/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "arm920t.h" #include <helper/time_support.h> #include "target_type.h" #include "register.h" #include "arm_opcodes.h" /* * For information about the ARM920T, see ARM DDI 0151C especially * Chapter 9 about debug support, which shows how to manipulate each * of the different scan chains: * * 0 ... ARM920 signals, e.g. to rest of SOC (unused here) * 1 ... debugging; watchpoint and breakpoint status, etc; also * MMU and cache access in conjunction with scan chain 15 * 2 ... EmbeddedICE * 3 ... external boundary scan (SoC-specific, unused here) * 4 ... access to cache tag RAM * 6 ... ETM9 * 15 ... access coprocessor 15, "physical" or "interpreted" modes * "interpreted" works with a few actual MRC/MCR instructions * "physical" provides register-like behaviors. Section 9.6.7 * covers these details. * * The ARM922T is similar, but with smaller caches (8K each, vs 16K). */ #if 0 #define _DEBUG_INSTRUCTION_EXECUTION_ #endif /* Table 9-8 shows scan chain 15 format during physical access mode, using a * dedicated 6-bit address space (encoded in bits 33:38). Writes use one * JTAG scan, while reads use two. * * Table 9-9 lists the thirteen registers which support physical access. * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical(). * * x == bit[38] * y == bits[37:34] * z == bit[33] */ #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z)) /* Registers supporting physical Read access (from table 9-9) */ #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1) #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1) #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1) /* NOTE: several more registers support only physical read access */ /* Registers supporting physical Read/Write access (from table 9-9) */ #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0) #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0) #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0) #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1) #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1) static int arm920t_read_cp15_physical(struct target *target, int reg_addr, uint32_t *value) { struct arm920t_common *arm920t = target_to_arm920(target); struct arm_jtag *jtag_info; struct scan_field fields[4]; uint8_t access_type_buf = 1; uint8_t reg_addr_buf = reg_addr & 0x3f; uint8_t nr_w_buf = 0; int retval; jtag_info = &arm920t->arm7_9_common.jtag_info; retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE); if (retval != ERROR_OK) return retval; retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE); if (retval != ERROR_OK) return retval; fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].in_value = NULL; fields[1].num_bits = 32; fields[1].out_value = NULL; fields[1].in_value = NULL; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].in_value = NULL; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].in_value = NULL; jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE); fields[1].in_value = (uint8_t *)value; jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE); jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value); #ifdef _DEBUG_INSTRUCTION_EXECUTION_ jtag_execute_queue(); LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value); #endif return ERROR_OK; } static int arm920t_write_cp15_physical(struct target *target, int reg_addr, uint32_t value) { struct arm920t_common *arm920t = target_to_arm920(target); struct arm_jtag *jtag_info; struct scan_field fields[4]; uint8_t access_type_buf = 1; uint8_t reg_addr_buf = reg_addr & 0x3f; uint8_t nr_w_buf = 1; uint8_t value_buf[4]; int retval; jtag_info = &arm920t->arm7_9_common.jtag_info; buf_set_u32(value_buf, 0, 32, value); retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE); if (retval != ERROR_OK) return retval; retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE); if (retval != ERROR_OK) return retval; fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].in_value = NULL; fields[1].num_bits = 32; fields[1].out_value = value_buf; fields[1].in_value = NULL; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].in_value = NULL; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].in_value = NULL; jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE); #ifdef _DEBUG_INSTRUCTION_EXECUTION_ LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value); #endif return ERROR_OK; } /* See table 9-10 for scan chain 15 format during interpreted access mode. * If the TESTSTATE register is set for interpreted access, certain CP15 * MRC and MCR instructions may be executed through scan chain 15. * * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be * executed using scan chain 15 interpreted mode. */ static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode, uint32_t arm_opcode) { int retval; struct arm920t_common *arm920t = target_to_arm920(target); struct arm_jtag *jtag_info; struct scan_field fields[4]; uint8_t access_type_buf = 0; /* interpreted access */ uint8_t reg_addr_buf = 0x0; uint8_t nr_w_buf = 0; uint8_t cp15_opcode_buf[4]; jtag_info = &arm920t->arm7_9_common.jtag_info; retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE); if (retval != ERROR_OK) return retval; retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE); if (retval != ERROR_OK) return retval; buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode); fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].in_value = NULL; fields[1].num_bits = 32; fields[1].out_value = cp15_opcode_buf; fields[1].in_value = NULL; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].in_value = NULL; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].in_value = NULL; jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE); arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0); arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1); retval = arm7_9_execute_sys_speed(target); if (retval != ERROR_OK) return retval; if ((retval = jtag_execute_queue()) != ERROR_OK) { LOG_ERROR("failed executing JTAG queue"); return retval; } return ERROR_OK; } static int arm920t_read_cp15_interpreted(struct target *target, uint32_t cp15_opcode, uint32_t address, uint32_t *value) { struct arm *armv4_5 = target_to_arm(target); uint32_t* regs_p[1]; uint32_t regs[2]; uint32_t cp15c15 = 0x0; struct reg *r = armv4_5->core_cache->reg_list; /* load address into R1 */ regs[1] = address; arm9tdmi_write_core_regs(target, 0x2, regs); /* read-modify-write CP15 test state register * to enable interpreted access mode */ arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15); jtag_execute_queue(); cp15c15 |= 1; /* set interpret mode */ arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* execute CP15 instruction and ARM load (reading from coprocessor) */ arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1)); /* disable interpreted access mode */ cp15c15 &= ~1U; /* clear interpret mode */ arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* retrieve value from R0 */ regs_p[0] = value; arm9tdmi_read_core_regs(target, 0x1, regs_p); jtag_execute_queue(); #ifdef _DEBUG_INSTRUCTION_EXECUTION_ LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x", cp15_opcode, address, *value); #endif if (!is_arm_mode(armv4_5->core_mode)) { LOG_ERROR("not a valid arm core mode - communication failure?"); return ERROR_FAIL; } r[0].dirty = 1; r[1].dirty = 1; return ERROR_OK; } static int arm920t_write_cp15_interpreted(struct target *target, uint32_t cp15_opcode, uint32_t value, uint32_t address) { uint32_t cp15c15 = 0x0; struct arm *armv4_5 = target_to_arm(target); uint32_t regs[2]; struct reg *r = armv4_5->core_cache->reg_list; /* load value, address into R0, R1 */ regs[0] = value; regs[1] = address; arm9tdmi_write_core_regs(target, 0x3, regs); /* read-modify-write CP15 test state register * to enable interpreted access mode */ arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15); jtag_execute_queue(); cp15c15 |= 1; /* set interpret mode */ arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* execute CP15 instruction and ARM store (writing to coprocessor) */ arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1)); /* disable interpreted access mode */ cp15c15 &= ~1U; /* set interpret mode */ arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); #ifdef _DEBUG_INSTRUCTION_EXECUTION_ LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x", cp15_opcode, value, address); #endif if (!is_arm_mode(armv4_5->core_mode)) { LOG_ERROR("not a valid arm core mode - communication failure?"); return ERROR_FAIL; } r[0].dirty = 1; r[1].dirty = 1; return ERROR_OK; } // EXPORTED to FA256 int arm920t_get_ttb(struct target *target, uint32_t *result) { int retval; uint32_t ttb = 0x0; if ((retval = arm920t_read_cp15_interpreted(target, /* FIXME use opcode macro */ 0xeebf0f51, 0x0, &ttb)) != ERROR_OK) return retval; *result = ttb; return ERROR_OK; } // EXPORTED to FA256 int arm920t_disable_mmu_caches(struct target *target, int mmu, int d_u_cache, int i_cache) { uint32_t cp15_control; int retval; /* read cp15 control register */ retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control); if (retval != ERROR_OK) return retval; retval = jtag_execute_queue(); if (retval != ERROR_OK) return retval; if (mmu) cp15_control &= ~0x1U; if (d_u_cache) cp15_control &= ~0x4U; if (i_cache) cp15_control &= ~0x1000U; retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control); return retval; } // EXPORTED to FA256 int arm920t_enable_mmu_caches(struct target *target, int mmu, int d_u_cache, int i_cache) { uint32_t cp15_control; int retval; /* read cp15 control register */ retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control); if (retval != ERROR_OK) return retval; retval = jtag_execute_queue(); if (retval != ERROR_OK) return retval; if (mmu) cp15_control |= 0x1U; if (d_u_cache) cp15_control |= 0x4U; if (i_cache) cp15_control |= 0x1000U; retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control); return retval; } // EXPORTED to FA256 int arm920t_post_debug_entry(struct target *target) { uint32_t cp15c15; struct arm920t_common *arm920t = target_to_arm920(target); int retval; /* examine cp15 control reg */ retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &arm920t->cp15_control_reg); if (retval != ERROR_OK) return retval; retval = jtag_execute_queue(); if (retval != ERROR_OK) return retval; LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg); if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) { uint32_t cache_type_reg; /* identify caches */ retval = arm920t_read_cp15_physical(target, CP15PHYS_CACHETYPE, &cache_type_reg); if (retval != ERROR_OK) return retval; retval = jtag_execute_queue(); if (retval != ERROR_OK) return retval; armv4_5_identify_cache(cache_type_reg, &arm920t->armv4_5_mmu.armv4_5_cache); } arm920t->armv4_5_mmu.mmu_enabled = (arm920t->cp15_control_reg & 0x1U) ? 1 : 0; arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = (arm920t->cp15_control_reg & 0x4U) ? 1 : 0; arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0; /* save i/d fault status and address register */ /* FIXME use opcode macros */ retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr); if (retval != ERROR_OK) return retval; retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr); if (retval != ERROR_OK) return retval; retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far); if (retval != ERROR_OK) return retval; retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far); if (retval != ERROR_OK) return retval; LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32, arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far); if (arm920t->preserve_cache) { /* read-modify-write CP15 test state register * to disable I/D-cache linefills */ retval = arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15); if (retval != ERROR_OK) return retval; retval = jtag_execute_queue(); if (retval != ERROR_OK) return retval; cp15c15 |= 0x600; retval = arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); if (retval != ERROR_OK) return retval; } return ERROR_OK; } // EXPORTED to FA256 void arm920t_pre_restore_context(struct target *target) { uint32_t cp15c15; struct arm920t_common *arm920t = target_to_arm920(target); /* restore i/d fault status and address register */ arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0); arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0); arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0); arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0); /* read-modify-write CP15 test state register * to reenable I/D-cache linefills */ if (arm920t->preserve_cache) { arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15); jtag_execute_queue(); cp15c15 &= ~0x600U; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); } } static const char arm920_not[] = "target is not an ARM920"; static int arm920t_verify_pointer(struct command_context *cmd_ctx, struct arm920t_common *arm920t) { if (arm920t->common_magic != ARM920T_COMMON_MAGIC) { command_print(cmd_ctx, arm920_not); return ERROR_TARGET_INVALID; } return ERROR_OK; } /** Logs summary of ARM920 state for a halted target. */ int arm920t_arch_state(struct target *target) { static const char *state[] = { "disabled", "enabled" }; struct arm920t_common *arm920t = target_to_arm920(target); if (arm920t->common_magic != ARM920T_COMMON_MAGIC) { LOG_ERROR("BUG: %s", arm920_not); return ERROR_TARGET_INVALID; } arm_arch_state(target); LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s", state[arm920t->armv4_5_mmu.mmu_enabled], state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled], state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]); return ERROR_OK; } static int arm920_mmu(struct target *target, int *enabled) { if (target->state != TARGET_HALTED) { LOG_ERROR("%s: target not halted", __func__); return ERROR_TARGET_INVALID; } *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled; return ERROR_OK; } static int arm920_virt2phys(struct target *target, uint32_t virt, uint32_t *phys) { uint32_t cb; struct arm920t_common *arm920t = target_to_arm920(target); uint32_t ret; int retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu, virt, &cb, &ret); if (retval != ERROR_OK) return retval; *phys = ret; return ERROR_OK; } /** Reads a buffer, in the specified word size, with current MMU settings. */ int arm920t_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { int retval; retval = arm7_9_read_memory(target, address, size, count, buffer); return retval; } static int arm920t_read_phys_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct arm920t_common *arm920t = target_to_arm920(target); return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu, address, size, count, buffer); } static int arm920t_write_phys_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer) { struct arm920t_common *arm920t = target_to_arm920(target); return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu, address, size, count, buffer); } /** Writes a buffer, in the specified word size, with current MMU settings. */ int arm920t_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer) { int retval; const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */ struct arm920t_common *arm920t = target_to_arm920(target); /* FIX!!!! this should be cleaned up and made much more general. The * plan is to write up and test on arm920t specifically and * then generalize and clean up afterwards. * * Also it should be moved to the callbacks that handle breakpoints * specifically and not the generic memory write fn's. See XScale code. */ if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) && ((size==2) || (size==4))) { /* special case the handling of single word writes to * bypass MMU, to allow implementation of breakpoints * in memory marked read only * by MMU */ uint32_t cb; uint32_t pa; /* * We need physical address and cb */ retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu, address, &cb, &pa); if (retval != ERROR_OK) return retval; if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) { if (cb & 0x1) { LOG_DEBUG("D-Cache buffered, " "drain write buffer"); /* * Buffered ? * Drain write buffer - MCR p15,0,Rd,c7,c10,4 */ retval = arm920t_write_cp15_interpreted(target, ARMV4_5_MCR(15, 0, 0, 7, 10, 4), 0x0, 0); if (retval != ERROR_OK) return retval; } if (cb == 0x3) { /* * Write back memory ? -> clean cache * * There is no way to clean cache lines using * cp15 scan chain, so copy the full cache * line from cache to physical memory. */ uint8_t data[32]; LOG_DEBUG("D-Cache in 'write back' mode, " "flush cache line"); retval = target_read_memory(target, address & cache_mask, 1, sizeof(data), &data[0]); if (retval != ERROR_OK) return retval; retval = armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu, pa & cache_mask, 1, sizeof(data), &data[0]); if (retval != ERROR_OK) return retval; } /* Cached ? */ if (cb & 0x2) { /* * Cached ? -> Invalidate data cache using MVA * * MCR p15,0,Rd,c7,c6,1 */ LOG_DEBUG("D-Cache enabled, " "invalidate cache line"); retval = arm920t_write_cp15_interpreted(target, ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0, address & cache_mask); if (retval != ERROR_OK) return retval; } } /* write directly to physical memory, * bypassing any read only MMU bits, etc. */ retval = armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu, pa, size, count, buffer); if (retval != ERROR_OK) return retval; } else { if ((retval = arm7_9_write_memory(target, address, size, count, buffer)) != ERROR_OK) return retval; } /* If ICache is enabled, we have to invalidate affected ICache lines * the DCache is forced to write-through, * so we don't have to clean it here */ if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) { if (count <= 1) { /* invalidate ICache single entry with MVA * mcr 15, 0, r0, cr7, cr5, {1} */ LOG_DEBUG("I-Cache enabled, " "invalidating affected I-Cache line"); retval = arm920t_write_cp15_interpreted(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 1), 0x0, address & cache_mask); if (retval != ERROR_OK) return retval; } else { /* invalidate ICache * mcr 15, 0, r0, cr7, cr5, {0} */ retval = arm920t_write_cp15_interpreted(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 0), 0x0, 0x0); if (retval != ERROR_OK) return retval; } } return ERROR_OK; } // EXPORTED to FA256 int arm920t_soft_reset_halt(struct target *target) { int retval = ERROR_OK; struct arm920t_common *arm920t = target_to_arm920(target); struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct arm *armv4_5 = &arm7_9->armv4_5_common; struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT]; if ((retval = target_halt(target)) != ERROR_OK) { return retval; } long long then = timeval_ms(); int timeout; while (!(timeout = ((timeval_ms()-then) > 1000))) { if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0) { embeddedice_read_reg(dbg_stat); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } } else { break; } if (debug_level >= 3) { /* do not eat all CPU, time out after 1 se*/ alive_sleep(100); } else { keep_alive(); } } if (timeout) { LOG_ERROR("Failed to halt CPU after 1 sec"); return ERROR_TARGET_TIMEOUT; } target->state = TARGET_HALTED; /* SVC, ARM state, IRQ and FIQ disabled */ uint32_t cpsr; cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32); cpsr &= ~0xff; cpsr |= 0xd3; arm_set_cpsr(armv4_5, cpsr); armv4_5->cpsr->dirty = 1; /* start fetching from 0x0 */ buf_set_u32(armv4_5->pc->value, 0, 32, 0x0); armv4_5->pc->dirty = 1; armv4_5->pc->valid = 1; arm920t_disable_mmu_caches(target, 1, 1, 1); arm920t->armv4_5_mmu.mmu_enabled = 0; arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0; arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0; return target_call_event_callbacks(target, TARGET_EVENT_HALTED); } /* FIXME remove forward decls */ static int arm920t_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value); static int arm920t_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value); static int arm920t_init_arch_info(struct target *target, struct arm920t_common *arm920t, struct jtag_tap *tap) { struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common; arm7_9->armv4_5_common.mrc = arm920t_mrc; arm7_9->armv4_5_common.mcr = arm920t_mcr; /* initialize arm7/arm9 specific info (including armv4_5) */ arm9tdmi_init_arch_info(target, arm7_9, tap); arm920t->common_magic = ARM920T_COMMON_MAGIC; arm7_9->post_debug_entry = arm920t_post_debug_entry; arm7_9->pre_restore_context = arm920t_pre_restore_context; arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1; arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb; arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory; arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory; arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches; arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches; arm920t->armv4_5_mmu.has_tiny_pages = 1; arm920t->armv4_5_mmu.mmu_enabled = 0; /* disabling linefills leads to lockups, so keep them enabled for now * this doesn't affect correctness, but might affect timing issues, if * important data is evicted from the cache during the debug session * */ arm920t->preserve_cache = 0; /* override hw single-step capability from ARM9TDMI */ arm7_9->has_single_step = 1; return ERROR_OK; } static int arm920t_target_create(struct target *target, Jim_Interp *interp) { struct arm920t_common *arm920t; arm920t = calloc(1,sizeof(struct arm920t_common)); return arm920t_init_arch_info(target, arm920t, target->tap); } COMMAND_HANDLER(arm920t_handle_read_cache_command) { int retval = ERROR_OK; struct target *target = get_current_target(CMD_CTX); struct arm920t_common *arm920t = target_to_arm920(target); struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct arm *armv4_5 = &arm7_9->armv4_5_common; uint32_t cp15c15; uint32_t cp15_ctrl, cp15_ctrl_saved; uint32_t regs[16]; uint32_t *regs_p[16]; uint32_t C15_C_D_Ind, C15_C_I_Ind; int i; FILE *output; int segment, index_t; struct reg *r; retval = arm920t_verify_pointer(CMD_CTX, arm920t); if (retval != ERROR_OK) return retval; if (CMD_ARGC != 1) { command_print(CMD_CTX, "usage: arm920t read_cache <filename>"); return ERROR_OK; } if ((output = fopen(CMD_ARGV[0], "w")) == NULL) { LOG_DEBUG("error opening cache content file"); return ERROR_OK; } for (i = 0; i < 16; i++) regs_p[i] = ®s[i]; /* disable MMU and Caches */ arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } cp15_ctrl_saved = cp15_ctrl; cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED); arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl); /* read CP15 test state register */ arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15); jtag_execute_queue(); /* read DCache content */ fprintf(output, "DCache:\n"); /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */ for (segment = 0; segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets; segment++) { fprintf(output, "\nsegment: %i\n----------", segment); /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* D CAM Read, loads current victim into C15.C.D.Ind */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0)); /* read current victim */ arm920t_read_cp15_physical(target, CP15PHYS_DCACHE_IDX, &C15_C_D_Ind); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); for (index_t = 0; index_t < 64; index_t++) { /* Ra: * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5) | (index_t << 26); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Write DCache victim */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0)); /* Read D RAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,10,2), ARMV4_5_LDMIA(0, 0x1fe, 0, 0)); /* Read D CAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(9, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* read D RAM and CAM content */ arm9tdmi_read_core_regs(target, 0x3fe, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } /* mask LFSR[6] */ regs[9] &= 0xfffffffe; fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8" PRIx32 ", content (%s):\n", segment, index_t, regs[9], (regs[9] & 0x10) ? "valid" : "invalid"); for (i = 1; i < 9; i++) { fprintf(output, "%i: 0x%8.8" PRIx32 "\n", i-1, regs[i]); } } /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Write DCache victim */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); } /* read ICache content */ fprintf(output, "ICache:\n"); /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */ for (segment = 0; segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets; segment++) { fprintf(output, "segment: %i\n----------", segment); /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* I CAM Read, loads current victim into C15.C.I.Ind */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0)); /* read current victim */ arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX, &C15_C_I_Ind); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); for (index_t = 0; index_t < 64; index_t++) { /* Ra: * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5) | (index_t << 26); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Write ICache victim */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0)); /* Read I RAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,9,2), ARMV4_5_LDMIA(0, 0x1fe, 0, 0)); /* Read I CAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(9, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* read I RAM and CAM content */ arm9tdmi_read_core_regs(target, 0x3fe, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } /* mask LFSR[6] */ regs[9] &= 0xfffffffe; fprintf(output, "\nsegment: %i, index: %i, " "CAM: 0x%8.8" PRIx32 ", content (%s):\n", segment, index_t, regs[9], (regs[9] & 0x10) ? "valid" : "invalid"); for (i = 1; i < 9; i++) { fprintf(output, "%i: 0x%8.8" PRIx32 "\n", i-1, regs[i]); } } /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Write ICache victim */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); } /* restore CP15 MMU and Cache settings */ arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved); command_print(CMD_CTX, "cache content successfully output to %s", CMD_ARGV[0]); fclose(output); if (!is_arm_mode(armv4_5->core_mode)) { LOG_ERROR("not a valid arm core mode - communication failure?"); return ERROR_FAIL; } /* force writeback of the valid data */ r = armv4_5->core_cache->reg_list; r[0].dirty = r[0].valid; r[1].dirty = r[1].valid; r[2].dirty = r[2].valid; r[3].dirty = r[3].valid; r[4].dirty = r[4].valid; r[5].dirty = r[5].valid; r[6].dirty = r[6].valid; r[7].dirty = r[7].valid; r = arm_reg_current(armv4_5, 8); r->dirty = r->valid; r = arm_reg_current(armv4_5, 9); r->dirty = r->valid; return ERROR_OK; } COMMAND_HANDLER(arm920t_handle_read_mmu_command) { int retval = ERROR_OK; struct target *target = get_current_target(CMD_CTX); struct arm920t_common *arm920t = target_to_arm920(target); struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct arm *armv4_5 = &arm7_9->armv4_5_common; uint32_t cp15c15; uint32_t cp15_ctrl, cp15_ctrl_saved; uint32_t regs[16]; uint32_t *regs_p[16]; int i; FILE *output; uint32_t Dlockdown, Ilockdown; struct arm920t_tlb_entry d_tlb[64], i_tlb[64]; int victim; struct reg *r; retval = arm920t_verify_pointer(CMD_CTX, arm920t); if (retval != ERROR_OK) return retval; if (CMD_ARGC != 1) { command_print(CMD_CTX, "usage: arm920t read_mmu <filename>"); return ERROR_OK; } if ((output = fopen(CMD_ARGV[0], "w")) == NULL) { LOG_DEBUG("error opening mmu content file"); return ERROR_OK; } for (i = 0; i < 16; i++) regs_p[i] = ®s[i]; /* disable MMU and Caches */ arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } cp15_ctrl_saved = cp15_ctrl; cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED); arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl); /* read CP15 test state register */ arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } /* prepare reading D TLB content * */ /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Read D TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* read D TLB lockdown stored to r1 */ arm9tdmi_read_core_regs(target, 0x2, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } Dlockdown = regs[1]; for (victim = 0; victim < 64; victim += 8) { /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0] * base remains unchanged, victim goes through entries 0 to 63 */ regs[1] = (Dlockdown & 0xfc000000) | (victim << 20); arm9tdmi_write_core_regs(target, 0x2, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Write D TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0)); /* Read D TLB CAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,6,4), ARMV4_5_LDMIA(0, 0x3fc, 0, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* read D TLB CAM content stored to r2-r9 */ arm9tdmi_read_core_regs(target, 0x3fc, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } for (i = 0; i < 8; i++) d_tlb[victim + i].cam = regs[i + 2]; } for (victim = 0; victim < 64; victim++) { /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0] * base remains unchanged, victim goes through entries 0 to 63 */ regs[1] = (Dlockdown & 0xfc000000) | (victim << 20); arm9tdmi_write_core_regs(target, 0x2, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Write D TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0)); /* Read D TLB RAM1 */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0)); /* Read D TLB RAM2 */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* read D TLB RAM content stored to r2 and r3 */ arm9tdmi_read_core_regs(target, 0xc, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } d_tlb[victim].ram1 = regs[2]; d_tlb[victim].ram2 = regs[3]; } /* restore D TLB lockdown */ regs[1] = Dlockdown; arm9tdmi_write_core_regs(target, 0x2, regs); /* Write D TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0)); /* prepare reading I TLB content * */ /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Read I TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* read I TLB lockdown stored to r1 */ arm9tdmi_read_core_regs(target, 0x2, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } Ilockdown = regs[1]; for (victim = 0; victim < 64; victim += 8) { /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0] * base remains unchanged, victim goes through entries 0 to 63 */ regs[1] = (Ilockdown & 0xfc000000) | (victim << 20); arm9tdmi_write_core_regs(target, 0x2, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Write I TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0)); /* Read I TLB CAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,5,4), ARMV4_5_LDMIA(0, 0x3fc, 0, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* read I TLB CAM content stored to r2-r9 */ arm9tdmi_read_core_regs(target, 0x3fc, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } for (i = 0; i < 8; i++) i_tlb[i + victim].cam = regs[i + 2]; } for (victim = 0; victim < 64; victim++) { /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0] * base remains unchanged, victim goes through entries 0 to 63 */ regs[1] = (Dlockdown & 0xfc000000) | (victim << 20); arm9tdmi_write_core_regs(target, 0x2, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* Write I TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0)); /* Read I TLB RAM1 */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0)); /* Read I TLB RAM2 */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15); /* read I TLB RAM content stored to r2 and r3 */ arm9tdmi_read_core_regs(target, 0xc, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } i_tlb[victim].ram1 = regs[2]; i_tlb[victim].ram2 = regs[3]; } /* restore I TLB lockdown */ regs[1] = Ilockdown; arm9tdmi_write_core_regs(target, 0x2, regs); /* Write I TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0)); /* restore CP15 MMU and Cache settings */ arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved); /* output data to file */ fprintf(output, "D TLB content:\n"); for (i = 0; i < 64; i++) { fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " %s\n", i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2, (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)"); } fprintf(output, "\n\nI TLB content:\n"); for (i = 0; i < 64; i++) { fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " %s\n", i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2, (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)"); } command_print(CMD_CTX, "mmu content successfully output to %s", CMD_ARGV[0]); fclose(output); if (!is_arm_mode(armv4_5->core_mode)) { LOG_ERROR("not a valid arm core mode - communication failure?"); return ERROR_FAIL; } /* force writeback of the valid data */ r = armv4_5->core_cache->reg_list; r[0].dirty = r[0].valid; r[1].dirty = r[1].valid; r[2].dirty = r[2].valid; r[3].dirty = r[3].valid; r[4].dirty = r[4].valid; r[5].dirty = r[5].valid; r[6].dirty = r[6].valid; r[7].dirty = r[7].valid; r = arm_reg_current(armv4_5, 8); r->dirty = r->valid; r = arm_reg_current(armv4_5, 9); r->dirty = r->valid; return ERROR_OK; } COMMAND_HANDLER(arm920t_handle_cp15_command) { int retval; struct target *target = get_current_target(CMD_CTX); struct arm920t_common *arm920t = target_to_arm920(target); retval = arm920t_verify_pointer(CMD_CTX, arm920t); if (retval != ERROR_OK) return retval; if (target->state != TARGET_HALTED) { command_print(CMD_CTX, "target must be stopped for " "\"%s\" command", CMD_NAME); return ERROR_OK; } /* one argument, read a register. * two arguments, write it. */ if (CMD_ARGC >= 1) { int address; COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address); if (CMD_ARGC == 1) { uint32_t value; if ((retval = arm920t_read_cp15_physical(target, address, &value)) != ERROR_OK) { command_print(CMD_CTX, "couldn't access reg %i", address); return ERROR_OK; } if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } command_print(CMD_CTX, "%i: %8.8" PRIx32, address, value); } else if (CMD_ARGC == 2) { uint32_t value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); retval = arm920t_write_cp15_physical(target, address, value); if (retval != ERROR_OK) { command_print(CMD_CTX, "couldn't access reg %i", address); /* REVISIT why lie? "return retval"? */ return ERROR_OK; } command_print(CMD_CTX, "%i: %8.8" PRIx32, address, value); } } return ERROR_OK; } COMMAND_HANDLER(arm920t_handle_cp15i_command) { int retval; struct target *target = get_current_target(CMD_CTX); struct arm920t_common *arm920t = target_to_arm920(target); retval = arm920t_verify_pointer(CMD_CTX, arm920t); if (retval != ERROR_OK) return retval; if (target->state != TARGET_HALTED) { command_print(CMD_CTX, "target must be stopped for " "\"%s\" command", CMD_NAME); return ERROR_OK; } /* one argument, read a register. * two arguments, write it. */ if (CMD_ARGC >= 1) { uint32_t opcode; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode); if (CMD_ARGC == 1) { uint32_t value; retval = arm920t_read_cp15_interpreted(target, opcode, 0x0, &value); if (retval != ERROR_OK) { command_print(CMD_CTX, "couldn't execute %8.8" PRIx32, opcode); /* REVISIT why lie? "return retval"? */ return ERROR_OK; } command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32, opcode, value); } else if (CMD_ARGC == 2) { uint32_t value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); retval = arm920t_write_cp15_interpreted(target, opcode, value, 0); if (retval != ERROR_OK) { command_print(CMD_CTX, "couldn't execute %8.8" PRIx32, opcode); /* REVISIT why lie? "return retval"? */ return ERROR_OK; } command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32, opcode, value); } else if (CMD_ARGC == 3) { uint32_t value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); uint32_t address; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address); retval = arm920t_write_cp15_interpreted(target, opcode, value, address); if (retval != ERROR_OK) { command_print(CMD_CTX, "couldn't execute %8.8" PRIx32, opcode); /* REVISIT why lie? "return retval"? */ return ERROR_OK; } command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32 " %8.8" PRIx32, opcode, value, address); } } else { command_print(CMD_CTX, "usage: arm920t cp15i <opcode> [value] [address]"); } return ERROR_OK; } COMMAND_HANDLER(arm920t_handle_cache_info_command) { int retval; struct target *target = get_current_target(CMD_CTX); struct arm920t_common *arm920t = target_to_arm920(target); retval = arm920t_verify_pointer(CMD_CTX, arm920t); if (retval != ERROR_OK) return retval; return armv4_5_handle_cache_info_command(CMD_CTX, &arm920t->armv4_5_mmu.armv4_5_cache); } static int arm920t_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value) { if (cpnum!=15) { LOG_ERROR("Only cp15 is supported"); return ERROR_FAIL; } /* read "to" r0 */ return arm920t_read_cp15_interpreted(target, ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2), 0, value); } static int arm920t_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value) { if (cpnum!=15) { LOG_ERROR("Only cp15 is supported"); return ERROR_FAIL; } /* write "from" r0 */ return arm920t_write_cp15_interpreted(target, ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2), 0, value); } static const struct command_registration arm920t_exec_command_handlers[] = { { .name = "cp15", .handler = arm920t_handle_cp15_command, .mode = COMMAND_EXEC, .help = "display/modify cp15 register", .usage = "regnum [value]", }, { .name = "cp15i", .handler = arm920t_handle_cp15i_command, .mode = COMMAND_EXEC, /* prefer using less error-prone "arm mcr" or "arm mrc" */ .help = "display/modify cp15 register using ARM opcode" " (DEPRECATED)", .usage = "instruction [value [address]]", }, { .name = "cache_info", .handler = arm920t_handle_cache_info_command, .mode = COMMAND_EXEC, .help = "display information about target caches", }, { .name = "read_cache", .handler = arm920t_handle_read_cache_command, .mode = COMMAND_EXEC, .help = "dump I/D cache content to file", .usage = "filename", }, { .name = "read_mmu", .handler = arm920t_handle_read_mmu_command, .mode = COMMAND_EXEC, .help = "dump I/D mmu content to file", .usage = "filename", }, COMMAND_REGISTRATION_DONE }; const struct command_registration arm920t_command_handlers[] = { { .chain = arm9tdmi_command_handlers, }, { .name = "arm920t", .mode = COMMAND_ANY, .help = "arm920t command group", .chain = arm920t_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; /** Holds methods for ARM920 targets. */ struct target_type arm920t_target = { .name = "arm920t", .poll = arm7_9_poll, .arch_state = arm920t_arch_state, .target_request_data = arm7_9_target_request_data, .halt = arm7_9_halt, .resume = arm7_9_resume, .step = arm7_9_step, .assert_reset = arm7_9_assert_reset, .deassert_reset = arm7_9_deassert_reset, .soft_reset_halt = arm920t_soft_reset_halt, .get_gdb_reg_list = arm_get_gdb_reg_list, .read_memory = arm920t_read_memory, .write_memory = arm920t_write_memory, .read_phys_memory = arm920t_read_phys_memory, .write_phys_memory = arm920t_write_phys_memory, .mmu = arm920_mmu, .virt2phys = arm920_virt2phys, .bulk_write_memory = arm7_9_bulk_write_memory, .checksum_memory = arm_checksum_memory, .blank_check_memory = arm_blank_check_memory, .run_algorithm = armv4_5_run_algorithm, .add_breakpoint = arm7_9_add_breakpoint, .remove_breakpoint = arm7_9_remove_breakpoint, .add_watchpoint = arm7_9_add_watchpoint, .remove_watchpoint = arm7_9_remove_watchpoint, .commands = arm920t_command_handlers, .target_create = arm920t_target_create, .init_target = arm9tdmi_init_target, .examine = arm7_9_examine, .check_reset = arm7_9_check_reset, };