/*************************************************************************** * Copyright (C) 2006 by Magnus Lundin * * lundin@mlu.mine.nu * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2009 by Oyvind Harboe * * oyvind.harboe@zylin.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ /*************************************************************************** * * * This file implements support for the ARM Debug Interface v5 (ADI_V5) * * * * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A * * * * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316A * * Cortex-M3(tm) TRM, ARM DDI 0337C * * * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "arm_adi_v5.h" #include "time_support.h" /* * Transaction Mode: * swjdp->trans_mode = TRANS_MODE_COMPOSITE; * Uses Overrun checking mode and does not do actual JTAG send/receive or transaction * result checking until swjdp_end_transaction() * This must be done before using or deallocating any return variables. * swjdp->trans_mode == TRANS_MODE_ATOMIC * All reads and writes to the AHB bus are checked for valid completion, and return values * are immediatley available. */ /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */ /* u32 tar_block_size(u32 address) Return the largest block starting at address that does not cross a tar block size alignment boundary */ static u32 max_tar_block_size(u32 tar_autoincr_block, u32 address) { return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2; } /*************************************************************************** * * * DPACC and APACC scanchain access through JTAG-DP * * * ***************************************************************************/ /* Scan out and in from target ordered uint8_t buffers */ int adi_jtag_dp_scan(swjdp_common_t *swjdp, uint8_t instr, uint8_t reg_addr, uint8_t RnW, uint8_t *outvalue, uint8_t *invalue, uint8_t *ack) { arm_jtag_t *jtag_info = swjdp->jtag_info; scan_field_t fields[2]; uint8_t out_addr_buf; jtag_set_end_state(TAP_IDLE); arm_jtag_set_instr(jtag_info, instr, NULL); /* Add specified number of tck clocks before accessing memory bus */ if ((instr == DAP_IR_APACC) && ((reg_addr == AP_REG_DRW)||((reg_addr&0xF0) == AP_REG_BD0) )&& (swjdp->memaccess_tck != 0)) jtag_add_runtest(swjdp->memaccess_tck, jtag_set_end_state(TAP_IDLE)); fields[0].tap = jtag_info->tap; fields[0].num_bits = 3; buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr >> 1) & 0x6) | (RnW & 0x1)); fields[0].out_value = &out_addr_buf; fields[0].in_value = ack; fields[1].tap = jtag_info->tap; fields[1].num_bits = 32; fields[1].out_value = outvalue; fields[1].in_value = invalue; jtag_add_dr_scan(2, fields, jtag_get_end_state()); return ERROR_OK; } /* Scan out and in from host ordered u32 variables */ int adi_jtag_dp_scan_u32(swjdp_common_t *swjdp, uint8_t instr, uint8_t reg_addr, uint8_t RnW, u32 outvalue, u32 *invalue, uint8_t *ack) { arm_jtag_t *jtag_info = swjdp->jtag_info; scan_field_t fields[2]; uint8_t out_value_buf[4]; uint8_t out_addr_buf; jtag_set_end_state(TAP_IDLE); arm_jtag_set_instr(jtag_info, instr, NULL); /* Add specified number of tck clocks before accessing memory bus */ if ((instr == DAP_IR_APACC) && ((reg_addr == AP_REG_DRW)||((reg_addr&0xF0) == AP_REG_BD0) )&& (swjdp->memaccess_tck != 0)) jtag_add_runtest(swjdp->memaccess_tck, jtag_set_end_state(TAP_IDLE)); fields[0].tap = jtag_info->tap; fields[0].num_bits = 3; buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr >> 1) & 0x6) | (RnW & 0x1)); fields[0].out_value = &out_addr_buf; fields[0].in_value = ack; fields[1].tap = jtag_info->tap; fields[1].num_bits = 32; buf_set_u32(out_value_buf, 0, 32, outvalue); fields[1].out_value = out_value_buf; fields[1].in_value = NULL; if (invalue) { fields[1].in_value = (uint8_t *)invalue; jtag_add_dr_scan(2, fields, jtag_get_end_state()); jtag_add_callback(arm_le_to_h_u32, (uint8_t *)invalue); } else { jtag_add_dr_scan(2, fields, jtag_get_end_state()); } return ERROR_OK; } /* scan_inout_check adds one extra inscan for DPAP_READ commands to read variables */ int scan_inout_check(swjdp_common_t *swjdp, uint8_t instr, uint8_t reg_addr, uint8_t RnW, uint8_t *outvalue, uint8_t *invalue) { adi_jtag_dp_scan(swjdp, instr, reg_addr, RnW, outvalue, NULL, NULL); if ((RnW == DPAP_READ) && (invalue != NULL)) { adi_jtag_dp_scan(swjdp, DAP_IR_DPACC, DP_RDBUFF, DPAP_READ, 0, invalue, &swjdp->ack); } /* In TRANS_MODE_ATOMIC all DAP_IR_APACC transactions wait for ack=OK/FAULT and the check CTRL_STAT */ if ((instr == DAP_IR_APACC) && (swjdp->trans_mode == TRANS_MODE_ATOMIC)) { return swjdp_transaction_endcheck(swjdp); } return ERROR_OK; } int scan_inout_check_u32(swjdp_common_t *swjdp, uint8_t instr, uint8_t reg_addr, uint8_t RnW, u32 outvalue, u32 *invalue) { adi_jtag_dp_scan_u32(swjdp, instr, reg_addr, RnW, outvalue, NULL, NULL); if ((RnW==DPAP_READ) && (invalue != NULL)) { adi_jtag_dp_scan_u32(swjdp, DAP_IR_DPACC, DP_RDBUFF, DPAP_READ, 0, invalue, &swjdp->ack); } /* In TRANS_MODE_ATOMIC all DAP_IR_APACC transactions wait for ack=OK/FAULT and then check CTRL_STAT */ if ((instr == DAP_IR_APACC) && (swjdp->trans_mode == TRANS_MODE_ATOMIC)) { return swjdp_transaction_endcheck(swjdp); } return ERROR_OK; } int swjdp_transaction_endcheck(swjdp_common_t *swjdp) { int retval; u32 ctrlstat; /* too expensive to call keep_alive() here */ #if 0 /* Danger!!!! BROKEN!!!! */ scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat); /* Danger!!!! BROKEN!!!! Why will jtag_execute_queue() fail here???? R956 introduced the check on return value here and now Michael Schwingen reports that this code no longer works.... https://lists.berlios.de/pipermail/openocd-development/2008-September/003107.html */ if ((retval=jtag_execute_queue())!=ERROR_OK) { LOG_ERROR("BUG: Why does this fail the first time????"); } /* Why??? second time it works??? */ #endif scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat); if ((retval=jtag_execute_queue())!=ERROR_OK) return retval; swjdp->ack = swjdp->ack & 0x7; if (swjdp->ack != 2) { long long then=timeval_ms(); while (swjdp->ack != 2) { if (swjdp->ack == 1) { if ((timeval_ms()-then) > 1000) { LOG_WARNING("Timeout (1000ms) waiting for ACK = OK/FAULT in SWJDP transaction"); return ERROR_JTAG_DEVICE_ERROR; } } else { LOG_WARNING("Invalid ACK in SWJDP transaction"); return ERROR_JTAG_DEVICE_ERROR; } scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat); if ((retval=jtag_execute_queue())!=ERROR_OK) return retval; swjdp->ack = swjdp->ack & 0x7; } } else { /* common code path avoids fn to timeval_ms() */ } /* Check for STICKYERR and STICKYORUN */ if (ctrlstat & (SSTICKYORUN | SSTICKYERR)) { LOG_DEBUG("swjdp: CTRL/STAT error 0x%x", ctrlstat); /* Check power to debug regions */ if ((ctrlstat & 0xf0000000) != 0xf0000000) { ahbap_debugport_init(swjdp); } else { u32 mem_ap_csw, mem_ap_tar; /* Print information about last AHBAP access */ LOG_ERROR("AHBAP Cached values: dp_select 0x%x, ap_csw 0x%x, ap_tar 0x%x", swjdp->dp_select_value, swjdp->ap_csw_value, swjdp->ap_tar_value); if (ctrlstat & SSTICKYORUN) LOG_ERROR("SWJ-DP OVERRUN - check clock or reduce jtag speed"); if (ctrlstat & SSTICKYERR) LOG_ERROR("SWJ-DP STICKY ERROR"); /* Clear Sticky Error Bits */ scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_WRITE, swjdp->dp_ctrl_stat | SSTICKYORUN | SSTICKYERR, NULL); scan_inout_check_u32(swjdp, DAP_IR_DPACC, DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat); if ((retval=jtag_execute_queue())!=ERROR_OK) return retval; LOG_DEBUG("swjdp: status 0x%x", ctrlstat); dap_ap_read_reg_u32(swjdp, AP_REG_CSW, &mem_ap_csw); dap_ap_read_reg_u32(swjdp, AP_REG_TAR, &mem_ap_tar); if ((retval=jtag_execute_queue())!=ERROR_OK) return retval; LOG_ERROR("Read MEM_AP_CSW 0x%x, MEM_AP_TAR 0x%x", mem_ap_csw, mem_ap_tar); } if ((retval=jtag_execute_queue())!=ERROR_OK) return retval; return ERROR_JTAG_DEVICE_ERROR; } return ERROR_OK; } /*************************************************************************** * * * DP and MEM-AP register access through APACC and DPACC * * * ***************************************************************************/ int dap_dp_write_reg(swjdp_common_t *swjdp, u32 value, uint8_t reg_addr) { return scan_inout_check_u32(swjdp, DAP_IR_DPACC, reg_addr, DPAP_WRITE, value, NULL); } int dap_dp_read_reg(swjdp_common_t *swjdp, u32 *value, uint8_t reg_addr) { return scan_inout_check_u32(swjdp, DAP_IR_DPACC, reg_addr, DPAP_READ, 0, value); } int dap_ap_select(swjdp_common_t *swjdp,uint8_t apsel) { u32 select; select = (apsel<<24) & 0xFF000000; if (select != swjdp->apsel) { swjdp->apsel = select; /* Switching AP invalidates cached values */ swjdp->dp_select_value = -1; swjdp->ap_csw_value = -1; swjdp->ap_tar_value = -1; } return ERROR_OK; } int dap_dp_bankselect(swjdp_common_t *swjdp,u32 ap_reg) { u32 select; select = (ap_reg & 0x000000F0); if (select != swjdp->dp_select_value) { dap_dp_write_reg(swjdp, select | swjdp->apsel, DP_SELECT); swjdp->dp_select_value = select; } return ERROR_OK; } int dap_ap_write_reg(swjdp_common_t *swjdp, u32 reg_addr, uint8_t* out_value_buf) { dap_dp_bankselect(swjdp, reg_addr); scan_inout_check(swjdp, DAP_IR_APACC, reg_addr, DPAP_WRITE, out_value_buf, NULL); return ERROR_OK; } int dap_ap_read_reg(swjdp_common_t *swjdp, u32 reg_addr, uint8_t *in_value_buf) { dap_dp_bankselect(swjdp, reg_addr); scan_inout_check(swjdp, DAP_IR_APACC, reg_addr, DPAP_READ, 0, in_value_buf); return ERROR_OK; } int dap_ap_write_reg_u32(swjdp_common_t *swjdp, u32 reg_addr, u32 value) { uint8_t out_value_buf[4]; buf_set_u32(out_value_buf, 0, 32, value); dap_dp_bankselect(swjdp, reg_addr); scan_inout_check(swjdp, DAP_IR_APACC, reg_addr, DPAP_WRITE, out_value_buf, NULL); return ERROR_OK; } int dap_ap_read_reg_u32(swjdp_common_t *swjdp, u32 reg_addr, u32 *value) { dap_dp_bankselect(swjdp, reg_addr); scan_inout_check_u32(swjdp, DAP_IR_APACC, reg_addr, DPAP_READ, 0, value); return ERROR_OK; } /*************************************************************************** * * * AHB-AP access to memory and system registers on AHB bus * * * ***************************************************************************/ int dap_setup_accessport(swjdp_common_t *swjdp, u32 csw, u32 tar) { csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT; if (csw != swjdp->ap_csw_value) { /* LOG_DEBUG("swjdp : Set CSW %x",csw); */ dap_ap_write_reg_u32(swjdp, AP_REG_CSW, csw ); swjdp->ap_csw_value = csw; } if (tar != swjdp->ap_tar_value) { /* LOG_DEBUG("swjdp : Set TAR %x",tar); */ dap_ap_write_reg_u32(swjdp, AP_REG_TAR, tar ); swjdp->ap_tar_value = tar; } if (csw & CSW_ADDRINC_MASK) { /* Do not cache TAR value when autoincrementing */ swjdp->ap_tar_value = -1; } return ERROR_OK; } /***************************************************************************** * * * mem_ap_read_u32(swjdp_common_t *swjdp, u32 address, u32 *value) * * * * Read a u32 value from memory or system register * * Functionally equivalent to target_read_u32(target, address, u32 *value), * * but with less overhead * *****************************************************************************/ int mem_ap_read_u32(swjdp_common_t *swjdp, u32 address, u32 *value) { swjdp->trans_mode = TRANS_MODE_COMPOSITE; dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, address & 0xFFFFFFF0); dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (address & 0xC), value ); return ERROR_OK; } int mem_ap_read_atomic_u32(swjdp_common_t *swjdp, u32 address, u32 *value) { mem_ap_read_u32(swjdp, address, value); return swjdp_transaction_endcheck(swjdp); } /***************************************************************************** * * * mem_ap_write_u32(swjdp_common_t *swjdp, u32 address, u32 value) * * * * Write a u32 value to memory or memory mapped register * * * *****************************************************************************/ int mem_ap_write_u32(swjdp_common_t *swjdp, u32 address, u32 value) { swjdp->trans_mode = TRANS_MODE_COMPOSITE; dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, address & 0xFFFFFFF0); dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (address & 0xC), value ); return ERROR_OK; } int mem_ap_write_atomic_u32(swjdp_common_t *swjdp, u32 address, u32 value) { mem_ap_write_u32(swjdp, address, value); return swjdp_transaction_endcheck(swjdp); } /***************************************************************************** * * * mem_ap_write_buf(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) * * * * Write a buffer in target order (little endian) * * * *****************************************************************************/ int mem_ap_write_buf_u32(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK; u32 adr = address; uint8_t* pBuffer = buffer; swjdp->trans_mode = TRANS_MODE_COMPOSITE; count >>= 2; wcount = count; /* if we have an unaligned access - reorder data */ if (adr & 0x3u) { for (writecount = 0; writecount < count; writecount++) { int i; u32 outvalue; memcpy(&outvalue, pBuffer, sizeof(u32)); for (i = 0; i < 4; i++ ) { *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue; outvalue >>= 8; adr++; } pBuffer += sizeof(u32); } } while (wcount > 0) { /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; /* handle unaligned data at 4k boundary */ if (blocksize == 0) blocksize = 1; dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address); for (writecount = 0; writecount < blocksize; writecount++) { dap_ap_write_reg(swjdp, AP_REG_DRW, buffer + 4 * writecount ); } if (swjdp_transaction_endcheck(swjdp) == ERROR_OK) { wcount = wcount - blocksize; address = address + 4 * blocksize; buffer = buffer + 4 * blocksize; } else { errorcount++; } if (errorcount > 1) { LOG_WARNING("Block write error address 0x%x, wcount 0x%x", address, wcount); return ERROR_JTAG_DEVICE_ERROR; } } return retval; } int mem_ap_write_buf_packed_u16(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { int retval = ERROR_OK; int wcount, blocksize, writecount, i; swjdp->trans_mode = TRANS_MODE_COMPOSITE; wcount = count >> 1; while (wcount > 0) { int nbytes; /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; /* handle unaligned data at 4k boundary */ if (blocksize == 0) blocksize = 1; dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address); writecount = blocksize; do { nbytes = MIN((writecount << 1), 4); if (nbytes < 4 ) { if (mem_ap_write_buf_u16(swjdp, buffer, nbytes, address) != ERROR_OK) { LOG_WARNING("Block read error address 0x%x, count 0x%x", address, count); return ERROR_JTAG_DEVICE_ERROR; } address += nbytes >> 1; } else { u32 outvalue; memcpy(&outvalue, buffer, sizeof(u32)); for (i = 0; i < nbytes; i++ ) { *((uint8_t*)buffer + (address & 0x3)) = outvalue; outvalue >>= 8; address++; } memcpy(&outvalue, buffer, sizeof(u32)); dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue); if (swjdp_transaction_endcheck(swjdp) != ERROR_OK) { LOG_WARNING("Block read error address 0x%x, count 0x%x", address, count); return ERROR_JTAG_DEVICE_ERROR; } } buffer += nbytes >> 1; writecount -= nbytes >> 1; } while (writecount); wcount -= blocksize; } return retval; } int mem_ap_write_buf_u16(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { int retval = ERROR_OK; if (count >= 4) return mem_ap_write_buf_packed_u16(swjdp, buffer, count, address); swjdp->trans_mode = TRANS_MODE_COMPOSITE; while (count > 0) { dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address); uint16_t svalue; memcpy(&svalue, buffer, sizeof(uint16_t)); u32 outvalue = (u32)svalue << 8 * (address & 0x3); dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue ); retval = swjdp_transaction_endcheck(swjdp); count -= 2; address += 2; buffer += 2; } return retval; } int mem_ap_write_buf_packed_u8(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { int retval = ERROR_OK; int wcount, blocksize, writecount, i; swjdp->trans_mode = TRANS_MODE_COMPOSITE; wcount = count; while (wcount > 0) { int nbytes; /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address); writecount = blocksize; do { nbytes = MIN(writecount, 4); if (nbytes < 4 ) { if (mem_ap_write_buf_u8(swjdp, buffer, nbytes, address) != ERROR_OK) { LOG_WARNING("Block read error address 0x%x, count 0x%x", address, count); return ERROR_JTAG_DEVICE_ERROR; } address += nbytes; } else { u32 outvalue; memcpy(&outvalue, buffer, sizeof(u32)); for (i = 0; i < nbytes; i++ ) { *((uint8_t*)buffer + (address & 0x3)) = outvalue; outvalue >>= 8; address++; } memcpy(&outvalue, buffer, sizeof(u32)); dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue); if (swjdp_transaction_endcheck(swjdp) != ERROR_OK) { LOG_WARNING("Block read error address 0x%x, count 0x%x", address, count); return ERROR_JTAG_DEVICE_ERROR; } } buffer += nbytes; writecount -= nbytes; } while (writecount); wcount -= blocksize; } return retval; } int mem_ap_write_buf_u8(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { int retval = ERROR_OK; if (count >= 4) return mem_ap_write_buf_packed_u8(swjdp, buffer, count, address); swjdp->trans_mode = TRANS_MODE_COMPOSITE; while (count > 0) { dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address); u32 outvalue = (u32)*buffer << 8 * (address & 0x3); dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue ); retval = swjdp_transaction_endcheck(swjdp); count--; address++; buffer++; } return retval; } /********************************************************************************* * * * mem_ap_read_buf_u32(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) * * * * Read block fast in target order (little endian) into a buffer * * * **********************************************************************************/ int mem_ap_read_buf_u32(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK; u32 adr = address; uint8_t* pBuffer = buffer; swjdp->trans_mode = TRANS_MODE_COMPOSITE; count >>= 2; wcount = count; while (wcount > 0) { /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; /* handle unaligned data at 4k boundary */ if (blocksize == 0) blocksize = 1; dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address); /* Scan out first read */ adi_jtag_dp_scan(swjdp, DAP_IR_APACC, AP_REG_DRW, DPAP_READ, 0, NULL, NULL); for (readcount = 0; readcount < blocksize - 1; readcount++) { /* Scan out read instruction and scan in previous value */ adi_jtag_dp_scan(swjdp, DAP_IR_APACC, AP_REG_DRW, DPAP_READ, 0, buffer + 4 * readcount, &swjdp->ack); } /* Scan in last value */ adi_jtag_dp_scan(swjdp, DAP_IR_DPACC, DP_RDBUFF, DPAP_READ, 0, buffer + 4 * readcount, &swjdp->ack); if (swjdp_transaction_endcheck(swjdp) == ERROR_OK) { wcount = wcount - blocksize; address += 4 * blocksize; buffer += 4 * blocksize; } else { errorcount++; } if (errorcount > 1) { LOG_WARNING("Block read error address 0x%x, count 0x%x", address, count); return ERROR_JTAG_DEVICE_ERROR; } } /* if we have an unaligned access - reorder data */ if (adr & 0x3u) { for (readcount = 0; readcount < count; readcount++) { int i; u32 data; memcpy(&data, pBuffer, sizeof(u32)); for (i = 0; i < 4; i++ ) { *((uint8_t*)pBuffer) = (data >> 8 * (adr & 0x3)); pBuffer++; adr++; } } } return retval; } int mem_ap_read_buf_packed_u16(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { u32 invalue; int retval = ERROR_OK; int wcount, blocksize, readcount, i; swjdp->trans_mode = TRANS_MODE_COMPOSITE; wcount = count >> 1; while (wcount > 0) { int nbytes; /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address); /* handle unaligned data at 4k boundary */ if (blocksize == 0) blocksize = 1; readcount = blocksize; do { dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue ); if (swjdp_transaction_endcheck(swjdp) != ERROR_OK) { LOG_WARNING("Block read error address 0x%x, count 0x%x", address, count); return ERROR_JTAG_DEVICE_ERROR; } nbytes = MIN((readcount << 1), 4); for (i = 0; i < nbytes; i++ ) { *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3)); buffer++; address++; } readcount -= (nbytes >> 1); } while (readcount); wcount -= blocksize; } return retval; } int mem_ap_read_buf_u16(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { u32 invalue, i; int retval = ERROR_OK; if (count >= 4) return mem_ap_read_buf_packed_u16(swjdp, buffer, count, address); swjdp->trans_mode = TRANS_MODE_COMPOSITE; while (count > 0) { dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address); dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue ); retval = swjdp_transaction_endcheck(swjdp); if (address & 0x1) { for (i = 0; i < 2; i++ ) { *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3)); buffer++; address++; } } else { uint16_t svalue = (invalue >> 8 * (address & 0x3)); memcpy(buffer, &svalue, sizeof(uint16_t)); address += 2; buffer += 2; } count -= 2; } return retval; } /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s? * * The solution is to arrange for a large out/in scan in this loop and * and convert data afterwards. */ int mem_ap_read_buf_packed_u8(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { u32 invalue; int retval = ERROR_OK; int wcount, blocksize, readcount, i; swjdp->trans_mode = TRANS_MODE_COMPOSITE; wcount = count; while (wcount > 0) { int nbytes; /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address); readcount = blocksize; do { dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue ); if (swjdp_transaction_endcheck(swjdp) != ERROR_OK) { LOG_WARNING("Block read error address 0x%x, count 0x%x", address, count); return ERROR_JTAG_DEVICE_ERROR; } nbytes = MIN(readcount, 4); for (i = 0; i < nbytes; i++ ) { *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3)); buffer++; address++; } readcount -= nbytes; } while (readcount); wcount -= blocksize; } return retval; } int mem_ap_read_buf_u8(swjdp_common_t *swjdp, uint8_t *buffer, int count, u32 address) { u32 invalue; int retval = ERROR_OK; if (count >= 4) return mem_ap_read_buf_packed_u8(swjdp, buffer, count, address); swjdp->trans_mode = TRANS_MODE_COMPOSITE; while (count > 0) { dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address); dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue ); retval = swjdp_transaction_endcheck(swjdp); *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3)); count--; address++; buffer++; } return retval; } int ahbap_debugport_init(swjdp_common_t *swjdp) { u32 idreg, romaddr, dummy; u32 ctrlstat; int cnt = 0; int retval; LOG_DEBUG(" "); swjdp->apsel = 0; swjdp->ap_csw_value = -1; swjdp->ap_tar_value = -1; swjdp->trans_mode = TRANS_MODE_ATOMIC; dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT); dap_dp_write_reg(swjdp, SSTICKYERR, DP_CTRL_STAT); dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT); swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ; dap_dp_write_reg(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT); dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT); if ((retval=jtag_execute_queue())!=ERROR_OK) return retval; /* Check that we have debug power domains activated */ while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) { LOG_DEBUG("swjdp: wait CDBGPWRUPACK"); dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT); if ((retval=jtag_execute_queue())!=ERROR_OK) return retval; alive_sleep(10); } while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) { LOG_DEBUG("swjdp: wait CSYSPWRUPACK"); dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT); if ((retval=jtag_execute_queue())!=ERROR_OK) return retval; alive_sleep(10); } dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT); /* With debug power on we can activate OVERRUN checking */ swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT; dap_dp_write_reg(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT); dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT); dap_ap_read_reg_u32(swjdp, 0xFC, &idreg); dap_ap_read_reg_u32(swjdp, 0xF8, &romaddr); LOG_DEBUG("AHB-AP ID Register 0x%x, Debug ROM Address 0x%x", idreg, romaddr); return ERROR_OK; } char * class_description[16] ={ "Reserved", "ROM table","Reserved","Reserved","Reserved","Reserved","Reserved","Reserved","Reserved", "CoreSight component","Reserved","Peripheral Test Block","Reserved","DESS","Generic IP component","Non standard layout"}; int dap_info_command(struct command_context_s *cmd_ctx, swjdp_common_t *swjdp, int apsel) { u32 dbgbase,apid; int romtable_present = 0; uint8_t mem_ap; u32 apselold; apselold = swjdp->apsel; dap_ap_select(swjdp, apsel); dap_ap_read_reg_u32(swjdp, 0xF8, &dbgbase); dap_ap_read_reg_u32(swjdp, 0xFC, &apid); swjdp_transaction_endcheck(swjdp); /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */ mem_ap = ((apid&0x10000)&&((apid&0x0F)!=0)); command_print(cmd_ctx, "ap identification register 0x%8.8x", apid); if (apid) { switch (apid&0x0F) { case 0: command_print(cmd_ctx, "\tType is jtag-ap"); break; case 1: command_print(cmd_ctx, "\tType is mem-ap AHB"); break; case 2: command_print(cmd_ctx, "\tType is mem-ap APB"); break; default: command_print(cmd_ctx, "\tUnknown AP-type"); break; } command_print(cmd_ctx, "ap debugbase 0x%8.8x", dbgbase); } else { command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel); } romtable_present = ((mem_ap)&&(dbgbase != 0xFFFFFFFF)); if (romtable_present) { u32 cid0,cid1,cid2,cid3,memtype,romentry; uint16_t entry_offset; /* bit 16 of apid indicates a memory access port */ if (dbgbase&0x02) { command_print(cmd_ctx, "\tValid ROM table present"); } else { command_print(cmd_ctx, "\tROM table in legacy format" ); } /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */ mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000)|0xFF0, &cid0); mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000)|0xFF4, &cid1); mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000)|0xFF8, &cid2); mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000)|0xFFC, &cid3); mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000)|0xFCC, &memtype); swjdp_transaction_endcheck(swjdp); command_print(cmd_ctx, "\tCID3 0x%x, CID2 0x%x, CID1 0x%x, CID0, 0x%x",cid3,cid2,cid1,cid0); if (memtype&0x01) { command_print(cmd_ctx, "\tMEMTYPE system memory present on bus"); } else { command_print(cmd_ctx, "\tMEMTYPE system memory not present. Dedicated debug bus" ); } /* Now we read ROM table entries from dbgbase&0xFFFFF000)|0x000 until we get 0x00000000 */ entry_offset = 0; do { mem_ap_read_atomic_u32(swjdp, (dbgbase&0xFFFFF000)|entry_offset, &romentry); command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%x",entry_offset,romentry); if (romentry&0x01) { u32 c_cid0,c_cid1,c_cid2,c_cid3,c_pid0,c_pid1,c_pid2,c_pid3,c_pid4,component_start; u32 component_base = (u32)((dbgbase&0xFFFFF000)+(int)(romentry&0xFFFFF000)); mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000)|0xFE0, &c_pid0); mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000)|0xFE4, &c_pid1); mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000)|0xFE8, &c_pid2); mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000)|0xFEC, &c_pid3); mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000)|0xFD0, &c_pid4); mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000)|0xFF0, &c_cid0); mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000)|0xFF4, &c_cid1); mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000)|0xFF8, &c_cid2); mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000)|0xFFC, &c_cid3); component_start = component_base - 0x1000*(c_pid4>>4); command_print(cmd_ctx, "\t\tComponent base address 0x%x, pid4 0x%x, start address 0x%x",component_base,c_pid4,component_start); command_print(cmd_ctx, "\t\tComponent cid1 0x%x, class is %s",c_cid1,class_description[(c_cid1>>4)&0xF]); /* Se ARM DDI 0314 C Table 2.2 */ command_print(cmd_ctx, "\t\tCID3 0x%x, CID2 0x%x, CID1 0x%x, CID0, 0x%x",c_cid3,c_cid2,c_cid1,c_cid0); command_print(cmd_ctx, "\t\tPID3 0x%x, PID2 0x%x, PID1 0x%x, PID0, 0x%x",c_pid3,c_pid2,c_pid1,c_pid0); /* For CoreSight components, (c_cid1>>4)&0xF==9 , we also read 0xFC8 DevId and 0xFCC DevType */ } else { if (romentry) command_print(cmd_ctx, "\t\tComponent not present"); else command_print(cmd_ctx, "\t\tEnd of ROM table"); } entry_offset += 4; } while (romentry>0); } else { command_print(cmd_ctx, "\tNo ROM table present"); } dap_ap_select(swjdp, apselold); return ERROR_OK; }