BANK2_SECTORS)); if (!bank->sectors) { return ERROR_FLASH_OPERATION_FAILED; } (void)memcpy(bank->sectors, TMS470R1A384_BANK2_SECTORS, sizeof(TMS470R1A384_BANK2_SECTORS)); } else { LOG_ERROR("No %s flash bank contains base address 0x%08" PRIx32 ".", part_name, bank->base); return ERROR_FLASH_OPERATION_FAILED; } break; default: LOG_WARNING("Could not identify part 0x%02x as a member of the TMS470 family.", (unsigned)part_number); return ERROR_FLASH_OPERATION_FAILED; } /* turn off memory selects */ target_write_u32(target, 0xFFFFFFE4, 0x00000000); target_write_u32(target, 0xFFFFFFE0, 0x00000000); bank->chip_width = 32; bank->bus_width = 32; LOG_INFO("Identified %s, ver=%d, core=%s, nvmem=%s.", part_name, (int)(silicon_version), (technology_family ? "1.8v" : "3.3v"), (rom_flash ? "rom" : "flash")); tms470_info->device_ident_reg = device_ident_reg; tms470_info->silicon_version = silicon_version; tms470_info->technology_family = technology_family; tms470_info->rom_flash = rom_flash; tms470_info->part_number = part_number; tms470_info->part_name = part_name; /* * Disable reset on address access violation. */ target_write_u32(target, 0xFFFFFFE0, 0x00004007); return ERROR_OK; } /* ---------------------------------------------------------------------- */ static uint32_t keysSet = 0; static uint32_t flashKeys[4]; COMMAND_HANDLER(tms470_handle_flash_keyset_command) { if (CMD_ARGC > 4) { command_print(CMD_CTX, "tms470 flash_keyset <key0> <key1> <key2> <key3>"); return ERROR_INVALID_ARGUMENTS; } else if (CMD_ARGC == 4) { int i; for (i = 0; i < 4; i++) { int start = (0 == strncmp(CMD_ARGV[i], "0x", 2)) ? 2 : 0; if (1 != sscanf(&CMD_ARGV[i][start], "%" SCNx32 "", &flashKeys[i])) { command_print(CMD_CTX, "could not process flash key %s", CMD_ARGV[i]); LOG_ERROR("could not process flash key %s", CMD_ARGV[i]); return ERROR_INVALID_ARGUMENTS; } } keysSet = 1; } else if (CMD_ARGC != 0) { command_print(CMD_CTX, "tms470 flash_keyset <key0> <key1> <key2> <key3>"); return ERROR_INVALID_ARGUMENTS; } if (keysSet) { command_print(CMD_CTX, "using flash keys 0x%08" PRIx32 ", 0x%08" PRIx32 ", 0x%08" PRIx32 ", 0x%08" PRIx32 "", flashKeys[0], flashKeys[1], flashKeys[2], flashKeys[3]); } else { command_print(CMD_CTX, "flash keys not set"); } return ERROR_OK; } static const uint32_t FLASH_KEYS_ALL_ONES[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, }; static const uint32_t FLASH_KEYS_ALL_ZEROS[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, }; static const uint32_t FLASH_KEYS_MIX1[] = { 0xf0fff0ff, 0xf0fff0ff, 0xf0fff0ff, 0xf0fff0ff }; static const uint32_t FLASH_KEYS_MIX2[] = { 0x0000ffff, 0x0000ffff, 0x0000ffff, 0x0000ffff }; /* ---------------------------------------------------------------------- */ static int oscMHz = 12; COMMAND_HANDLER(tms470_handle_osc_megahertz_command) { if (CMD_ARGC > 1) { command_print(CMD_CTX, "tms470 osc_megahertz <MHz>"); return ERROR_INVALID_ARGUMENTS; } else if (CMD_ARGC == 1) { sscanf(CMD_ARGV[0], "%d", &oscMHz); } if (oscMHz <= 0) { LOG_ERROR("osc_megahertz must be positive and non-zero!"); command_print(CMD_CTX, "osc_megahertz must be positive and non-zero!"); oscMHz = 12; return ERROR_INVALID_ARGUMENTS; } command_print(CMD_CTX, "osc_megahertz=%d", oscMHz); return ERROR_OK; } /* ---------------------------------------------------------------------- */ static int plldis = 0; COMMAND_HANDLER(tms470_handle_plldis_command) { if (CMD_ARGC > 1) { command_print(CMD_CTX, "tms470 plldis <0 | 1>"); return ERROR_INVALID_ARGUMENTS; } else if (CMD_ARGC == 1) { sscanf(CMD_ARGV[0], "%d", &plldis); plldis = plldis ? 1 : 0; } command_print(CMD_CTX, "plldis=%d", plldis); return ERROR_OK; } /* ---------------------------------------------------------------------- */ static int tms470_check_flash_unlocked(struct target * target) { uint32_t fmbbusy; target_read_u32(target, 0xFFE89C08, &fmbbusy); LOG_INFO("tms470 fmbbusy = 0x%08" PRIx32 " -> %s", fmbbusy, fmbbusy & 0x8000 ? "unlocked" : "LOCKED"); return fmbbusy & 0x8000 ? ERROR_OK : ERROR_FLASH_OPERATION_FAILED; } /* ---------------------------------------------------------------------- */ static int tms470_try_flash_keys(struct target * target, const uint32_t * key_set) { uint32_t glbctrl, fmmstat; int retval = ERROR_FLASH_OPERATION_FAILED; /* set GLBCTRL.4 */ target_read_u32(target, 0xFFFFFFDC, &glbctrl); target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10); /* only perform the key match when 3VSTAT is clear */ target_read_u32(target, 0xFFE8BC0C, &fmmstat); if (!(fmmstat & 0x08)) { unsigned i; uint32_t fmbptr, fmbac2, orig_fmregopt; target_write_u32(target, 0xFFE8BC04, fmmstat & ~0x07); /* wait for pump ready */ do { target_read_u32(target, 0xFFE8A814, &fmbptr); alive_sleep(1); } while (!(fmbptr & 0x0200)); /* force max wait states */ target_read_u32(target, 0xFFE88004, &fmbac2); target_write_u32(target, 0xFFE88004, fmbac2 | 0xff); /* save current access mode, force normal read mode */ target_read_u32(target, 0xFFE89C00, &orig_fmregopt); target_write_u32(target, 0xFFE89C00, 0x00); for (i = 0; i < 4; i++) { uint32_t tmp; /* There is no point displaying the value of tmp, it is * filtered by the chip. The purpose of this read is to * prime the unlocking logic rather than read out the value. */ target_read_u32(target, 0x00001FF0 + 4 * i, &tmp); LOG_INFO("tms470 writing fmpkey = 0x%08" PRIx32 "", key_set[i]); target_write_u32(target, 0xFFE89C0C, key_set[i]); } if (ERROR_OK == tms470_check_flash_unlocked(target)) { /* * There seems to be a side-effect of reading the FMPKEY * register in that it re-enables the protection. So we * re-enable it. */ for (i = 0; i < 4; i++) { uint32_t tmp; target_read_u32(target, 0x00001FF0 + 4 * i, &tmp); target_write_u32(target, 0xFFE89C0C, key_set[i]); } retval = ERROR_OK; } /* restore settings */ target_write_u32(target, 0xFFE89C00, orig_fmregopt); target_write_u32(target, 0xFFE88004, fmbac2); } /* clear config bit */ target_write_u32(target, 0xFFFFFFDC, glbctrl); return retval; } /* ---------------------------------------------------------------------- */ static int tms470_unlock_flash(struct flash_bank *bank) { struct target *target = bank->target; const uint32_t *p_key_sets[5]; unsigned i, key_set_count; if (keysSet) { key_set_count = 5; p_key_sets[0] = flashKeys; p_key_sets[1] = FLASH_KEYS_ALL_ONES; p_key_sets[2] = FLASH_KEYS_ALL_ZEROS; p_key_sets[3] = FLASH_KEYS_MIX1; p_key_sets[4] = FLASH_KEYS_MIX2; } else { key_set_count = 4; p_key_sets[0] = FLASH_KEYS_ALL_ONES; p_key_sets[1] = FLASH_KEYS_ALL_ZEROS; p_key_sets[2] = FLASH_KEYS_MIX1; p_key_sets[3] = FLASH_KEYS_MIX2; } for (i = 0; i < key_set_count; i++) { if (tms470_try_flash_keys(target, p_key_sets[i]) == ERROR_OK) { LOG_INFO("tms470 flash is unlocked"); return ERROR_OK; } } LOG_WARNING("tms470 could not unlock flash memory protection level 2"); return ERROR_FLASH_OPERATION_FAILED; } /* ---------------------------------------------------------------------- */ static int tms470_flash_initialize_internal_state_machine(struct flash_bank *bank) { uint32_t fmmac2, fmmac1, fmmaxep, k, delay, glbctrl, sysclk; struct target *target = bank->target; struct tms470_flash_bank *tms470_info = bank->driver_priv; int result = ERROR_OK; /* * Select the desired bank to be programmed by writing BANK[2:0] of * FMMAC2. */ target_read_u32(target, 0xFFE8BC04, &fmmac2); fmmac2 &= ~0x0007; fmmac2 |= (tms470_info->ordinal & 7); target_write_u32(target, 0xFFE8BC04, fmmac2); LOG_DEBUG("set fmmac2 = 0x%04" PRIx32 "", fmmac2); /* * Disable level 1 sector protection by setting bit 15 of FMMAC1. */ target_read_u32(target, 0xFFE8BC00, &fmmac1); fmmac1 |= 0x8000; target_write_u32(target, 0xFFE8BC00, fmmac1); LOG_DEBUG("set fmmac1 = 0x%04" PRIx32 "", fmmac1); /* * FMTCREG = 0x2fc0; */ target_write_u32(target, 0xFFE8BC10, 0x2fc0); LOG_DEBUG("set fmtcreg = 0x2fc0"); /* * MAXPP = 50 */ target_write_u32(target, 0xFFE8A07C, 50); LOG_DEBUG("set fmmaxpp = 50"); /* * MAXCP = 0xf000 + 2000 */ target_write_u32(target, 0xFFE8A084, 0xf000 + 2000); LOG_DEBUG("set fmmaxcp = 0x%04x", 0xf000 + 2000); /* * configure VHV */ target_read_u32(target, 0xFFE8A080, &fmmaxep); if (fmmaxep == 0xf000) { fmmaxep = 0xf000 + 4095; target_write_u32(target, 0xFFE8A80C, 0x9964); LOG_DEBUG("set fmptr3 = 0x9964"); } else { fmmaxep = 0xa000 + 4095; target_write_u32(target, 0xFFE8A80C, 0x9b64); LOG_DEBUG("set fmptr3 = 0x9b64"); } target_write_u32(target, 0xFFE8A080, fmmaxep); LOG_DEBUG("set fmmaxep = 0x%04" PRIx32 "", fmmaxep); /* * FMPTR4 = 0xa000 */ target_write_u32(target, 0xFFE8A810, 0xa000); LOG_DEBUG("set fmptr4 = 0xa000"); /* * FMPESETUP, delay parameter selected based on clock frequency. * * According to the TI App Note SPNU257 and flashing code, delay is * int((sysclk(MHz) + 1) / 2), with a minimum of 5. The system * clock is usually derived from the ZPLL module, and selected by * the plldis global. */ target_read_u32(target, 0xFFFFFFDC, &glbctrl); sysclk = (plldis ? 1 : (glbctrl & 0x08) ? 4 : 8) * oscMHz / (1 + (glbctrl & 7)); delay = (sysclk > 10) ? (sysclk + 1) / 2 : 5; target_write_u32(target, 0xFFE8A018, (delay << 4) | (delay << 8)); LOG_DEBUG("set fmpsetup = 0x%04" PRIx32 "", (delay << 4) | (delay << 8)); /* * FMPVEVACCESS, based on delay. */ k = delay | (delay << 8); target_write_u32(target, 0xFFE8A05C, k); LOG_DEBUG("set fmpvevaccess = 0x%04" PRIx32 "", k); /* * FMPCHOLD, FMPVEVHOLD, FMPVEVSETUP, based on delay. */ k <<= 1; target_write_u32(target, 0xFFE8A034, k); LOG_DEBUG("set fmpchold = 0x%04" PRIx32 "", k); target_write_u32(target, 0xFFE8A040, k); LOG_DEBUG("set fmpvevhold = 0x%04" PRIx32 "", k); target_write_u32(target, 0xFFE8A024, k); LOG_DEBUG("set fmpvevsetup = 0x%04" PRIx32 "", k); /* * FMCVACCESS, based on delay. */ k = delay * 16; target_write_u32(target, 0xFFE8A060, k); LOG_DEBUG("set fmcvaccess = 0x%04" PRIx32 "", k); /* * FMCSETUP, based on delay. */ k = 0x3000 | delay * 20; target_write_u32(target, 0xFFE8A020, k); LOG_DEBUG("set fmcsetup = 0x%04" PRIx32 "", k); /* * FMEHOLD, based on delay. */ k = (delay * 20) << 2; target_write_u32(target, 0xFFE8A038, k); LOG_DEBUG("set fmehold = 0x%04" PRIx32 "", k); /* * PWIDTH, CWIDTH, EWIDTH, based on delay. */ target_write_u32(target, 0xFFE8A050, delay * 8); LOG_DEBUG("set fmpwidth = 0x%04" PRIx32 "", delay * 8); target_write_u32(target, 0xFFE8A058, delay * 1000); LOG_DEBUG("set fmcwidth = 0x%04" PRIx32 "", delay * 1000); target_write_u32(target, 0xFFE8A054, delay * 5400); LOG_DEBUG("set fmewidth = 0x%04" PRIx32 "", delay * 5400); return result; } /* ---------------------------------------------------------------------- */ static int tms470_flash_status(struct flash_bank *bank) { struct target *target = bank->target; int result = ERROR_OK; uint32_t fmmstat; target_read_u32(target, 0xFFE8BC0C, &fmmstat); LOG_DEBUG("set fmmstat = 0x%04" PRIx32 "", fmmstat); if (fmmstat & 0x0080) { LOG_WARNING("tms470 flash command: erase still active after busy clear."); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0040) { LOG_WARNING("tms470 flash command: program still active after busy clear."); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0020) { LOG_WARNING("tms470 flash command: invalid data command."); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0010) { LOG_WARNING("tms470 flash command: program, erase or validate sector failed."); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0008) { LOG_WARNING("tms470 flash command: voltage instability detected."); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0006) { LOG_WARNING("tms470 flash command: command suspend detected."); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0001) { LOG_WARNING("tms470 flash command: sector was locked."); result = ERROR_FLASH_OPERATION_FAILED; } return result; } /* ---------------------------------------------------------------------- */ static int tms470_erase_sector(struct flash_bank *bank, int sector) { uint32_t glbctrl, orig_fmregopt, fmbsea, fmbseb, fmmstat; struct target *target = bank->target; uint32_t flashAddr = bank->base + bank->sectors[sector].offset; int result = ERROR_OK; /* * Set the bit GLBCTRL4 of the GLBCTRL register (in the System * module) to enable writing to the flash registers }. */ target_read_u32(target, 0xFFFFFFDC, &glbctrl); target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10); LOG_DEBUG("set glbctrl = 0x%08" PRIx32 "", glbctrl | 0x10); /* Force normal read mode. */ target_read_u32(target, 0xFFE89C00, &orig_fmregopt); target_write_u32(target, 0xFFE89C00, 0); LOG_DEBUG("set fmregopt = 0x%08x", 0); (void)tms470_flash_initialize_internal_state_machine(bank); /* * Select one or more bits in FMBSEA or FMBSEB to disable Level 1 * protection for the particular sector to be erased/written. */ if (sector < 16) { target_read_u32(target, 0xFFE88008, &fmbsea); target_write_u32(target, 0xFFE88008, fmbsea | (1 << sector)); LOG_DEBUG("set fmbsea = 0x%04" PRIx32 "", fmbsea | (1 << sector)); } else { target_read_u32(target, 0xFFE8800C, &fmbseb); target_write_u32(target, 0xFFE8800C, fmbseb | (1 << (sector - 16))); LOG_DEBUG("set fmbseb = 0x%04" PRIx32 "", fmbseb | (1 << (sector - 16))); } bank->sectors[sector].is_protected = 0; /* * clear status regiser, sent erase command, kickoff erase */ target_write_u16(target, flashAddr, 0x0040); LOG_DEBUG("write *(uint16_t *)0x%08" PRIx32 "=0x0040", flashAddr); target_write_u16(target, flashAddr, 0x0020); LOG_DEBUG("write *(uint16_t *)0x%08" PRIx32 "=0x0020", flashAddr); target_write_u16(target, flashAddr, 0xffff); LOG_DEBUG("write *(uint16_t *)0x%08" PRIx32 "=0xffff", flashAddr); /* * Monitor FMMSTAT, busy until clear, then check and other flags for * ultimate result of the operation. */ do { target_read_u32(target, 0xFFE8BC0C, &fmmstat); if (fmmstat & 0x0100) { alive_sleep(1); } } while (fmmstat & 0x0100); result = tms470_flash_status(bank); if (sector < 16) { target_write_u32(target, 0xFFE88008, fmbsea); LOG_DEBUG("set fmbsea = 0x%04" PRIx32 "", fmbsea); bank->sectors[sector].is_protected = fmbsea & (1 << sector) ? 0 : 1; } else { target_write_u32(target, 0xFFE8800C, fmbseb); LOG_DEBUG("set fmbseb = 0x%04" PRIx32 "", fmbseb); bank->sectors[sector].is_protected = fmbseb & (1 << (sector - 16)) ? 0 : 1; } target_write_u32(target, 0xFFE89C00, orig_fmregopt); LOG_DEBUG("set fmregopt = 0x%08" PRIx32 "", orig_fmregopt); target_write_u32(target, 0xFFFFFFDC, glbctrl); LOG_DEBUG("set glbctrl = 0x%08" PRIx32 "", glbctrl); if (result == ERROR_OK) { bank->sectors[sector].is_erased = 1; } return result; } /* ---------------------------------------------------------------------- Implementation of Flash Driver Interfaces ---------------------------------------------------------------------- */ static const struct command_registration tms470_any_command_handlers[] = { { .name = "flash_keyset", .handler = tms470_handle_flash_keyset_command, .mode = COMMAND_ANY, .help = "tms470 flash_keyset <key0> <key1> <key2> <key3>", }, { .name = "osc_megahertz", .handler = tms470_handle_osc_megahertz_command, .mode = COMMAND_ANY, .help = "tms470 osc_megahertz <MHz>", }, { .name = "plldis", .handler = tms470_handle_plldis_command, .mode = COMMAND_ANY, .help = "tms470 plldis <0/1>", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration tms470_command_handlers[] = { { .name = "tms470", .mode = COMMAND_ANY, .help = "TI tms470 flash command group", .chain = tms470_any_command_handlers, }, COMMAND_REGISTRATION_DONE }; /* ---------------------------------------------------------------------- */ static int tms470_erase(struct flash_bank *bank, int first, int last) { struct tms470_flash_bank *tms470_info = bank->driver_priv; int sector, result = ERROR_OK; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } tms470_read_part_info(bank); if ((first < 0) || (first >= bank->num_sectors) || (last < 0) || (last >= bank->num_sectors) || (first > last)) { LOG_ERROR("Sector range %d to %d invalid.", first, last); return ERROR_FLASH_SECTOR_INVALID; } result = tms470_unlock_flash(bank); if (result != ERROR_OK) { return result; } for (sector = first; sector <= last; sector++) { LOG_INFO("Erasing tms470 bank %d sector %d...", tms470_info->ordinal, sector); result = tms470_erase_sector(bank, sector); if (result != ERROR_OK) { LOG_ERROR("tms470 could not erase flash sector."); break; } else { LOG_INFO("sector erased successfully."); } } return result; } /* ---------------------------------------------------------------------- */ static int tms470_protect(struct flash_bank *bank, int set, int first, int last) { struct tms470_flash_bank *tms470_info = bank->driver_priv; struct target *target = bank->target; uint32_t fmmac2, fmbsea, fmbseb; int sector; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } tms470_read_part_info(bank); if ((first < 0) || (first >= bank->num_sectors) || (last < 0) || (last >= bank->num_sectors) || (first > last)) { LOG_ERROR("Sector range %d to %d invalid.", first, last); return ERROR_FLASH_SECTOR_INVALID; } /* enable the appropriate bank */ target_read_u32(target, 0xFFE8BC04, &fmmac2); target_write_u32(target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal); /* get the original sector proection flags for this bank */ target_read_u32(target, 0xFFE88008, &fmbsea); target_read_u32(target, 0xFFE8800C, &fmbseb); for (sector = 0; sector < bank->num_sectors; sector++) { if (sector < 16) { fmbsea = set ? fmbsea & ~(1 << sector) : fmbsea | (1 << sector); bank->sectors[sector].is_protected = set ? 1 : 0; } else { fmbseb = set ? fmbseb & ~(1 << (sector - 16)) : fmbseb | (1 << (sector - 16)); bank->sectors[sector].is_protected = set ? 1 : 0; } } /* update the protection bits */ target_write_u32(target, 0xFFE88008, fmbsea); target_write_u32(target, 0xFFE8800C, fmbseb); return ERROR_OK; } /* ---------------------------------------------------------------------- */ static int tms470_write(struct flash_bank *bank, uint8_t * buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; uint32_t glbctrl, fmbac2, orig_fmregopt, fmbsea, fmbseb, fmmaxpp, fmmstat; int result = ERROR_OK; uint32_t i; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } tms470_read_part_info(bank); LOG_INFO("Writing %" PRId32 " bytes starting at 0x%08" PRIx32 "", count, bank->base + offset); /* set GLBCTRL.4 */ target_read_u32(target, 0xFFFFFFDC, &glbctrl); target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10); (void)tms470_flash_initialize_internal_state_machine(bank); /* force max wait states */ target_read_u32(target, 0xFFE88004, &fmbac2); target_write_u32(target, 0xFFE88004, fmbac2 | 0xff); /* save current access mode, force normal read mode */ target_read_u32(target, 0xFFE89C00, &orig_fmregopt); target_write_u32(target, 0xFFE89C00, 0x00); /* * Disable Level 1 protection for all sectors to be erased/written. */ target_read_u32(target, 0xFFE88008, &fmbsea); target_write_u32(target, 0xFFE88008, 0xffff); target_read_u32(target, 0xFFE8800C, &fmbseb); target_write_u32(target, 0xFFE8800C, 0xffff); /* read MAXPP */ target_read_u32(target, 0xFFE8A07C, &fmmaxpp); for (i = 0; i < count; i += 2) { uint32_t addr = bank->base + offset + i; uint16_t word = (((uint16_t) buffer[i]) << 8) | (uint16_t) buffer[i + 1]; if (word != 0xffff) { LOG_INFO("writing 0x%04x at 0x%08" PRIx32 "", word, addr); /* clear status register */ target_write_u16(target, addr, 0x0040); /* program flash command */ target_write_u16(target, addr, 0x0010); /* burn the 16-bit word (big-endian) */ target_write_u16(target, addr, word); /* * Monitor FMMSTAT, busy until clear, then check and other flags * for ultimate result of the operation. */ do { target_read_u32(target, 0xFFE8BC0C, &fmmstat); if (fmmstat & 0x0100) { alive_sleep(1); } } while (fmmstat & 0x0100); if (fmmstat & 0x3ff) { LOG_ERROR("fmstat = 0x%04" PRIx32 "", fmmstat); LOG_ERROR("Could not program word 0x%04x at address 0x%08" PRIx32 ".", word, addr); result = ERROR_FLASH_OPERATION_FAILED; break; } } else { LOG_INFO("skipping 0xffff at 0x%08" PRIx32 "", addr); } } /* restore */ target_write_u32(target, 0xFFE88008, fmbsea); target_write_u32(target, 0xFFE8800C, fmbseb); target_write_u32(target, 0xFFE88004, fmbac2); target_write_u32(target, 0xFFE89C00, orig_fmregopt); target_write_u32(target, 0xFFFFFFDC, glbctrl); return result; } /* ---------------------------------------------------------------------- */ static int tms470_probe(struct flash_bank *bank) { if (bank->target->state != TARGET_HALTED) { LOG_WARNING("Cannot communicate... target not halted."); return ERROR_TARGET_NOT_HALTED; } return tms470_read_part_info(bank); } static int tms470_auto_probe(struct flash_bank *bank) { struct tms470_flash_bank *tms470_info = bank->driver_priv; if (tms470_info->device_ident_reg) return ERROR_OK; return tms470_probe(bank); } /* ---------------------------------------------------------------------- */ static int tms470_erase_check(struct flash_bank *bank) { struct target *target = bank->target; struct tms470_flash_bank *tms470_info = bank->driver_priv; int sector, result = ERROR_OK; uint32_t fmmac2, fmbac2, glbctrl, orig_fmregopt; static uint8_t buffer[64 * 1024]; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!tms470_info->device_ident_reg) { tms470_read_part_info(bank); } /* set GLBCTRL.4 */ target_read_u32(target, 0xFFFFFFDC, &glbctrl); target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10); /* save current access mode, force normal read mode */ target_read_u32(target, 0xFFE89C00, &orig_fmregopt); target_write_u32(target, 0xFFE89C00, 0x00); /* enable the appropriate bank */ target_read_u32(target, 0xFFE8BC04, &fmmac2); target_write_u32(target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal); /* TCR = 0 */ target_write_u32(target, 0xFFE8BC10, 0x2fc0); /* clear TEZ in fmbrdy */ target_write_u32(target, 0xFFE88010, 0x0b); /* save current wait states, force max */ target_read_u32(target, 0xFFE88004, &fmbac2); target_write_u32(target, 0xFFE88004, fmbac2 | 0xff); /* * The TI primitives inspect the flash memory by reading one 32-bit * word at a time. Here we read an entire sector and inspect it in * an attempt to reduce the JTAG overhead. */ for (sector = 0; sector < bank->num_sectors; sector++) { if (bank->sectors[sector].is_erased != 1) { uint32_t i, addr = bank->base + bank->sectors[sector].offset; LOG_INFO("checking flash bank %d sector %d", tms470_info->ordinal, sector); target_read_buffer(target, addr, bank->sectors[sector].size, buffer); bank->sectors[sector].is_erased = 1; for (i = 0; i < bank->sectors[sector].size; i++) { if (buffer[i] != 0xff) { LOG_WARNING("tms470 bank %d, sector %d, not erased.", tms470_info->ordinal, sector); LOG_WARNING("at location 0x%08" PRIx32 ": flash data is 0x%02x.", addr + i, buffer[i]); bank->sectors[sector].is_erased = 0; break; } } } if (bank->sectors[sector].is_erased != 1) { result = ERROR_FLASH_SECTOR_NOT_ERASED; break; } else { LOG_INFO("sector erased"); } } /* reset TEZ, wait states, read mode, GLBCTRL.4 */ target_write_u32(target, 0xFFE88010, 0x0f); target_write_u32(target, 0xFFE88004, fmbac2); target_write_u32(target, 0xFFE89C00, orig_fmregopt); target_write_u32(target, 0xFFFFFFDC, glbctrl); return result; } /* ---------------------------------------------------------------------- */ static int tms470_protect_check(struct flash_bank *bank) { struct target *target = bank->target; struct tms470_flash_bank *tms470_info = bank->driver_priv; int sector, result = ERROR_OK; uint32_t fmmac2, fmbsea, fmbseb; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!tms470_info->device_ident_reg) { tms470_read_part_info(bank); } /* enable the appropriate bank */ target_read_u32(target, 0xFFE8BC04, &fmmac2); target_write_u32(target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal); target_read_u32(target, 0xFFE88008, &fmbsea); target_read_u32(target, 0xFFE8800C, &fmbseb); for (sector = 0; sector < bank->num_sectors; sector++) { int protected; if (sector < 16) { protected = fmbsea & (1 << sector) ? 0 : 1; bank->sectors[sector].is_protected = protected; } else { protected = fmbseb & (1 << (sector - 16)) ? 0 : 1; bank->sectors[sector].is_protected = protected; } LOG_DEBUG("bank %d sector %d is %s", tms470_info->ordinal, sector, protected ? "protected" : "not protected"); } return result; } /* ---------------------------------------------------------------------- */ static int get_tms470_info(struct flash_bank *bank, char *buf, int buf_size) { int used = 0; struct tms470_flash_bank *tms470_info = bank->driver_priv; if (!tms470_info->device_ident_reg) { tms470_read_part_info(bank); } if (!tms470_info->device_ident_reg) { (void)snprintf(buf, buf_size, "Cannot identify target as a TMS470\n"); return ERROR_FLASH_OPERATION_FAILED; } used += snprintf(buf, buf_size, "\ntms470 information: Chip is %s\n", tms470_info->part_name); buf += used; buf_size -= used; used += snprintf(buf, buf_size, "Flash protection level 2 is %s\n", tms470_check_flash_unlocked(bank->target) == ERROR_OK ? "disabled" : "enabled"); buf += used; buf_size -= used; return ERROR_OK; } /* ---------------------------------------------------------------------- */ /* * flash bank tms470 <base> <size> <chip_width> <bus_width> <target> * [options...] */ FLASH_BANK_COMMAND_HANDLER(tms470_flash_bank_command) { bank->driver_priv = malloc(sizeof(struct tms470_flash_bank)); if (!bank->driver_priv) { return ERROR_FLASH_OPERATION_FAILED; } (void)memset(bank->driver_priv, 0, sizeof(struct tms470_flash_bank)); return ERROR_OK; } struct flash_driver tms470_flash = { .name = "tms470", .commands = tms470_command_handlers, .flash_bank_command = tms470_flash_bank_command, .erase = tms470_erase, .protect = tms470_protect, .write = tms470_write, .read = default_flash_read, .probe = tms470_probe, .auto_probe = tms470_auto_probe, .erase_check = tms470_erase_check, .protect_check = tms470_protect_check, .info = get_tms470_info, };