/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by Hongtao Zheng *
* hontor@126.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "embeddedice.h"
#include "target_request.h"
#include "etm.h"
#include "time_support.h"
#include "arm_simulator.h"
#include "algorithm.h"
#include "register.h"
/**
* @file
* Hold common code supporting the ARM7 and ARM9 core generations.
*
* While the ARM core implementations evolved substantially during these
* two generations, they look quite similar from the JTAG perspective.
* Both have similar debug facilities, based on the same two scan chains
* providing access to the core and to an EmbeddedICE module. Both can
* support similar ETM and ETB modules, for tracing. And both expose
* what could be viewed as "ARM Classic", with multiple processor modes,
* shadowed registers, and support for the Thumb instruction set.
*
* Processor differences include things like presence or absence of MMU
* and cache, pipeline sizes, use of a modified Harvard Architecure
* (with separate instruction and data busses from the CPU), support
* for cpu clock gating during idle, and more.
*/
static int arm7_9_debug_entry(struct target *target);
/**
* Clear watchpoints for an ARM7/9 target.
*
* @param arm7_9 Pointer to the common struct for an ARM7/9 target
* @return JTAG error status after executing queue
*/
static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
{
LOG_DEBUG("-");
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
arm7_9->sw_breakpoint_count = 0;
arm7_9->sw_breakpoints_added = 0;
arm7_9->wp0_used = 0;
arm7_9->wp1_used = arm7_9->wp1_used_default;
arm7_9->wp_available = arm7_9->wp_available_max;
return jtag_execute_queue();
}
/**
* Assign a watchpoint to one of the two available hardware comparators in an
* ARM7 or ARM9 target.
*
* @param arm7_9 Pointer to the common struct for an ARM7/9 target
* @param breakpoint Pointer to the breakpoint to be used as a watchpoint
*/
static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
{
if (!arm7_9->wp0_used)
{
arm7_9->wp0_used = 1;
breakpoint->set = 1;
arm7_9->wp_available--;
}
else if (!arm7_9->wp1_used)
{
arm7_9->wp1_used = 1;
breakpoint->set = 2;
arm7_9->wp_available--;
}
else
{
LOG_ERROR("BUG: no hardware comparator available");
}
LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
breakpoint->unique_id,
breakpoint->address,
breakpoint->set );
}
/**
* Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
*
* @param arm7_9 Pointer to common struct for ARM7/9 targets
* @return Error codes if there is a problem finding a watchpoint or the result
* of executing the JTAG queue
*/
static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
{
if (arm7_9->sw_breakpoints_added)
{
return ERROR_OK;
}
if (arm7_9->wp_available < 1)
{
LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
arm7_9->wp_available--;
/* pick a breakpoint unit */
if (!arm7_9->wp0_used)
{
arm7_9->sw_breakpoints_added = 1;
arm7_9->wp0_used = 3;
} else if (!arm7_9->wp1_used)
{
arm7_9->sw_breakpoints_added = 2;
arm7_9->wp1_used = 3;
}
else
{
LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
return ERROR_FAIL;
}
if (arm7_9->sw_breakpoints_added == 1)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
}
else if (arm7_9->sw_breakpoints_added == 2)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
}
else
{
LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
return ERROR_FAIL;
}
LOG_DEBUG("SW BP using hw wp: %d",
arm7_9->sw_breakpoints_added );
return jtag_execute_queue();
}
/**
* Setup the common pieces for an ARM7/9 target after reset or on startup.
*
* @param target Pointer to an ARM7/9 target to setup
* @return Result of clearing the watchpoints on the target
*/
int arm7_9_setup(struct target *target)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
return arm7_9_clear_watchpoints(arm7_9);
}
/**
* Set either a hardware or software breakpoint on an ARM7/9 target. The
* breakpoint is set up even if it is already set. Some actions, e.g. reset,
* might have erased the values in Embedded ICE.
*
* @param target Pointer to the target device to set the breakpoints on
* @param breakpoint Pointer to the breakpoint to be set
* @return For hardware breakpoints, this is the result of executing the JTAG
* queue. For software breakpoints, this will be the status of the
* required memory reads and writes
*/
int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
int retval = ERROR_OK;
LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
breakpoint->unique_id,
breakpoint->address,
breakpoint->type);
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (breakpoint->type == BKPT_HARD)
{
/* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
/* reassign a hw breakpoint */
if (breakpoint->set == 0)
{
arm7_9_assign_wp(arm7_9, breakpoint);
}
if (breakpoint->set == 1)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
}
else if (breakpoint->set == 2)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
}
else
{
LOG_ERROR("BUG: no hardware comparator available");
return ERROR_OK;
}
retval = jtag_execute_queue();
}
else if (breakpoint->type == BKPT_SOFT)
{
/* did we already set this breakpoint? */
if (breakpoint->set)
return ERROR_OK;
if (breakpoint->length == 4)
{
uint32_t verify = 0xffffffff;
/* keep the original instruction in target endianness */
if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
{
return retval;
}
/* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
{
return retval;
}
if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
{
return retval;
}
if (verify != arm7_9->arm_bkpt)
{
LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
return ERROR_OK;
}
}
else
{
uint16_t verify = 0xffff;
/* keep the original instruction in target endianness */
if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
{
return retval;
}
/* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
{
return retval;
}
if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
{
return retval;
}
if (verify != arm7_9->thumb_bkpt)
{
LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
return ERROR_OK;
}
}
if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
return retval;
arm7_9->sw_breakpoint_count++;
breakpoint->set = 1;
}
return retval;
}
/**
* Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
* breakpoint, the watchpoint used will be freed and the Embedded ICE registers
* will be updated. Otherwise, the software breakpoint will be restored to its
* original instruction if it hasn't already been modified.
*
* @param target Pointer to ARM7/9 target to unset the breakpoint from
* @param breakpoint Pointer to breakpoint to be unset
* @return For hardware breakpoints, this is the result of executing the JTAG
* queue. For software breakpoints, this will be the status of the
* required memory reads and writes
*/
int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval = ERROR_OK;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
breakpoint->unique_id,
breakpoint->address );
if (!breakpoint->set)
{
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD)
{
LOG_DEBUG("BPID: %d Releasing hw wp: %d",
breakpoint->unique_id,
breakpoint->set );
if (breakpoint->set == 1)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
arm7_9->wp0_used = 0;
arm7_9->wp_available++;
}
else if (breakpoint->set == 2)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
arm7_9->wp1_used = 0;
arm7_9->wp_available++;
}
retval = jtag_execute_queue();
breakpoint->set = 0;
}
else
{
/* restore original instruction (kept in target endianness) */
if (breakpoint->length == 4)
{
uint32_t current_instr;
/* check that user program as not modified breakpoint instruction */
if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)¤t_instr)) != ERROR_OK)
{
return retval;
}
if (current_instr == arm7_9->arm_bkpt)
if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
{
return retval;
}
}
else
{
uint16_t current_instr;
/* check that user program as not modified breakpoint instruction */
if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)¤t_instr)) != ERROR_OK)
{
return retval;
}
if (current_instr == arm7_9->thumb_bkpt)
if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
{
return retval;
}
}
if (--arm7_9->sw_breakpoint_count==0)
{
/* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
if (arm7_9->sw_breakpoints_added == 1)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
}
else if (arm7_9->sw_breakpoints_added == 2)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
}
}
breakpoint->set = 0;
}
return retval;
}
/**
* Add a breakpoint to an ARM7/9 target. This makes sure that there are no
* dangling breakpoints and that the desired breakpoint can be added.
*
* @param target Pointer to the target ARM7/9 device to add a breakpoint to
* @param breakpoint Pointer to the breakpoint to be added
* @return An error status if there is a problem adding the breakpoint or the
* result of setting the breakpoint
*/
int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (arm7_9->breakpoint_count == 0)
{
/* make sure we don't have any dangling breakpoints. This is vital upon
* GDB connect/disconnect
*/
arm7_9_clear_watchpoints(arm7_9);
}
if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
{
LOG_INFO("no watchpoint unit available for hardware breakpoint");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if ((breakpoint->length != 2) && (breakpoint->length != 4))
{
LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
{
arm7_9_assign_wp(arm7_9, breakpoint);
}
arm7_9->breakpoint_count++;
return arm7_9_set_breakpoint(target, breakpoint);
}
/**
* Removes a breakpoint from an ARM7/9 target. This will make sure there are no
* dangling breakpoints and updates available watchpoints if it is a hardware
* breakpoint.
*
* @param target Pointer to the target to have a breakpoint removed
* @param breakpoint Pointer to the breakpoint to be removed
* @return Error status if there was a problem unsetting the breakpoint or the
* watchpoints could not be cleared
*/
int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval = ERROR_OK;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
{
return retval;
}
if (breakpoint->type == BKPT_HARD)
arm7_9->wp_available++;
arm7_9->breakpoint_count--;
if (arm7_9->breakpoint_count == 0)
{
/* make sure we don't have any dangling breakpoints */
if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
{
return retval;
}
}
return ERROR_OK;
}
/**
* Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
* considered a bug to call this function when there are no available watchpoint
* units.
*
* @param target Pointer to an ARM7/9 target to set a watchpoint on
* @param watchpoint Pointer to the watchpoint to be set
* @return Error status if watchpoint set fails or the result of executing the
* JTAG queue
*/
int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
int retval = ERROR_OK;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
int rw_mask = 1;
uint32_t mask;
mask = watchpoint->length - 1;
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (watchpoint->rw == WPT_ACCESS)
rw_mask = 0;
else
rw_mask = 1;
if (!arm7_9->wp0_used)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
if (watchpoint->mask != 0xffffffffu)
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
watchpoint->set = 1;
arm7_9->wp0_used = 2;
}
else if (!arm7_9->wp1_used)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
if (watchpoint->mask != 0xffffffffu)
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
watchpoint->set = 2;
arm7_9->wp1_used = 2;
}
else
{
LOG_ERROR("BUG: no hardware comparator available");
return ERROR_OK;
}
return ERROR_OK;
}
/**
* Unset an existing watchpoint and clear the used watchpoint unit.
*
* @param target Pointer to the target to have the watchpoint removed
* @param watchpoint Pointer to the watchpoint to be removed
* @return Error status while trying to unset the watchpoint or the result of
* executing the JTAG queue
*/
int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
int retval = ERROR_OK;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!watchpoint->set)
{
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (watchpoint->set == 1)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
arm7_9->wp0_used = 0;
}
else if (watchpoint->set == 2)
{
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
arm7_9->wp1_used = 0;
}
watchpoint->set = 0;
return ERROR_OK;
}
/**
* Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
* available, an error response is returned.
*
* @param target Pointer to the ARM7/9 target to add a watchpoint to
* @param watchpoint Pointer to the watchpoint to be added
* @return Error status while trying to add the watchpoint
*/
int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (arm7_9->wp_available < 1)
{
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
{
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
arm7_9->wp_available--;
return ERROR_OK;
}
/**
* Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
* the used watchpoint unit will be reopened.
*
* @param target Pointer to the target to remove a watchpoint from
* @param watchpoint Pointer to the watchpoint to be removed
* @return Result of trying to unset the watchpoint
*/
int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
int retval = ERROR_OK;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
if (watchpoint->set)
{
if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
{
return retval;
}
}
arm7_9->wp_available++;
return ERROR_OK;
}
/**
* Restarts the target by sending a RESTART instruction and moving the JTAG
* state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
* asserted by the processor.
*
* @param target Pointer to target to issue commands to
* @return Error status if there is a timeout or a problem while executing the
* JTAG queue
*/
int arm7_9_execute_sys_speed(struct target *target)
{
int retval;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
/* set RESTART instruction */
jtag_set_end_state(TAP_IDLE);
if (arm7_9->need_bypass_before_restart) {
arm7_9->need_bypass_before_restart = 0;
arm_jtag_set_instr(jtag_info, 0xf, NULL);
}
arm_jtag_set_instr(jtag_info, 0x4, NULL);
long long then = timeval_ms();
int timeout;
while (!(timeout = ((timeval_ms()-then) > 1000)))
{
/* read debug status register */
embeddedice_read_reg(dbg_stat);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
&& (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
break;
if (debug_level >= 3)
{
alive_sleep(100);
} else
{
keep_alive();
}
}
if (timeout)
{
LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
return ERROR_TARGET_TIMEOUT;
}
return ERROR_OK;
}
/**
* Restarts the target by sending a RESTART instruction and moving the JTAG
* state to IDLE. This validates that DBGACK and SYSCOMP are set without
* waiting until they are.
*
* @param target Pointer to the target to issue commands to
* @return Always ERROR_OK
*/
int arm7_9_execute_fast_sys_speed(struct target *target)
{
static int set = 0;
static uint8_t check_value[4], check_mask[4];
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
/* set RESTART instruction */
jtag_set_end_state(TAP_IDLE);
if (arm7_9->need_bypass_before_restart) {
arm7_9->need_bypass_before_restart = 0;
arm_jtag_set_instr(jtag_info, 0xf, NULL);
}
arm_jtag_set_instr(jtag_info, 0x4, NULL);
if (!set)
{
/* check for DBGACK and SYSCOMP set (others don't care) */
/* NB! These are constants that must be available until after next jtag_execute() and
* we evaluate the values upon first execution in lieu of setting up these constants
* during early setup.
* */
buf_set_u32(check_value, 0, 32, 0x9);
buf_set_u32(check_mask, 0, 32, 0x9);
set = 1;
}
/* read debug status register */
embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
return ERROR_OK;
}
/**
* Get some data from the ARM7/9 target.
*
* @param target Pointer to the ARM7/9 target to read data from
* @param size The number of 32bit words to be read
* @param buffer Pointer to the buffer that will hold the data
* @return The result of receiving data from the Embedded ICE unit
*/
int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
uint32_t *data;
int retval = ERROR_OK;
uint32_t i;
data = malloc(size * (sizeof(uint32_t)));
retval = embeddedice_receive(jtag_info, data, size);
/* return the 32-bit ints in the 8-bit array */
for (i = 0; i < size; i++)
{
h_u32_to_le(buffer + (i * 4), data[i]);
}
free(data);
return retval;
}
/**
* Handles requests to an ARM7/9 target. If debug messaging is enabled, the
* target is running and the DCC control register has the W bit high, this will
* execute the request on the target.
*
* @param priv Void pointer expected to be a struct target pointer
* @return ERROR_OK unless there are issues with the JTAG queue or when reading
* from the Embedded ICE unit
*/
int arm7_9_handle_target_request(void *priv)
{
int retval = ERROR_OK;
struct target *target = priv;
if (!target_was_examined(target))
return ERROR_OK;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
if (!target->dbg_msg_enabled)
return ERROR_OK;
if (target->state == TARGET_RUNNING)
{
/* read DCC control register */
embeddedice_read_reg(dcc_control);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
/* check W bit */
if (buf_get_u32(dcc_control->value, 1, 1) == 1)
{
uint32_t request;
if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
{
return retval;
}
if ((retval = target_request(target, request)) != ERROR_OK)
{
return retval;
}
}
}
return ERROR_OK;
}
/**
* Polls an ARM7/9 target for its current status. If DBGACK is set, the target
* is manipulated to the right halted state based on its current state. This is
* what happens:
*
*
* State | Action |
* TARGET_RUNNING | TARGET_RESET | Enters debug mode. If TARGET_RESET, pc may be checked |
* TARGET_UNKNOWN | Warning is logged |
* TARGET_DEBUG_RUNNING | Enters debug mode |
* TARGET_HALTED | Nothing |
*
*
* If the target does not end up in the halted state, a warning is produced. If
* DBGACK is cleared, then the target is expected to either be running or
* running in debug.
*
* @param target Pointer to the ARM7/9 target to poll
* @return ERROR_OK or an error status if a command fails
*/
int arm7_9_poll(struct target *target)
{
int retval;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
/* read debug status register */
embeddedice_read_reg(dbg_stat);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
{
/* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
if (target->state == TARGET_UNKNOWN)
{
/* Starting OpenOCD with target in debug-halt */
target->state = TARGET_RUNNING;
LOG_DEBUG("DBGACK already set during server startup.");
}
if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
{
int check_pc = 0;
if (target->state == TARGET_RESET)
{
if (target->reset_halt)
{
enum reset_types jtag_reset_config = jtag_get_reset_config();
if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
{
check_pc = 1;
}
}
}
target->state = TARGET_HALTED;
if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
return retval;
if (check_pc)
{
struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
uint32_t t=*((uint32_t *)reg->value);
if (t != 0)
{
LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
}
}
if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
{
return retval;
}
}
if (target->state == TARGET_DEBUG_RUNNING)
{
target->state = TARGET_HALTED;
if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
return retval;
if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
{
return retval;
}
}
if (target->state != TARGET_HALTED)
{
LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
}
}
else
{
if (target->state != TARGET_DEBUG_RUNNING)
target->state = TARGET_RUNNING;
}
return ERROR_OK;
}
/**
* Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
* the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
* affected) completely stop the JTAG clock while the core is held in reset
* (SRST). It isn't possible to program the halt condition once reset is
* asserted, hence a hook that allows the target to set up its reset-halt
* condition is setup prior to asserting reset.
*
* @param target Pointer to an ARM7/9 target to assert reset on
* @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
*/
int arm7_9_assert_reset(struct target *target)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
LOG_DEBUG("target->state: %s",
target_state_name(target));
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (!(jtag_reset_config & RESET_HAS_SRST))
{
LOG_ERROR("Can't assert SRST");
return ERROR_FAIL;
}
/* At this point trst has been asserted/deasserted once. We would
* like to program EmbeddedICE while SRST is asserted, instead of
* depending on SRST to leave that module alone. However, many CPUs
* gate the JTAG clock while SRST is asserted; or JTAG may need
* clock stability guarantees (adaptive clocking might help).
*
* So we assume JTAG access during SRST is off the menu unless it's
* been specifically enabled.
*/
bool srst_asserted = false;
if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
&& (jtag_reset_config & RESET_SRST_NO_GATING))
{
jtag_add_reset(0, 1);
srst_asserted = true;
}
if (target->reset_halt)
{
/*
* Some targets do not support communication while SRST is asserted. We need to
* set up the reset vector catch here.
*
* If TRST is asserted, then these settings will be reset anyway, so setting them
* here is harmless.
*/
if (arm7_9->has_vector_catch)
{
/* program vector catch register to catch reset vector */
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
/* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
jtag_add_runtest(1, jtag_get_end_state());
}
else
{
/* program watchpoint unit to match on reset vector address */
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
}
}
/* here we should issue an SRST only, but we may have to assert TRST as well */
if (jtag_reset_config & RESET_SRST_PULLS_TRST)
{
jtag_add_reset(1, 1);
} else if (!srst_asserted)
{
jtag_add_reset(0, 1);
}
target->state = TARGET_RESET;
jtag_add_sleep(50000);
register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
{
/* debug entry was already prepared in arm7_9_assert_reset() */
target->debug_reason = DBG_REASON_DBGRQ;
}
return ERROR_OK;
}
/**
* Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
* and the target is being reset into a halt, a warning will be triggered
* because it is not possible to reset into a halted mode in this case. The
* target is halted using the target's functions.
*
* @param target Pointer to the target to have the reset deasserted
* @return ERROR_OK or an error from polling or halting the target
*/
int arm7_9_deassert_reset(struct target *target)
{
int retval = ERROR_OK;
LOG_DEBUG("target->state: %s",
target_state_name(target));
/* deassert reset lines */
jtag_add_reset(0, 0);
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
{
LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
/* set up embedded ice registers again */
if ((retval = target_examine_one(target)) != ERROR_OK)
return retval;
if ((retval = target_poll(target)) != ERROR_OK)
{
return retval;
}
if ((retval = target_halt(target)) != ERROR_OK)
{
return retval;
}
}
return retval;
}
/**
* Clears the halt condition for an ARM7/9 target. If it isn't coming out of
* reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
* vector catch was used, it is restored. Otherwise, the control value is
* restored and the watchpoint unit is restored if it was in use.
*
* @param target Pointer to the ARM7/9 target to have halt cleared
* @return Always ERROR_OK
*/
int arm7_9_clear_halt(struct target *target)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
/* we used DBGRQ only if we didn't come out of reset */
if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
{
/* program EmbeddedICE Debug Control Register to deassert DBGRQ
*/
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
embeddedice_store_reg(dbg_ctrl);
}
else
{
if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
{
/* if we came out of reset, and vector catch is supported, we used
* vector catch to enter debug state
* restore the register in that case
*/
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
}
else
{
/* restore registers if watchpoint unit 0 was in use
*/
if (arm7_9->wp0_used)
{
if (arm7_9->debug_entry_from_reset)
{
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
}
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
}
/* control value always has to be restored, as it was either disabled,
* or enabled with possibly different bits
*/
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
}
}
return ERROR_OK;
}
/**
* Issue a software reset and halt to an ARM7/9 target. The target is halted
* and then there is a wait until the processor shows the halt. This wait can
* timeout and results in an error being returned. The software reset involves
* clearing the halt, updating the debug control register, changing to ARM mode,
* reset of the program counter, and reset of all of the registers.
*
* @param target Pointer to the ARM7/9 target to be reset and halted by software
* @return Error status if any of the commands fail, otherwise ERROR_OK
*/
int arm7_9_soft_reset_halt(struct target *target)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
int i;
int retval;
/* FIX!!! replace some of this code with tcl commands
*
* halt # the halt command is synchronous
* armv4_5 core_state arm
*
*/
if ((retval = target_halt(target)) != ERROR_OK)
return retval;
long long then = timeval_ms();
int timeout;
while (!(timeout = ((timeval_ms()-then) > 1000)))
{
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
break;
embeddedice_read_reg(dbg_stat);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
if (debug_level >= 3)
{
alive_sleep(100);
} else
{
keep_alive();
}
}
if (timeout)
{
LOG_ERROR("Failed to halt CPU after 1 sec");
return ERROR_TARGET_TIMEOUT;
}
target->state = TARGET_HALTED;
/* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
* ensure that DBGRQ is cleared
*/
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
embeddedice_store_reg(dbg_ctrl);
if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
{
return retval;
}
/* if the target is in Thumb state, change to ARM state */
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
{
uint32_t r0_thumb, pc_thumb;
LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
/* Entered debug from Thumb mode */
armv4_5->core_state = ARMV4_5_STATE_THUMB;
arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
}
/* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
/* all register content is now invalid */
register_cache_invalidate(armv4_5->core_cache);
/* SVC, ARM state, IRQ and FIQ disabled */
uint32_t cpsr;
cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
cpsr &= ~0xff;
cpsr |= 0xd3;
arm_set_cpsr(armv4_5, cpsr);
armv4_5->cpsr->dirty = 1;
/* start fetching from 0x0 */
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
armv4_5->core_cache->reg_list[15].dirty = 1;
armv4_5->core_cache->reg_list[15].valid = 1;
/* reset registers */
for (i = 0; i <= 14; i++)
{
struct reg *r = arm_reg_current(armv4_5, i);
buf_set_u32(r->value, 0, 32, 0xffffffff);
r->dirty = 1;
r->valid = 1;
}
if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
{
return retval;
}
return ERROR_OK;
}
/**
* Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
* line or by programming a watchpoint to trigger on any address. It is
* considered a bug to call this function while the target is in the
* TARGET_RESET state.
*
* @param target Pointer to the ARM7/9 target to be halted
* @return Always ERROR_OK
*/
int arm7_9_halt(struct target *target)
{
if (target->state == TARGET_RESET)
{
LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
return ERROR_OK;
}
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
LOG_DEBUG("target->state: %s",
target_state_name(target));
if (target->state == TARGET_HALTED)
{
LOG_DEBUG("target was already halted");
return ERROR_OK;
}
if (target->state == TARGET_UNKNOWN)
{
LOG_WARNING("target was in unknown state when halt was requested");
}
if (arm7_9->use_dbgrq)
{
/* program EmbeddedICE Debug Control Register to assert DBGRQ
*/
if (arm7_9->set_special_dbgrq) {
arm7_9->set_special_dbgrq(target);
} else {
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
embeddedice_store_reg(dbg_ctrl);
}
}
else
{
/* program watchpoint unit to match on any address
*/
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
}
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
/**
* Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
* ARM. The JTAG queue is then executed and the reason for debug entry is
* examined. Once done, the target is verified to be halted and the processor
* is forced into ARM mode. The core registers are saved for the current core
* mode and the program counter (register 15) is updated as needed. The core
* registers and CPSR and SPSR are saved for restoration later.
*
* @param target Pointer to target that is entering debug mode
* @return Error code if anything fails, otherwise ERROR_OK
*/
static int arm7_9_debug_entry(struct target *target)
{
int i;
uint32_t context[16];
uint32_t* context_p[16];
uint32_t r0_thumb, pc_thumb;
uint32_t cpsr, cpsr_mask = 0;
int retval;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
#ifdef _DEBUG_ARM7_9_
LOG_DEBUG("-");
#endif
/* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
* ensure that DBGRQ is cleared
*/
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
embeddedice_store_reg(dbg_ctrl);
if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
{
return retval;
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* if the target is in Thumb state, change to ARM state */
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
{
LOG_DEBUG("target entered debug from Thumb state");
/* Entered debug from Thumb mode */
armv4_5->core_state = ARMV4_5_STATE_THUMB;
cpsr_mask = 1 << 5;
arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
} else if (buf_get_u32(dbg_stat->value, 5, 1)) {
/* \todo Get some vaguely correct handling of Jazelle, if
* anyone ever uses it and full info becomes available.
* See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
* B.7.3 for the reverse. That'd be the bare minimum...
*/
LOG_DEBUG("target entered debug from Jazelle state");
armv4_5->core_state = ARMV4_5_STATE_JAZELLE;
cpsr_mask = 1 << 24;
LOG_ERROR("Jazelle debug entry -- BROKEN!");
} else {
LOG_DEBUG("target entered debug from ARM state");
/* Entered debug from ARM mode */
armv4_5->core_state = ARMV4_5_STATE_ARM;
}
for (i = 0; i < 16; i++)
context_p[i] = &context[i];
/* save core registers (r0 - r15 of current core mode) */
arm7_9->read_core_regs(target, 0xffff, context_p);
arm7_9->read_xpsr(target, &cpsr, 0);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
/* Sync our CPSR copy with J or T bits EICE reported, but
* which we then erased by putting the core into ARM mode.
*/
arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
if (!is_arm_mode(armv4_5->core_mode))
{
target->state = TARGET_UNKNOWN;
LOG_ERROR("cpsr contains invalid mode value - communication failure");
return ERROR_TARGET_FAILURE;
}
LOG_DEBUG("target entered debug state in %s mode",
arm_mode_name(armv4_5->core_mode));
if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
{
LOG_DEBUG("thumb state, applying fixups");
context[0] = r0_thumb;
context[15] = pc_thumb;
} else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
{
/* adjust value stored by STM */
context[15] -= 3 * 4;
}
if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
else
context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
for (i = 0; i <= 15; i++)
{
struct reg *r = arm_reg_current(armv4_5, i);
LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
buf_set_u32(r->value, 0, 32, context[i]);
/* r0 and r15 (pc) have to be restored later */
r->dirty = (i == 0) || (i == 15);
r->valid = 1;
}
LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
/* exceptions other than USR & SYS have a saved program status register */
if (armv4_5->spsr) {
uint32_t spsr;
arm7_9->read_xpsr(target, &spsr, 1);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
armv4_5->spsr->dirty = 0;
armv4_5->spsr->valid = 1;
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
if (arm7_9->post_debug_entry)
arm7_9->post_debug_entry(target);
return ERROR_OK;
}
/**
* Validate the full context for an ARM7/9 target in all processor modes. If
* there are any invalid registers for the target, they will all be read. This
* includes the PSR.
*
* @param target Pointer to the ARM7/9 target to capture the full context from
* @return Error if the target is not halted, has an invalid core mode, or if
* the JTAG queue fails to execute
*/
int arm7_9_full_context(struct target *target)
{
int i;
int retval;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
LOG_DEBUG("-");
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
/* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
* SYS shares registers with User, so we don't touch SYS
*/
for (i = 0; i < 6; i++)
{
uint32_t mask = 0;
uint32_t* reg_p[16];
int j;
int valid = 1;
/* check if there are invalid registers in the current mode
*/
for (j = 0; j <= 16; j++)
{
if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
valid = 0;
}
if (!valid)
{
uint32_t tmp_cpsr;
/* change processor mode (and mask T bit) */
tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
& 0xe0;
tmp_cpsr |= armv4_5_number_to_mode(i);
tmp_cpsr &= ~0x20;
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
for (j = 0; j < 15; j++)
{
if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
{
reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
mask |= 1 << j;
ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
}
}
/* if only the PSR is invalid, mask is all zeroes */
if (mask)
arm7_9->read_core_regs(target, mask, reg_p);
/* check if the PSR has to be read */
if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
{
arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
}
}
}
/* restore processor mode (mask T bit) */
arm7_9->write_xpsr_im8(target,
buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
0, 0);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
return ERROR_OK;
}
/**
* Restore the processor context on an ARM7/9 target. The full processor
* context is analyzed to see if any of the registers are dirty on this end, but
* have a valid new value. If this is the case, the processor is changed to the
* appropriate mode and the new register values are written out to the
* processor. If there happens to be a dirty register with an invalid value, an
* error will be logged.
*
* @param target Pointer to the ARM7/9 target to have its context restored
* @return Error status if the target is not halted or the core mode in the
* armv4_5 struct is invalid.
*/
int arm7_9_restore_context(struct target *target)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
struct reg *reg;
struct arm_reg *reg_arch_info;
enum armv4_5_mode current_mode = armv4_5->core_mode;
int i, j;
int dirty;
int mode_change;
LOG_DEBUG("-");
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (arm7_9->pre_restore_context)
arm7_9->pre_restore_context(target);
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
/* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
* SYS shares registers with User, so we don't touch SYS
*/
for (i = 0; i < 6; i++)
{
LOG_DEBUG("examining %s mode",
arm_mode_name(armv4_5->core_mode));
dirty = 0;
mode_change = 0;
/* check if there are dirty registers in the current mode
*/
for (j = 0; j <= 16; j++)
{
reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
reg_arch_info = reg->arch_info;
if (reg->dirty == 1)
{
if (reg->valid == 1)
{
dirty = 1;
LOG_DEBUG("examining dirty reg: %s", reg->name);
if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
&& (reg_arch_info->mode != current_mode)
&& !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
&& !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
{
mode_change = 1;
LOG_DEBUG("require mode change");
}
}
else
{
LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
}
}
}
if (dirty)
{
uint32_t mask = 0x0;
int num_regs = 0;
uint32_t regs[16];
if (mode_change)
{
uint32_t tmp_cpsr;
/* change processor mode (mask T bit) */
tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
0, 8) & 0xe0;
tmp_cpsr |= armv4_5_number_to_mode(i);
tmp_cpsr &= ~0x20;
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
current_mode = armv4_5_number_to_mode(i);
}
for (j = 0; j <= 14; j++)
{
reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
reg_arch_info = reg->arch_info;
if (reg->dirty == 1)
{
regs[j] = buf_get_u32(reg->value, 0, 32);
mask |= 1 << j;
num_regs++;
reg->dirty = 0;
reg->valid = 1;
LOG_DEBUG("writing register %i mode %s "
"with value 0x%8.8" PRIx32, j,
arm_mode_name(armv4_5->core_mode),
regs[j]);
}
}
if (mask)
{
arm7_9->write_core_regs(target, mask, regs);
}
reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
reg_arch_info = reg->arch_info;
if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
{
LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
}
}
}
if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
{
/* restore processor mode (mask T bit) */
uint32_t tmp_cpsr;
tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
tmp_cpsr |= armv4_5_number_to_mode(i);
tmp_cpsr &= ~0x20;
LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
}
else if (armv4_5->cpsr->dirty)
{
/* CPSR has been changed, full restore necessary (mask T bit) */
LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
buf_get_u32(armv4_5->cpsr->value, 0, 32));
arm7_9->write_xpsr(target,
buf_get_u32(armv4_5->cpsr->value, 0, 32)
& ~0x20, 0);
armv4_5->cpsr->dirty = 0;
armv4_5->cpsr->valid = 1;
}
/* restore PC */
LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
armv4_5->core_cache->reg_list[15].dirty = 0;
if (arm7_9->post_restore_context)
arm7_9->post_restore_context(target);
return ERROR_OK;
}
/**
* Restart the core of an ARM7/9 target. A RESTART command is sent to the
* instruction register and the JTAG state is set to TAP_IDLE causing a core
* restart.
*
* @param target Pointer to the ARM7/9 target to be restarted
* @return Result of executing the JTAG queue
*/
int arm7_9_restart_core(struct target *target)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
/* set RESTART instruction */
jtag_set_end_state(TAP_IDLE);
if (arm7_9->need_bypass_before_restart) {
arm7_9->need_bypass_before_restart = 0;
arm_jtag_set_instr(jtag_info, 0xf, NULL);
}
arm_jtag_set_instr(jtag_info, 0x4, NULL);
jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
return jtag_execute_queue();
}
/**
* Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
* iterated through and are set on the target if they aren't already set.
*
* @param target Pointer to the ARM7/9 target to enable watchpoints on
*/
void arm7_9_enable_watchpoints(struct target *target)
{
struct watchpoint *watchpoint = target->watchpoints;
while (watchpoint)
{
if (watchpoint->set == 0)
arm7_9_set_watchpoint(target, watchpoint);
watchpoint = watchpoint->next;
}
}
/**
* Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
* iterated through and are set on the target.
*
* @param target Pointer to the ARM7/9 target to enable breakpoints on
*/
void arm7_9_enable_breakpoints(struct target *target)
{
struct breakpoint *breakpoint = target->breakpoints;
/* set any pending breakpoints */
while (breakpoint)
{
arm7_9_set_breakpoint(target, breakpoint);
breakpoint = breakpoint->next;
}
}
int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
struct breakpoint *breakpoint = target->breakpoints;
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
int err, retval = ERROR_OK;
LOG_DEBUG("-");
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!debug_execution)
{
target_free_all_working_areas(target);
}
/* current = 1: continue on current pc, otherwise continue at */
if (!current)
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
uint32_t current_pc;
current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints)
{
if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
{
LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
{
return retval;
}
/* calculate PC of next instruction */
uint32_t next_pc;
if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
{
uint32_t current_opcode;
target_read_u32(target, current_pc, ¤t_opcode);
LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
return retval;
}
LOG_DEBUG("enable single-step");
arm7_9->enable_single_step(target, next_pc);
target->debug_reason = DBG_REASON_SINGLESTEP;
if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
{
return retval;
}
if (armv4_5->core_state == ARMV4_5_STATE_ARM)
arm7_9->branch_resume(target);
else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
{
arm7_9->branch_resume_thumb(target);
}
else
{
LOG_ERROR("unhandled core state");
return ERROR_FAIL;
}
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
err = arm7_9_execute_sys_speed(target);
LOG_DEBUG("disable single-step");
arm7_9->disable_single_step(target);
if (err != ERROR_OK)
{
if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
{
return retval;
}
target->state = TARGET_UNKNOWN;
return err;
}
arm7_9_debug_entry(target);
LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
{
return retval;
}
}
}
/* enable any pending breakpoints and watchpoints */
arm7_9_enable_breakpoints(target);
arm7_9_enable_watchpoints(target);
if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
{
return retval;
}
if (armv4_5->core_state == ARMV4_5_STATE_ARM)
{
arm7_9->branch_resume(target);
}
else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
{
arm7_9->branch_resume_thumb(target);
}
else
{
LOG_ERROR("unhandled core state");
return ERROR_FAIL;
}
/* deassert DBGACK and INTDIS */
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
/* INTDIS only when we really resume, not during debug execution */
if (!debug_execution)
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
{
return retval;
}
target->debug_reason = DBG_REASON_NOTHALTED;
if (!debug_execution)
{
/* registers are now invalid */
register_cache_invalidate(armv4_5->core_cache);
target->state = TARGET_RUNNING;
if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
{
return retval;
}
}
else
{
target->state = TARGET_DEBUG_RUNNING;
if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
{
return retval;
}
}
LOG_DEBUG("target resumed");
return ERROR_OK;
}
void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
uint32_t current_pc;
current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
if (next_pc != current_pc)
{
/* setup an inverse breakpoint on the current PC
* - comparator 1 matches the current address
* - rangeout from comparator 1 is connected to comparator 0 rangein
* - comparator 0 matches any address, as long as rangein is low */
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
}
else
{
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
}
}
void arm7_9_disable_eice_step(struct target *target)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
}
int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
struct breakpoint *breakpoint = NULL;
int err, retval;
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* current = 1: continue on current pc, otherwise continue at */
if (!current)
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
uint32_t current_pc;
current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints)
if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
{
return retval;
}
target->debug_reason = DBG_REASON_SINGLESTEP;
/* calculate PC of next instruction */
uint32_t next_pc;
if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
{
uint32_t current_opcode;
target_read_u32(target, current_pc, ¤t_opcode);
LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
return retval;
}
if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
{
return retval;
}
arm7_9->enable_single_step(target, next_pc);
if (armv4_5->core_state == ARMV4_5_STATE_ARM)
{
arm7_9->branch_resume(target);
}
else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
{
arm7_9->branch_resume_thumb(target);
}
else
{
LOG_ERROR("unhandled core state");
return ERROR_FAIL;
}
if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
{
return retval;
}
err = arm7_9_execute_sys_speed(target);
arm7_9->disable_single_step(target);
/* registers are now invalid */
register_cache_invalidate(armv4_5->core_cache);
if (err != ERROR_OK)
{
target->state = TARGET_UNKNOWN;
} else {
arm7_9_debug_entry(target);
if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
{
return retval;
}
LOG_DEBUG("target stepped");
}
if (breakpoint)
if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
{
return retval;
}
return err;
}
static int arm7_9_read_core_reg(struct target *target, struct reg *r,
int num, enum armv4_5_mode mode)
{
uint32_t* reg_p[16];
uint32_t value;
int retval;
struct arm_reg *areg = r->arch_info;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
if ((num < 0) || (num > 16))
return ERROR_INVALID_ARGUMENTS;
if ((mode != ARMV4_5_MODE_ANY)
&& (mode != armv4_5->core_mode)
&& (areg->mode != ARMV4_5_MODE_ANY))
{
uint32_t tmp_cpsr;
/* change processor mode (mask T bit) */
tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
tmp_cpsr |= mode;
tmp_cpsr &= ~0x20;
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
}
if ((num >= 0) && (num <= 15))
{
/* read a normal core register */
reg_p[num] = &value;
arm7_9->read_core_regs(target, 1 << num, reg_p);
}
else
{
/* read a program status register
* if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
*/
arm7_9->read_xpsr(target, &value, areg->mode != ARMV4_5_MODE_ANY);
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
r->valid = 1;
r->dirty = 0;
buf_set_u32(r->value, 0, 32, value);
if ((mode != ARMV4_5_MODE_ANY)
&& (mode != armv4_5->core_mode)
&& (areg->mode != ARMV4_5_MODE_ANY)) {
/* restore processor mode (mask T bit) */
arm7_9->write_xpsr_im8(target,
buf_get_u32(armv4_5->cpsr->value, 0, 8)
& ~0x20, 0, 0);
}
return ERROR_OK;
}
static int arm7_9_write_core_reg(struct target *target, struct reg *r,
int num, enum armv4_5_mode mode, uint32_t value)
{
uint32_t reg[16];
struct arm_reg *areg = r->arch_info;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
if ((num < 0) || (num > 16))
return ERROR_INVALID_ARGUMENTS;
if ((mode != ARMV4_5_MODE_ANY)
&& (mode != armv4_5->core_mode)
&& (areg->mode != ARMV4_5_MODE_ANY)) {
uint32_t tmp_cpsr;
/* change processor mode (mask T bit) */
tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
tmp_cpsr |= mode;
tmp_cpsr &= ~0x20;
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
}
if ((num >= 0) && (num <= 15))
{
/* write a normal core register */
reg[num] = value;
arm7_9->write_core_regs(target, 1 << num, reg);
}
else
{
/* write a program status register
* if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
*/
int spsr = (areg->mode != ARMV4_5_MODE_ANY);
/* if we're writing the CPSR, mask the T bit */
if (!spsr)
value &= ~0x20;
arm7_9->write_xpsr(target, value, spsr);
}
r->valid = 1;
r->dirty = 0;
if ((mode != ARMV4_5_MODE_ANY)
&& (mode != armv4_5->core_mode)
&& (areg->mode != ARMV4_5_MODE_ANY)) {
/* restore processor mode (mask T bit) */
arm7_9->write_xpsr_im8(target,
buf_get_u32(armv4_5->cpsr->value, 0, 8)
& ~0x20, 0, 0);
}
return jtag_execute_queue();
}
int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
uint32_t reg[16];
uint32_t num_accesses = 0;
int thisrun_accesses;
int i;
uint32_t cpsr;
int retval;
int last_reg = 0;
LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* sanitize arguments */
if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
return ERROR_INVALID_ARGUMENTS;
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
return ERROR_TARGET_UNALIGNED_ACCESS;
/* load the base register with the address of the first word */
reg[0] = address;
arm7_9->write_core_regs(target, 0x1, reg);
int j = 0;
switch (size)
{
case 4:
while (num_accesses < count)
{
uint32_t reg_list;
thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
if (last_reg <= thisrun_accesses)
last_reg = thisrun_accesses;
arm7_9->load_word_regs(target, reg_list);
/* fast memory reads are only safe when the target is running
* from a sufficiently high clock (32 kHz is usually too slow)
*/
if (arm7_9->fast_memory_access)
retval = arm7_9_execute_fast_sys_speed(target);
else
retval = arm7_9_execute_sys_speed(target);
if (retval != ERROR_OK)
return retval;
arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
/* advance buffer, count number of accesses */
buffer += thisrun_accesses * 4;
num_accesses += thisrun_accesses;
if ((j++%1024) == 0)
{
keep_alive();
}
}
break;
case 2:
while (num_accesses < count)
{
uint32_t reg_list;
thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
for (i = 1; i <= thisrun_accesses; i++)
{
if (i > last_reg)
last_reg = i;
arm7_9->load_hword_reg(target, i);
/* fast memory reads are only safe when the target is running
* from a sufficiently high clock (32 kHz is usually too slow)
*/
if (arm7_9->fast_memory_access)
retval = arm7_9_execute_fast_sys_speed(target);
else
retval = arm7_9_execute_sys_speed(target);
if (retval != ERROR_OK)
{
return retval;
}
}
arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
/* advance buffer, count number of accesses */
buffer += thisrun_accesses * 2;
num_accesses += thisrun_accesses;
if ((j++%1024) == 0)
{
keep_alive();
}
}
break;
case 1:
while (num_accesses < count)
{
uint32_t reg_list;
thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
for (i = 1; i <= thisrun_accesses; i++)
{
if (i > last_reg)
last_reg = i;
arm7_9->load_byte_reg(target, i);
/* fast memory reads are only safe when the target is running
* from a sufficiently high clock (32 kHz is usually too slow)
*/
if (arm7_9->fast_memory_access)
retval = arm7_9_execute_fast_sys_speed(target);
else
retval = arm7_9_execute_sys_speed(target);
if (retval != ERROR_OK)
{
return retval;
}
}
arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
/* advance buffer, count number of accesses */
buffer += thisrun_accesses * 1;
num_accesses += thisrun_accesses;
if ((j++%1024) == 0)
{
keep_alive();
}
}
break;
default:
LOG_ERROR("BUG: we shouldn't get here");
exit(-1);
break;
}
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
for (i = 0; i <= last_reg; i++) {
struct reg *r = arm_reg_current(armv4_5, i);
r->dirty = r->valid;
}
arm7_9->read_xpsr(target, &cpsr, 0);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_ERROR("JTAG error while reading cpsr");
return ERROR_TARGET_DATA_ABORT;
}
if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
{
LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
arm7_9->write_xpsr_im8(target,
buf_get_u32(armv4_5->cpsr->value, 0, 8)
& ~0x20, 0, 0);
return ERROR_TARGET_DATA_ABORT;
}
return ERROR_OK;
}
int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
uint32_t reg[16];
uint32_t num_accesses = 0;
int thisrun_accesses;
int i;
uint32_t cpsr;
int retval;
int last_reg = 0;
#ifdef _DEBUG_ARM7_9_
LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
#endif
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* sanitize arguments */
if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
return ERROR_INVALID_ARGUMENTS;
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
return ERROR_TARGET_UNALIGNED_ACCESS;
/* load the base register with the address of the first word */
reg[0] = address;
arm7_9->write_core_regs(target, 0x1, reg);
/* Clear DBGACK, to make sure memory fetches work as expected */
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
embeddedice_store_reg(dbg_ctrl);
switch (size)
{
case 4:
while (num_accesses < count)
{
uint32_t reg_list;
thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
for (i = 1; i <= thisrun_accesses; i++)
{
if (i > last_reg)
last_reg = i;
reg[i] = target_buffer_get_u32(target, buffer);
buffer += 4;
}
arm7_9->write_core_regs(target, reg_list, reg);
arm7_9->store_word_regs(target, reg_list);
/* fast memory writes are only safe when the target is running
* from a sufficiently high clock (32 kHz is usually too slow)
*/
if (arm7_9->fast_memory_access)
retval = arm7_9_execute_fast_sys_speed(target);
else
retval = arm7_9_execute_sys_speed(target);
if (retval != ERROR_OK)
{
return retval;
}
num_accesses += thisrun_accesses;
}
break;
case 2:
while (num_accesses < count)
{
uint32_t reg_list;
thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
for (i = 1; i <= thisrun_accesses; i++)
{
if (i > last_reg)
last_reg = i;
reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
buffer += 2;
}
arm7_9->write_core_regs(target, reg_list, reg);
for (i = 1; i <= thisrun_accesses; i++)
{
arm7_9->store_hword_reg(target, i);
/* fast memory writes are only safe when the target is running
* from a sufficiently high clock (32 kHz is usually too slow)
*/
if (arm7_9->fast_memory_access)
retval = arm7_9_execute_fast_sys_speed(target);
else
retval = arm7_9_execute_sys_speed(target);
if (retval != ERROR_OK)
{
return retval;
}
}
num_accesses += thisrun_accesses;
}
break;
case 1:
while (num_accesses < count)
{
uint32_t reg_list;
thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
for (i = 1; i <= thisrun_accesses; i++)
{
if (i > last_reg)
last_reg = i;
reg[i] = *buffer++ & 0xff;
}
arm7_9->write_core_regs(target, reg_list, reg);
for (i = 1; i <= thisrun_accesses; i++)
{
arm7_9->store_byte_reg(target, i);
/* fast memory writes are only safe when the target is running
* from a sufficiently high clock (32 kHz is usually too slow)
*/
if (arm7_9->fast_memory_access)
retval = arm7_9_execute_fast_sys_speed(target);
else
retval = arm7_9_execute_sys_speed(target);
if (retval != ERROR_OK)
{
return retval;
}
}
num_accesses += thisrun_accesses;
}
break;
default:
LOG_ERROR("BUG: we shouldn't get here");
exit(-1);
break;
}
/* Re-Set DBGACK */
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
embeddedice_store_reg(dbg_ctrl);
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
for (i = 0; i <= last_reg; i++) {
struct reg *r = arm_reg_current(armv4_5, i);
r->dirty = r->valid;
}
arm7_9->read_xpsr(target, &cpsr, 0);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_ERROR("JTAG error while reading cpsr");
return ERROR_TARGET_DATA_ABORT;
}
if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
{
LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
arm7_9->write_xpsr_im8(target,
buf_get_u32(armv4_5->cpsr->value, 0, 8)
& ~0x20, 0, 0);
return ERROR_TARGET_DATA_ABORT;
}
return ERROR_OK;
}
static int dcc_count;
static uint8_t *dcc_buffer;
static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
{
int retval = ERROR_OK;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
return retval;
int little = target->endianness == TARGET_LITTLE_ENDIAN;
int count = dcc_count;
uint8_t *buffer = dcc_buffer;
if (count > 2)
{
/* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
* core function repeated. */
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
buffer += 4;
struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
uint8_t reg_addr = ice_reg->addr & 0x1f;
struct jtag_tap *tap;
tap = ice_reg->jtag_info->tap;
embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
buffer += (count-2)*4;
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
} else
{
int i;
for (i = 0; i < count; i++)
{
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
buffer += 4;
}
}
if ((retval = target_halt(target))!= ERROR_OK)
{
return retval;
}
return target_wait_state(target, TARGET_HALTED, 500);
}
static const uint32_t dcc_code[] =
{
/* r0 == input, points to memory buffer
* r1 == scratch
*/
/* spin until DCC control (c0) reports data arrived */
0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
0xe3110001, /* tst r1, #1 */
0x0afffffc, /* bne w */
/* read word from DCC (c1), write to memory */
0xee111e10, /* mrc p14, #0, r1, c1, c0 */
0xe4801004, /* str r1, [r0], #4 */
/* repeat */
0xeafffff9 /* b w */
};
extern int armv4_5_run_algorithm_inner(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
uint32_t entry_point, uint32_t exit_point,
int timeout_ms, void *arch_info,
int (*run_it)(struct target *target, uint32_t exit_point,
int timeout_ms, void *arch_info));
int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
{
int retval;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
int i;
if (!arm7_9->dcc_downloads)
return target_write_memory(target, address, 4, count, buffer);
/* regrab previously allocated working_area, or allocate a new one */
if (!arm7_9->dcc_working_area)
{
uint8_t dcc_code_buf[6 * 4];
/* make sure we have a working area */
if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
{
LOG_INFO("no working area available, falling back to memory writes");
return target_write_memory(target, address, 4, count, buffer);
}
/* copy target instructions to target endianness */
for (i = 0; i < 6; i++)
{
target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
}
/* write DCC code to working area */
if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
{
return retval;
}
}
struct armv4_5_algorithm armv4_5_info;
struct reg_param reg_params[1];
armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
armv4_5_info.core_state = ARMV4_5_STATE_ARM;
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
dcc_count = count;
dcc_buffer = buffer;
retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
arm7_9->dcc_working_area->address,
arm7_9->dcc_working_area->address + 6*4,
20*1000, &armv4_5_info, arm7_9_dcc_completion);
if (retval == ERROR_OK)
{
uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
if (endaddress != (address + count*4))
{
LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
retval = ERROR_FAIL;
}
}
destroy_reg_param(®_params[0]);
return retval;
}
/**
* Perform per-target setup that requires JTAG access.
*/
int arm7_9_examine(struct target *target)
{
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
int retval;
if (!target_was_examined(target)) {
struct reg_cache *t, **cache_p;
t = embeddedice_build_reg_cache(target, arm7_9);
if (t == NULL)
return ERROR_FAIL;
cache_p = register_get_last_cache_p(&target->reg_cache);
(*cache_p) = t;
arm7_9->eice_cache = (*cache_p);
if (arm7_9->armv4_5_common.etm)
(*cache_p)->next = etm_build_reg_cache(target,
&arm7_9->jtag_info,
arm7_9->armv4_5_common.etm);
target_set_examined(target);
}
retval = embeddedice_setup(target);
if (retval == ERROR_OK)
retval = arm7_9_setup(target);
if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
retval = etm_setup(target);
return retval;
}
COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
if (!is_arm7_9(arm7_9))
{
command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
return ERROR_TARGET_INVALID;
}
if (CMD_ARGC > 0)
COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
return ERROR_OK;
}
COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
if (!is_arm7_9(arm7_9))
{
command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
return ERROR_TARGET_INVALID;
}
if (CMD_ARGC > 0)
COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
return ERROR_OK;
}
COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
if (!is_arm7_9(arm7_9))
{
command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
return ERROR_TARGET_INVALID;
}
if (CMD_ARGC > 0)
COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
return ERROR_OK;
}
int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
{
int retval = ERROR_OK;
struct arm *armv4_5 = &arm7_9->armv4_5_common;
arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
return retval;
/* caller must have allocated via calloc(), so everything's zeroed */
arm7_9->wp_available_max = 2;
arm7_9->fast_memory_access = false;
arm7_9->dcc_downloads = false;
armv4_5->arch_info = arm7_9;
armv4_5->read_core_reg = arm7_9_read_core_reg;
armv4_5->write_core_reg = arm7_9_write_core_reg;
armv4_5->full_context = arm7_9_full_context;
if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
return retval;
return target_register_timer_callback(arm7_9_handle_target_request,
1, 1, target);
}
static const struct command_registration arm7_9_any_command_handlers[] = {
{
"dbgrq",
.handler = &handle_arm7_9_dbgrq_command,
.mode = COMMAND_ANY,
.usage = "",
.help = "use EmbeddedICE dbgrq instead of breakpoint "
"for target halt requests",
},
{
"fast_memory_access",
.handler = &handle_arm7_9_fast_memory_access_command,
.mode = COMMAND_ANY,
.usage = "",
.help = "use fast memory accesses instead of slower "
"but potentially safer accesses",
},
{
"dcc_downloads",
.handler = &handle_arm7_9_dcc_downloads_command,
.mode = COMMAND_ANY,
.usage = "",
.help = "use DCC downloads for larger memory writes",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration arm7_9_command_handlers[] = {
{
.chain = arm_command_handlers,
},
{
.chain = etm_command_handlers,
},
{
.name = "arm7_9",
.mode = COMMAND_ANY,
.help = "arm7/9 specific commands",
.chain = arm7_9_any_command_handlers,
},
COMMAND_REGISTRATION_DONE
};