/* * Copyright (C) 2009 by Simon Qian * SimonQian@SimonQian.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* The specification for SVF is available here: * http://www.asset-intertech.com/support/svf.pdf * Below, this document is refered to as the "SVF spec". * * The specification for XSVF is available here: * http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf * Below, this document is refered to as the "XSVF spec". */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "svf.h" #include // SVF command typedef enum { ENDDR, ENDIR, FREQUENCY, HDR, HIR, PIO, PIOMAP, RUNTEST, SDR, SIR, STATE, TDR, TIR, TRST, }svf_command_t; static const char *svf_command_name[14] = { "ENDDR", "ENDIR", "FREQUENCY", "HDR", "HIR", "PIO", "PIOMAP", "RUNTEST", "SDR", "SIR", "STATE", "TDR", "TIR", "TRST" }; typedef enum { TRST_ON, TRST_OFF, TRST_Z, TRST_ABSENT }trst_mode_t; static const char *svf_trst_mode_name[4] = { "ON", "OFF", "Z", "ABSENT" }; struct svf_statemove { tap_state_t from; tap_state_t to; uint32_t num_of_moves; tap_state_t paths[8]; }; /* * These paths are from the SVF specification for the STATE command, to be * used when the STATE command only includes the final state. The first * element of the path is the "from" (current) state, and the last one is * the "to" (target) state. * * All specified paths are the shortest ones in the JTAG spec, and are thus * not (!!) exact matches for the paths used elsewhere in OpenOCD. Note * that PAUSE-to-PAUSE transitions all go through UPDATE and then CAPTURE, * which has specific effects on the various registers; they are not NOPs. * * Paths to RESET are disabled here. As elsewhere in OpenOCD, and in XSVF * and many SVF implementations, we don't want to risk missing that state. * To get to RESET, always we ignore the current state. */ static const struct svf_statemove svf_statemoves[] = { // from to num_of_moves, paths[8] // {TAP_RESET, TAP_RESET, 1, {TAP_RESET}}, {TAP_RESET, TAP_IDLE, 2, {TAP_RESET, TAP_IDLE}}, {TAP_RESET, TAP_DRPAUSE, 6, {TAP_RESET, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}}, {TAP_RESET, TAP_IRPAUSE, 7, {TAP_RESET, TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}}, // {TAP_IDLE, TAP_RESET, 4, {TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}}, {TAP_IDLE, TAP_IDLE, 1, {TAP_IDLE}}, {TAP_IDLE, TAP_DRPAUSE, 5, {TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}}, {TAP_IDLE, TAP_IRPAUSE, 6, {TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}}, // {TAP_DRPAUSE, TAP_RESET, 6, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}}, {TAP_DRPAUSE, TAP_IDLE, 4, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE}}, {TAP_DRPAUSE, TAP_DRPAUSE, 7, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}}, {TAP_DRPAUSE, TAP_IRPAUSE, 8, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}}, // {TAP_IRPAUSE, TAP_RESET, 6, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}}, {TAP_IRPAUSE, TAP_IDLE, 4, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_IDLE}}, {TAP_IRPAUSE, TAP_DRPAUSE, 7, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}}, {TAP_IRPAUSE, TAP_IRPAUSE, 8, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}} }; #define XXR_TDI (1 << 0) #define XXR_TDO (1 << 1) #define XXR_MASK (1 << 2) #define XXR_SMASK (1 << 3) struct svf_xxr_para { int len; int data_mask; uint8_t *tdi; uint8_t *tdo; uint8_t *mask; uint8_t *smask; }; struct svf_para { float frequency; tap_state_t ir_end_state; tap_state_t dr_end_state; tap_state_t runtest_run_state; tap_state_t runtest_end_state; trst_mode_t trst_mode; struct svf_xxr_para hir_para; struct svf_xxr_para hdr_para; struct svf_xxr_para tir_para; struct svf_xxr_para tdr_para; struct svf_xxr_para sir_para; struct svf_xxr_para sdr_para; }; static struct svf_para svf_para; static const struct svf_para svf_para_init = { // frequency, ir_end_state, dr_end_state, runtest_run_state, runtest_end_state, trst_mode 0, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TRST_Z, // hir_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // hdr_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // tir_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // tdr_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // sir_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // sdr_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, }; struct svf_check_tdo_para { int line_num; // used to record line number of the check operation // so more information could be printed int enabled; // check is enabled or not int buffer_offset; // buffer_offset to buffers int bit_len; // bit length to check }; #define SVF_CHECK_TDO_PARA_SIZE 1024 static struct svf_check_tdo_para *svf_check_tdo_para = NULL; static int svf_check_tdo_para_index = 0; static int svf_read_command_from_file(FILE * fd); static int svf_check_tdo(void); static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len); static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str); static FILE * svf_fd = NULL; static char * svf_read_line = NULL; static size_t svf_read_line_size = 0; static char *svf_command_buffer = NULL; static size_t svf_command_buffer_size = 0; static int svf_line_number = 1; static int svf_getline (char **lineptr, size_t *n, FILE *stream); #define SVF_MAX_BUFFER_SIZE_TO_COMMIT (1024 * 1024) static uint8_t *svf_tdi_buffer = NULL, *svf_tdo_buffer = NULL, *svf_mask_buffer = NULL; static int svf_buffer_index = 0, svf_buffer_size = 0; static int svf_quiet = 0; static int svf_nil = 0; // Targetting particular tap static int svf_tap_is_specified = 0; static int svf_set_padding(struct svf_xxr_para *para, int len, unsigned char tdi); // Progress Indicator static int svf_progress_enabled = 0; static long svf_total_lines = 0; static int svf_percentage = 0; static int svf_last_printed_percentage = -1; static void svf_free_xxd_para(struct svf_xxr_para *para) { if (NULL != para) { if (para->tdi != NULL) { free(para->tdi); para->tdi = NULL; } if (para->tdo != NULL) { free(para->tdo); para->tdo = NULL; } if (para->mask != NULL) { free(para->mask); para->mask = NULL; } if (para->smask != NULL) { free(para->smask); para->smask = NULL; } } } static unsigned svf_get_mask_u32(int bitlen) { uint32_t bitmask; if (bitlen < 0) { bitmask = 0; } else if (bitlen >= 32) { bitmask = 0xFFFFFFFF; } else { bitmask = (1 << bitlen) - 1; } return bitmask; } int svf_add_statemove(tap_state_t state_to) { tap_state_t state_from = cmd_queue_cur_state; unsigned index_var; /* when resetting, be paranoid and ignore current state */ if (state_to == TAP_RESET) { if (svf_nil) return ERROR_OK; jtag_add_tlr(); return ERROR_OK; } for (index_var = 0; index_var < ARRAY_SIZE(svf_statemoves); index_var++) { if ((svf_statemoves[index_var].from == state_from) && (svf_statemoves[index_var].to == state_to)) { if (svf_nil) { continue; } /* recorded path includes current state ... avoid extra TCKs! */ if (svf_statemoves[index_var].num_of_moves > 1) jtag_add_pathmove(svf_statemoves[index_var].num_of_moves - 1, svf_statemoves[index_var].paths + 1); else jtag_add_pathmove(svf_statemoves[index_var].num_of_moves, svf_statemoves[index_var].paths); return ERROR_OK; } } LOG_ERROR("SVF: can not move to %s", tap_state_name(state_to)); return ERROR_FAIL; } COMMAND_HANDLER(handle_svf_command) { #define SVF_MIN_NUM_OF_OPTIONS 1 #define SVF_MAX_NUM_OF_OPTIONS 5 int command_num = 0; int ret = ERROR_OK; long long time_measure_ms; int time_measure_s, time_measure_m; /* use NULL to indicate a "plain" svf file which accounts for any additional devices in the scan chain, otherwise the device that should be affected */ struct jtag_tap *tap = NULL; if ((CMD_ARGC < SVF_MIN_NUM_OF_OPTIONS) || (CMD_ARGC > SVF_MAX_NUM_OF_OPTIONS)) { return ERROR_COMMAND_SYNTAX_ERROR; } // parse command line svf_quiet = 0; svf_nil = 0; for (unsigned int i = 0; i < CMD_ARGC; i++) { if (strcmp(CMD_ARGV[i], "-tap") == 0) { tap = jtag_tap_by_string(CMD_ARGV[i+1]); if (!tap) { command_print(CMD_CTX, "Tap: %s unknown", CMD_ARGV[i+1]); return ERROR_FAIL; } i++; } else if ((strcmp(CMD_ARGV[i], "quiet") == 0) || (strcmp(CMD_ARGV[i], "-quiet") == 0)) { svf_quiet = 1; } else if ((strcmp(CMD_ARGV[i], "nil") == 0) || (strcmp(CMD_ARGV[i], "-nil") == 0)) { svf_nil = 1; } else if ((strcmp(CMD_ARGV[i], "progress") == 0) || (strcmp(CMD_ARGV[i], "-progress") == 0)) { svf_progress_enabled = 1; } else if ((svf_fd = fopen(CMD_ARGV[i], "r")) == NULL) { int err = errno; command_print(CMD_CTX, "open(\"%s\"): %s", CMD_ARGV[i], strerror(err)); // no need to free anything now return ERROR_COMMAND_SYNTAX_ERROR; } else { LOG_USER("svf processing file: \"%s\"", CMD_ARGV[i]); } } if (svf_fd == NULL) { return ERROR_COMMAND_SYNTAX_ERROR; } // get time time_measure_ms = timeval_ms(); // init svf_line_number = 1; svf_command_buffer_size = 0; svf_check_tdo_para_index = 0; svf_check_tdo_para = malloc(sizeof(struct svf_check_tdo_para) * SVF_CHECK_TDO_PARA_SIZE); if (NULL == svf_check_tdo_para) { LOG_ERROR("not enough memory"); ret = ERROR_FAIL; goto free_all; } svf_buffer_index = 0; // double the buffer size // in case current command cannot be committed, and next command is a bit scan command // here is 32K bits for this big scan command, it should be enough // buffer will be reallocated if buffer size is not enough svf_tdi_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT); if (NULL == svf_tdi_buffer) { LOG_ERROR("not enough memory"); ret = ERROR_FAIL; goto free_all; } svf_tdo_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT); if (NULL == svf_tdo_buffer) { LOG_ERROR("not enough memory"); ret = ERROR_FAIL; goto free_all; } svf_mask_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT); if (NULL == svf_mask_buffer) { LOG_ERROR("not enough memory"); ret = ERROR_FAIL; goto free_all; } svf_buffer_size = 2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT; memcpy(&svf_para, &svf_para_init, sizeof(svf_para)); if (!svf_nil) { // TAP_RESET jtag_add_tlr(); } if (tap) { /* Tap is specified, set header/trailer paddings */ int header_ir_len = 0, header_dr_len = 0, trailer_ir_len = 0, trailer_dr_len = 0; struct jtag_tap *check_tap; svf_tap_is_specified = 1; for (check_tap = jtag_all_taps(); check_tap; check_tap = check_tap->next_tap) { if (check_tap->abs_chain_position < tap->abs_chain_position) { //Header header_ir_len += check_tap->ir_length; header_dr_len ++; } else if (check_tap->abs_chain_position > tap->abs_chain_position) { //Trailer trailer_ir_len += check_tap->ir_length; trailer_dr_len ++; } } // HDR %d TDI (0) if (ERROR_OK != svf_set_padding(&svf_para.hdr_para, header_dr_len, 0)) { LOG_ERROR("failed to set data header"); return ERROR_FAIL; } // HIR %d TDI (0xFF) if (ERROR_OK != svf_set_padding(&svf_para.hir_para, header_ir_len, 0xFF)) { LOG_ERROR("failed to set instruction header"); return ERROR_FAIL; } // TDR %d TDI (0) if (ERROR_OK != svf_set_padding(&svf_para.tdr_para, trailer_dr_len, 0)) { LOG_ERROR("failed to set data trailer"); return ERROR_FAIL; } // TIR %d TDI (0xFF) if (ERROR_OK != svf_set_padding(&svf_para.tir_para, trailer_ir_len, 0xFF)) { LOG_ERROR("failed to set instruction trailer"); return ERROR_FAIL; } } if (svf_progress_enabled) { // Count total lines in file. while ( ! feof (svf_fd) ) { svf_getline (&svf_command_buffer, &svf_command_buffer_size, svf_fd); svf_total_lines++; } rewind(svf_fd); } while (ERROR_OK == svf_read_command_from_file(svf_fd)) { // Log Output if (svf_quiet) { if (svf_progress_enabled) { svf_percentage = ((svf_line_number * 20) / svf_total_lines) * 5; if (svf_last_printed_percentage != svf_percentage) { LOG_USER_N("\r%d%% ", svf_percentage); svf_last_printed_percentage = svf_percentage; } } } else { if (svf_progress_enabled) { svf_percentage = ((svf_line_number * 20) / svf_total_lines) * 5; LOG_USER_N("%3d%% %s", svf_percentage, svf_read_line); } else { LOG_USER_N("%s",svf_read_line); } } // Run Command if (ERROR_OK != svf_run_command(CMD_CTX, svf_command_buffer)) { LOG_ERROR("fail to run command at line %d", svf_line_number); ret = ERROR_FAIL; break; } command_num++; } if ((!svf_nil) && (ERROR_OK != jtag_execute_queue())) { ret = ERROR_FAIL; } else if (ERROR_OK != svf_check_tdo()) { ret = ERROR_FAIL; } // print time time_measure_ms = timeval_ms() - time_measure_ms; time_measure_s = time_measure_ms / 1000; time_measure_ms %= 1000; time_measure_m = time_measure_s / 60; time_measure_s %= 60; if (time_measure_ms < 1000) { command_print(CMD_CTX, "\r\nTime used: %dm%ds%lldms ", time_measure_m, time_measure_s, time_measure_ms); } free_all: fclose(svf_fd); svf_fd = 0; // free buffers if (svf_command_buffer) { free(svf_command_buffer); svf_command_buffer = NULL; svf_command_buffer_size = 0; } if (svf_check_tdo_para) { free(svf_check_tdo_para); svf_check_tdo_para = NULL; svf_check_tdo_para_index = 0; } if (svf_tdi_buffer) { free(svf_tdi_buffer); svf_tdi_buffer = NULL; } if (svf_tdo_buffer) { free(svf_tdo_buffer); svf_tdo_buffer = NULL; } if (svf_mask_buffer) { free(svf_mask_buffer); svf_mask_buffer = NULL; } svf_buffer_index = 0; svf_buffer_size = 0; svf_free_xxd_para(&svf_para.hdr_para); svf_free_xxd_para(&svf_para.hir_para); svf_free_xxd_para(&svf_para.tdr_para); svf_free_xxd_para(&svf_para.tir_para); svf_free_xxd_para(&svf_para.sdr_para); svf_free_xxd_para(&svf_para.sir_para); if (ERROR_OK == ret) { command_print(CMD_CTX, "svf file programmed successfully for %d commands", command_num); } else { command_print(CMD_CTX, "svf file programmed failed"); } return ret; } static int svf_getline (char **lineptr, size_t *n, FILE *stream) { #define MIN_CHUNK 16 //Buffer is increased by this size each time as required size_t i = 0; if (*lineptr == NULL) { *n = MIN_CHUNK; *lineptr = (char *)malloc (*n); if (!*lineptr) { return -1; } } (*lineptr)[0] = fgetc(stream); while ((*lineptr)[i] != '\n') { (*lineptr)[++i] = fgetc(stream); if (feof(stream)) { (*lineptr)[0] = 0; return -1; } if ((i + 2) > *n) { *n += MIN_CHUNK; *lineptr = realloc(*lineptr, *n); } } (*lineptr)[++i] = 0; return sizeof(*lineptr); } #define SVFP_CMD_INC_CNT 1024 static int svf_read_command_from_file(FILE * fd) { unsigned char ch; int i = 0; size_t cmd_pos = 0; int cmd_ok = 0, slash = 0; if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0) { return ERROR_FAIL; } svf_line_number++; ch = svf_read_line[0]; while (!cmd_ok && (ch != 0)) { switch (ch) { case '!': slash = 0; if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0) { return ERROR_FAIL; } svf_line_number++; i = -1; break; case '/': if (++slash == 2) { slash = 0; if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0) { return ERROR_FAIL; } svf_line_number++; i = -1; } break; case ';': slash = 0; cmd_ok = 1; break; case '\n': svf_line_number++; if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0) { return ERROR_FAIL; } i = -1; case '\r': slash = 0; /* Don't save '\r' and '\n' if no data is parsed */ if (!cmd_pos) break; default: /* The parsing code currently expects a space * before parentheses -- "TDI (123)". Also a * space afterwards -- "TDI (123) TDO(456)". * But such spaces are optional... instead of * parser updates, cope with that by adding the * spaces as needed. * * Ensure there are 3 bytes available, for: * - current character * - added space. * - terminating NUL ('\0') */ if ((cmd_pos + 2) >= svf_command_buffer_size) { svf_command_buffer = realloc(svf_command_buffer, (cmd_pos + 2)); if (svf_command_buffer == NULL) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } } /* insert a space before '(' */ if ('(' == ch) svf_command_buffer[cmd_pos++] = ' '; svf_command_buffer[cmd_pos++] = (char)toupper(ch); /* insert a space after ')' */ if (')' == ch) svf_command_buffer[cmd_pos++] = ' '; break; } ch = svf_read_line[++i]; } if (cmd_ok) { svf_command_buffer[cmd_pos] = '\0'; return ERROR_OK; } else { return ERROR_FAIL; } } static int svf_parse_cmd_string(char *str, int len, char **argus, int *num_of_argu) { int pos = 0, num = 0, space_found = 1, in_bracket = 0; while (pos < len) { switch (str[pos]) { case '!': case '/': LOG_ERROR("fail to parse svf command"); return ERROR_FAIL; case '(': in_bracket = 1; goto parse_char; case ')': in_bracket = 0; goto parse_char; default: parse_char: if (!in_bracket && isspace((int) str[pos])) { space_found = 1; str[pos] = '\0'; } else if (space_found) { argus[num++] = &str[pos]; space_found = 0; } break; } pos++; } *num_of_argu = num; return ERROR_OK; } bool svf_tap_state_is_stable(tap_state_t state) { return (TAP_RESET == state) || (TAP_IDLE == state) || (TAP_DRPAUSE == state) || (TAP_IRPAUSE == state); } static int svf_find_string_in_array(char *str, char **strs, int num_of_element) { int i; for (i = 0; i < num_of_element; i++) { if (!strcmp(str, strs[i])) { return i; } } return 0xFF; } static int svf_adjust_array_length(uint8_t **arr, int orig_bit_len, int new_bit_len) { int new_byte_len = (new_bit_len + 7) >> 3; if ((NULL == *arr) || (((orig_bit_len + 7) >> 3) < ((new_bit_len + 7) >> 3))) { if (*arr != NULL) { free(*arr); *arr = NULL; } *arr = (uint8_t*)malloc(new_byte_len); if (NULL == *arr) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memset(*arr, 0, new_byte_len); } return ERROR_OK; } static int svf_set_padding(struct svf_xxr_para *para, int len, unsigned char tdi) { int error = ERROR_OK; error |= svf_adjust_array_length(¶->tdi, para->len, len); memset(para->tdi, tdi, (len + 7) >> 3); error |= svf_adjust_array_length(¶->tdo, para->len, len); error |= svf_adjust_array_length(¶->mask, para->len, len); para->len = len; para->data_mask = XXR_TDI; return error; } static int svf_copy_hexstring_to_binary(char *str, uint8_t **bin, int orig_bit_len, int bit_len) { int i, str_len = strlen(str), str_hbyte_len = (bit_len + 3) >> 2; uint8_t ch = 0; if (ERROR_OK != svf_adjust_array_length(bin, orig_bit_len, bit_len)) { LOG_ERROR("fail to adjust length of array"); return ERROR_FAIL; } /* fill from LSB (end of str) to MSB (beginning of str) */ for (i = 0; i < str_hbyte_len; i++) { ch = 0; while (str_len > 0) { ch = str[--str_len]; /* Skip whitespace. The SVF specification (rev E) is * deficient in terms of basic lexical issues like * where whitespace is allowed. Long bitstrings may * require line ends for correctness, since there is * a hard limit on line length. */ if (!isspace(ch)) { if ((ch >= '0') && (ch <= '9')) { ch = ch - '0'; break; } else if ((ch >= 'A') && (ch <= 'F')) { ch = ch - 'A' + 10; break; } else { LOG_ERROR("invalid hex string"); return ERROR_FAIL; } } ch = 0; } // write bin if (i % 2) { // MSB (*bin)[i / 2] |= ch << 4; } else { // LSB (*bin)[i / 2] = 0; (*bin)[i / 2] |= ch; } } /* consume optional leading '0' MSBs or whitespace */ while (str_len > 0 && ((str[str_len - 1] == '0') || isspace((int) str[str_len - 1]))) str_len--; /* check validity: we must have consumed everything */ if (str_len > 0 || (ch & ~((2 << ((bit_len - 1) % 4)) - 1)) != 0) { LOG_ERROR("value execeeds length"); return ERROR_FAIL; } return ERROR_OK; } static int svf_check_tdo(void) { int i, len, index_var; for (i = 0; i < svf_check_tdo_para_index; i++) { index_var = svf_check_tdo_para[i].buffer_offset; len = svf_check_tdo_para[i].bit_len; if ((svf_check_tdo_para[i].enabled) && buf_cmp_mask(&svf_tdi_buffer[index_var], &svf_tdo_buffer[index_var], &svf_mask_buffer[index_var], len)) { unsigned bitmask; unsigned received, expected, tapmask; bitmask = svf_get_mask_u32(svf_check_tdo_para[i].bit_len); memcpy(&received, svf_tdi_buffer + index_var, sizeof(unsigned)); memcpy(&expected, svf_tdo_buffer + index_var, sizeof(unsigned)); memcpy(&tapmask, svf_mask_buffer + index_var, sizeof(unsigned)); LOG_ERROR("tdo check error at line %d", svf_check_tdo_para[i].line_num); LOG_ERROR("read = 0x%X, want = 0x%X, mask = 0x%X", received & bitmask, expected & bitmask, tapmask & bitmask); return ERROR_FAIL; } } svf_check_tdo_para_index = 0; return ERROR_OK; } static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len) { if (svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE) { LOG_ERROR("toooooo many operation undone"); return ERROR_FAIL; } svf_check_tdo_para[svf_check_tdo_para_index].line_num = svf_line_number; svf_check_tdo_para[svf_check_tdo_para_index].bit_len = bit_len; svf_check_tdo_para[svf_check_tdo_para_index].enabled = enabled; svf_check_tdo_para[svf_check_tdo_para_index].buffer_offset = buffer_offset; svf_check_tdo_para_index++; return ERROR_OK; } static int svf_execute_tap(void) { if ((!svf_nil) && (ERROR_OK != jtag_execute_queue())) { return ERROR_FAIL; } else if (ERROR_OK != svf_check_tdo()) { return ERROR_FAIL; } svf_buffer_index = 0; return ERROR_OK; } static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str) { char *argus[256], command; int num_of_argu = 0, i; // tmp variable int i_tmp; // for RUNTEST int run_count; float min_time, max_time; // for XXR struct svf_xxr_para *xxr_para_tmp; uint8_t **pbuffer_tmp; struct scan_field field; // for STATE tap_state_t *path = NULL, state; // flag padding commands skipped due to -tap command int padding_command_skipped = 0; if (ERROR_OK != svf_parse_cmd_string(cmd_str, strlen(cmd_str), argus, &num_of_argu)) { return ERROR_FAIL; } /* NOTE: we're a bit loose here, because we ignore case in * TAP state names (instead of insisting on uppercase). */ command = svf_find_string_in_array(argus[0], (char **)svf_command_name, ARRAY_SIZE(svf_command_name)); switch (command) { case ENDDR: case ENDIR: if (num_of_argu != 2) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } i_tmp = tap_state_by_name(argus[1]); if (svf_tap_state_is_stable(i_tmp)) { if (command == ENDIR) { svf_para.ir_end_state = i_tmp; LOG_DEBUG("\tIR end_state = %s", tap_state_name(i_tmp)); } else { svf_para.dr_end_state = i_tmp; LOG_DEBUG("\tDR end_state = %s", tap_state_name(i_tmp)); } } else { LOG_ERROR("%s: %s is not a stable state", argus[0], argus[1]); return ERROR_FAIL; } break; case FREQUENCY: if ((num_of_argu != 1) && (num_of_argu != 3)) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } if (1 == num_of_argu) { // TODO: set jtag speed to full speed svf_para.frequency = 0; } else { if (strcmp(argus[2], "HZ")) { LOG_ERROR("HZ not found in FREQUENCY command"); return ERROR_FAIL; } if (ERROR_OK != svf_execute_tap()) { return ERROR_FAIL; } svf_para.frequency = atof(argus[1]); // TODO: set jtag speed to if (svf_para.frequency > 0) { command_run_linef(cmd_ctx, "adapter_khz %d", (int)svf_para.frequency / 1000); LOG_DEBUG("\tfrequency = %f", svf_para.frequency); } } break; case HDR: if (svf_tap_is_specified) { padding_command_skipped = 1; break; } xxr_para_tmp = &svf_para.hdr_para; goto XXR_common; case HIR: if (svf_tap_is_specified) { padding_command_skipped = 1; break; } xxr_para_tmp = &svf_para.hir_para; goto XXR_common; case TDR: if (svf_tap_is_specified) { padding_command_skipped = 1; break; } xxr_para_tmp = &svf_para.tdr_para; goto XXR_common; case TIR: if (svf_tap_is_specified) { padding_command_skipped = 1; break; } xxr_para_tmp = &svf_para.tir_para; goto XXR_common; case SDR: xxr_para_tmp = &svf_para.sdr_para; goto XXR_common; case SIR: xxr_para_tmp = &svf_para.sir_para; goto XXR_common; XXR_common: // XXR length [TDI (tdi)] [TDO (tdo)][MASK (mask)] [SMASK (smask)] if ((num_of_argu > 10) || (num_of_argu % 2)) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } i_tmp = xxr_para_tmp->len; xxr_para_tmp->len = atoi(argus[1]); LOG_DEBUG("\tlength = %d", xxr_para_tmp->len); xxr_para_tmp->data_mask = 0; for (i = 2; i < num_of_argu; i += 2) { if ((strlen(argus[i + 1]) < 3) || (argus[i + 1][0] != '(') || (argus[i + 1][strlen(argus[i + 1]) - 1] != ')')) { LOG_ERROR("data section error"); return ERROR_FAIL; } argus[i + 1][strlen(argus[i + 1]) - 1] = '\0'; // TDI, TDO, MASK, SMASK if (!strcmp(argus[i], "TDI")) { // TDI pbuffer_tmp = &xxr_para_tmp->tdi; xxr_para_tmp->data_mask |= XXR_TDI; } else if (!strcmp(argus[i], "TDO")) { // TDO pbuffer_tmp = &xxr_para_tmp->tdo; xxr_para_tmp->data_mask |= XXR_TDO; } else if (!strcmp(argus[i], "MASK")) { // MASK pbuffer_tmp = &xxr_para_tmp->mask; xxr_para_tmp->data_mask |= XXR_MASK; } else if (!strcmp(argus[i], "SMASK")) { // SMASK pbuffer_tmp = &xxr_para_tmp->smask; xxr_para_tmp->data_mask |= XXR_SMASK; } else { LOG_ERROR("unknow parameter: %s", argus[i]); return ERROR_FAIL; } if (ERROR_OK != svf_copy_hexstring_to_binary(&argus[i + 1][1], pbuffer_tmp, i_tmp, xxr_para_tmp->len)) { LOG_ERROR("fail to parse hex value"); return ERROR_FAIL; } LOG_DEBUG("\t%s = 0x%X", argus[i], (**(int**)pbuffer_tmp) & svf_get_mask_u32(xxr_para_tmp->len)); } // If a command changes the length of the last scan of the same type and the MASK parameter is absent, // the mask pattern used is all cares if (!(xxr_para_tmp->data_mask & XXR_MASK) && (i_tmp != xxr_para_tmp->len)) { // MASK not defined and length changed if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp, xxr_para_tmp->len)) { LOG_ERROR("fail to adjust length of array"); return ERROR_FAIL; } buf_set_ones(xxr_para_tmp->mask, xxr_para_tmp->len); } // If TDO is absent, no comparison is needed, set the mask to 0 if (!(xxr_para_tmp->data_mask & XXR_TDO)) { if (NULL == xxr_para_tmp->tdo) { if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->tdo, i_tmp, xxr_para_tmp->len)) { LOG_ERROR("fail to adjust length of array"); return ERROR_FAIL; } } if (NULL == xxr_para_tmp->mask) { if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp, xxr_para_tmp->len)) { LOG_ERROR("fail to adjust length of array"); return ERROR_FAIL; } } memset(xxr_para_tmp->mask, 0, (xxr_para_tmp->len + 7) >> 3); } // do scan if necessary if (SDR == command) { // check buffer size first, reallocate if necessary i = svf_para.hdr_para.len + svf_para.sdr_para.len + svf_para.tdr_para.len; if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3)) { #if 1 // simply print error message LOG_ERROR("buffer is not enough, report to author"); return ERROR_FAIL; #else uint8_t *buffer_tmp; // reallocate buffer buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_tdi_buffer, svf_buffer_index); // svf_tdi_buffer isn't NULL here free(svf_tdi_buffer); svf_tdi_buffer = buffer_tmp; buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_tdo_buffer, svf_buffer_index); // svf_tdo_buffer isn't NULL here free(svf_tdo_buffer); svf_tdo_buffer = buffer_tmp; buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_mask_buffer, svf_buffer_index); // svf_mask_buffer isn't NULL here free(svf_mask_buffer); svf_mask_buffer = buffer_tmp; buffer_tmp = NULL; svf_buffer_size = svf_buffer_index + ((i + 7) >> 3); #endif } // assemble dr data i = 0; buf_set_buf(svf_para.hdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.hdr_para.len); i += svf_para.hdr_para.len; buf_set_buf(svf_para.sdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.sdr_para.len); i += svf_para.sdr_para.len; buf_set_buf(svf_para.tdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.tdr_para.len); i += svf_para.tdr_para.len; // add check data if (svf_para.sdr_para.data_mask & XXR_TDO) { // assemble dr mask data i = 0; buf_set_buf(svf_para.hdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.hdr_para.len); i += svf_para.hdr_para.len; buf_set_buf(svf_para.sdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.sdr_para.len); i += svf_para.sdr_para.len; buf_set_buf(svf_para.tdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.tdr_para.len); i += svf_para.tdr_para.len; // assemble dr check data i = 0; buf_set_buf(svf_para.hdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.hdr_para.len); i += svf_para.hdr_para.len; buf_set_buf(svf_para.sdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.sdr_para.len); i += svf_para.sdr_para.len; buf_set_buf(svf_para.tdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.tdr_para.len); i += svf_para.tdr_para.len; svf_add_check_para(1, svf_buffer_index, i); } else { svf_add_check_para(0, svf_buffer_index, i); } field.num_bits = i; field.out_value = &svf_tdi_buffer[svf_buffer_index]; field.in_value = &svf_tdi_buffer[svf_buffer_index]; if (!svf_nil) { /* NOTE: doesn't use SVF-specified state paths */ jtag_add_plain_dr_scan(field.num_bits, field.out_value, field.in_value, svf_para.dr_end_state); } svf_buffer_index += (i + 7) >> 3; } else if (SIR == command) { // check buffer size first, reallocate if necessary i = svf_para.hir_para.len + svf_para.sir_para.len + svf_para.tir_para.len; if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3)) { #if 1 // simply print error message LOG_ERROR("buffer is not enough, report to author"); return ERROR_FAIL; #else uint8_t *buffer_tmp; // reallocate buffer buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_tdi_buffer, svf_buffer_index); // svf_tdi_buffer isn't NULL here free(svf_tdi_buffer); svf_tdi_buffer = buffer_tmp; buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_tdo_buffer, svf_buffer_index); // svf_tdo_buffer isn't NULL here free(svf_tdo_buffer); svf_tdo_buffer = buffer_tmp; buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_mask_buffer, svf_buffer_index); // svf_mask_buffer isn't NULL here free(svf_mask_buffer); svf_mask_buffer = buffer_tmp; buffer_tmp = NULL; svf_buffer_size = svf_buffer_index + ((i + 7) >> 3); #endif } // assemble ir data i = 0; buf_set_buf(svf_para.hir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.hir_para.len); i += svf_para.hir_para.len; buf_set_buf(svf_para.sir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.sir_para.len); i += svf_para.sir_para.len; buf_set_buf(svf_para.tir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.tir_para.len); i += svf_para.tir_para.len; // add check data if (svf_para.sir_para.data_mask & XXR_TDO) { // assemble dr mask data i = 0; buf_set_buf(svf_para.hir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.hir_para.len); i += svf_para.hir_para.len; buf_set_buf(svf_para.sir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.sir_para.len); i += svf_para.sir_para.len; buf_set_buf(svf_para.tir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.tir_para.len); i += svf_para.tir_para.len; // assemble dr check data i = 0; buf_set_buf(svf_para.hir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.hir_para.len); i += svf_para.hir_para.len; buf_set_buf(svf_para.sir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.sir_para.len); i += svf_para.sir_para.len; buf_set_buf(svf_para.tir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.tir_para.len); i += svf_para.tir_para.len; svf_add_check_para(1, svf_buffer_index, i); } else { svf_add_check_para(0, svf_buffer_index, i); } field.num_bits = i; field.out_value = &svf_tdi_buffer[svf_buffer_index]; field.in_value = &svf_tdi_buffer[svf_buffer_index]; if (!svf_nil) { /* NOTE: doesn't use SVF-specified state paths */ jtag_add_plain_ir_scan(field.num_bits, field.out_value, field.in_value, svf_para.ir_end_state); } svf_buffer_index += (i + 7) >> 3; } break; case PIO: case PIOMAP: LOG_ERROR("PIO and PIOMAP are not supported"); return ERROR_FAIL; break; case RUNTEST: // RUNTEST [run_state] run_count run_clk [min_time SEC [MAXIMUM max_time SEC]] [ENDSTATE end_state] // RUNTEST [run_state] min_time SEC [MAXIMUM max_time SEC] [ENDSTATE end_state] if ((num_of_argu < 3) && (num_of_argu > 11)) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } // init run_count = 0; min_time = 0; max_time = 0; i = 1; // run_state i_tmp = tap_state_by_name(argus[i]); if (i_tmp != TAP_INVALID) { if (svf_tap_state_is_stable(i_tmp)) { svf_para.runtest_run_state = i_tmp; /* When a run_state is specified, the new * run_state becomes the default end_state. */ svf_para.runtest_end_state = i_tmp; LOG_DEBUG("\trun_state = %s", tap_state_name(i_tmp)); i++; } else { LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(i_tmp)); return ERROR_FAIL; } } // run_count run_clk if (((i + 2) <= num_of_argu) && strcmp(argus[i + 1], "SEC")) { if (!strcmp(argus[i + 1], "TCK")) { // clock source is TCK run_count = atoi(argus[i]); LOG_DEBUG("\trun_count@TCK = %d", run_count); } else { LOG_ERROR("%s not supported for clock", argus[i + 1]); return ERROR_FAIL; } i += 2; } // min_time SEC if (((i + 2) <= num_of_argu) && !strcmp(argus[i + 1], "SEC")) { min_time = atof(argus[i]); LOG_DEBUG("\tmin_time = %fs", min_time); i += 2; } // MAXIMUM max_time SEC if (((i + 3) <= num_of_argu) && !strcmp(argus[i], "MAXIMUM") && !strcmp(argus[i + 2], "SEC")) { max_time = atof(argus[i + 1]); LOG_DEBUG("\tmax_time = %fs", max_time); i += 3; } // ENDSTATE end_state if (((i + 2) <= num_of_argu) && !strcmp(argus[i], "ENDSTATE")) { i_tmp = tap_state_by_name(argus[i + 1]); if (svf_tap_state_is_stable(i_tmp)) { svf_para.runtest_end_state = i_tmp; LOG_DEBUG("\tend_state = %s", tap_state_name(i_tmp)); } else { LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(i_tmp)); return ERROR_FAIL; } i += 2; } // all parameter should be parsed if (i == num_of_argu) { #if 1 /* FIXME handle statemove failures */ uint32_t min_usec = 1000000 * min_time; // enter into run_state if necessary if (cmd_queue_cur_state != svf_para.runtest_run_state) { svf_add_statemove(svf_para.runtest_run_state); } // add clocks and/or min wait if (run_count > 0) { if (!svf_nil) jtag_add_clocks(run_count); } if (min_usec > 0) { if (!svf_nil) jtag_add_sleep(min_usec); } // move to end_state if necessary if (svf_para.runtest_end_state != svf_para.runtest_run_state) { svf_add_statemove(svf_para.runtest_end_state); } #else if (svf_para.runtest_run_state != TAP_IDLE) { LOG_ERROR("cannot runtest in %s state", tap_state_name(svf_para.runtest_run_state)); return ERROR_FAIL; } if (!svf_nil) jtag_add_runtest(run_count, svf_para.runtest_end_state); #endif } else { LOG_ERROR("fail to parse parameter of RUNTEST, %d out of %d is parsed", i, num_of_argu); return ERROR_FAIL; } break; case STATE: // STATE [pathstate1 [pathstate2 ...[pathstaten]]] stable_state if (num_of_argu < 2) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } if (num_of_argu > 2) { // STATE pathstate1 ... stable_state path = (tap_state_t *)malloc((num_of_argu - 1) * sizeof(tap_state_t)); if (NULL == path) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } num_of_argu--; // num of path i_tmp = 1; /* path is from parameter 1 */ for (i = 0; i < num_of_argu; i++, i_tmp++) { path[i] = tap_state_by_name(argus[i_tmp]); if (path[i] == TAP_INVALID) { LOG_ERROR("%s: %s is not a valid state", argus[0], argus[i_tmp]); free(path); return ERROR_FAIL; } /* OpenOCD refuses paths containing TAP_RESET */ if (TAP_RESET == path[i]) { /* FIXME last state MUST be stable! */ if (i > 0) { if (!svf_nil) jtag_add_pathmove(i, path); } if (!svf_nil) jtag_add_tlr(); num_of_argu -= i + 1; i = -1; } } if (num_of_argu > 0) { // execute last path if necessary if (svf_tap_state_is_stable(path[num_of_argu - 1])) { // last state MUST be stable state if (!svf_nil) jtag_add_pathmove(num_of_argu, path); LOG_DEBUG("\tmove to %s by path_move", tap_state_name(path[num_of_argu - 1])); } else { LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(path[num_of_argu - 1])); free(path); return ERROR_FAIL; } } free(path); path = NULL; } else { // STATE stable_state state = tap_state_by_name(argus[1]); if (svf_tap_state_is_stable(state)) { LOG_DEBUG("\tmove to %s by svf_add_statemove", tap_state_name(state)); /* FIXME handle statemove failures */ svf_add_statemove(state); } else { LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(state)); return ERROR_FAIL; } } break; case TRST: // TRST trst_mode if (num_of_argu != 2) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } if (svf_para.trst_mode != TRST_ABSENT) { if (ERROR_OK != svf_execute_tap()) { return ERROR_FAIL; } i_tmp = svf_find_string_in_array(argus[1], (char **)svf_trst_mode_name, ARRAY_SIZE(svf_trst_mode_name)); switch (i_tmp) { case TRST_ON: if (!svf_nil) jtag_add_reset(1, 0); break; case TRST_Z: case TRST_OFF: if (!svf_nil) jtag_add_reset(0, 0); break; case TRST_ABSENT: break; default: LOG_ERROR("unknown TRST mode: %s", argus[1]); return ERROR_FAIL; } svf_para.trst_mode = i_tmp; LOG_DEBUG("\ttrst_mode = %s", svf_trst_mode_name[svf_para.trst_mode]); } else { LOG_ERROR("can not accpet TRST command if trst_mode is ABSENT"); return ERROR_FAIL; } break; default: LOG_ERROR("invalid svf command: %s", argus[0]); return ERROR_FAIL; break; } if (!svf_quiet) { if (padding_command_skipped) { LOG_USER("(Above Padding command skipped, as per -tap argument)"); } } if (debug_level >= LOG_LVL_DEBUG) { // for convenient debugging, execute tap if possible if ((svf_buffer_index > 0) && \ (((command != STATE) && (command != RUNTEST)) || \ ((command == STATE) && (num_of_argu == 2)))) { if (ERROR_OK != svf_execute_tap()) { return ERROR_FAIL; } // output debug info if ((SIR == command) || (SDR == command)) { int read_value; memcpy(&read_value, svf_tdi_buffer, sizeof(int)); // in debug mode, data is from index 0 int read_mask = svf_get_mask_u32(svf_check_tdo_para[0].bit_len); LOG_DEBUG("\tTDO read = 0x%X", read_value & read_mask); } } } else { // for fast executing, execute tap if necessary // half of the buffer is for the next command if (((svf_buffer_index >= SVF_MAX_BUFFER_SIZE_TO_COMMIT) || (svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE / 2)) && \ (((command != STATE) && (command != RUNTEST)) || \ ((command == STATE) && (num_of_argu == 2)))) { return svf_execute_tap(); } } return ERROR_OK; } static const struct command_registration svf_command_handlers[] = { { .name = "svf", .handler = handle_svf_command, .mode = COMMAND_EXEC, .help = "Runs a SVF file.", .usage = "svf [-tap device.tap] [quiet] [nil] [progress]", }, COMMAND_REGISTRATION_DONE }; int svf_register_commands(struct command_context *cmd_ctx) { return register_commands(cmd_ctx, NULL, svf_command_handlers); } 9' href='#n1179'>1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641