/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2006 by Magnus Lundin * * lundin@mlu.mine.nu * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2009 by Dirk Behme * * dirk.behme@gmail.com - copy from cortex_m3 * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * * * Cortex-A8(tm) TRM, ARM DDI 0344H * * * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "cortex_a8.h" #include "armv7a.h" #include "armv4_5.h" #include "target_request.h" #include "target_type.h" static int cortex_a8_poll(target_t *target); static int cortex_a8_debug_entry(target_t *target); static int cortex_a8_restore_context(target_t *target); static int cortex_a8_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint, uint8_t matchmode); static int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint); static int cortex_a8_dap_read_coreregister_u32(target_t *target, uint32_t *value, int regnum); static int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum); /* * FIXME do topology discovery using the ROM; don't * assume this is an OMAP3. */ #define swjdp_memoryap 0 #define swjdp_debugap 1 #define OMAP3530_DEBUG_BASE 0x54011000 /* * Cortex-A8 Basic debug access, very low level assumes state is saved */ static int cortex_a8_init_debug_access(target_t *target) { struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; int retval; uint32_t dummy; LOG_DEBUG(" "); /* Unlocking the debug registers for modification */ /* The debugport might be uninitialised so try twice */ retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55); if (retval != ERROR_OK) mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55); /* Clear Sticky Power Down status Bit in PRSR to enable access to the registers in the Core Power Domain */ retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy); /* Enabling of instruction execution in debug mode is done in debug_entry code */ /* Resync breakpoint registers */ /* Since this is likley called from init or reset, update targtet state information*/ cortex_a8_poll(target); return retval; } int cortex_a8_exec_opcode(target_t *target, uint32_t opcode) { uint32_t dscr; int retval; struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode); do { retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); if (retval != ERROR_OK) { LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode); return retval; } } while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */ mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode); do { retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); if (retval != ERROR_OK) { LOG_ERROR("Could not read DSCR register"); return retval; } } while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */ return retval; } /************************************************************************** Read core register with very few exec_opcode, fast but needs work_area. This can cause problems with MMU active. **************************************************************************/ static int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address, uint32_t * regfile) { int retval = ERROR_OK; struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; cortex_a8_dap_read_coreregister_u32(target, regfile, 0); cortex_a8_dap_write_coreregister_u32(target, address, 0); cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0)); dap_ap_select(swjdp, swjdp_memoryap); mem_ap_read_buf_u32(swjdp, (uint8_t *)(®file[1]), 4*15, address); dap_ap_select(swjdp, swjdp_debugap); return retval; } static int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2) { int retval; struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2)); /* Move R0 to DTRTX */ cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0)); /* Read DCCTX */ retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DTRTX, value); return retval; } static int cortex_a8_write_cp(target_t *target, uint32_t value, uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2) { int retval; uint32_t dscr; struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value); /* Check that DCCRX is not full */ retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); if (dscr & (1 << DSCR_DTR_RX_FULL)) { LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr); /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */ cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0)); } retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_DTRRX, value); /* Move DTRRX to r0 */ cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0)); cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2)); return retval; } static int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value) { return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2); } static int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value) { return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2); } static int cortex_a8_mrc(target_t *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value) { if (cpnum!=15) { LOG_ERROR("Only cp15 is supported"); return ERROR_FAIL; } return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value); } static int cortex_a8_mcr(target_t *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value) { if (cpnum!=15) { LOG_ERROR("Only cp15 is supported"); return ERROR_FAIL; } return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value); } static int cortex_a8_dap_read_coreregister_u32(target_t *target, uint32_t *value, int regnum) { int retval = ERROR_OK; uint8_t reg = regnum&0xFF; uint32_t dscr; struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; if (reg > 16) return retval; if (reg < 15) { /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0, 0xEE000E15 */ cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0)); } else if (reg == 15) { cortex_a8_exec_opcode(target, 0xE1A0000F); cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0)); } else if (reg == 16) { cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0)); cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0)); } /* Read DTRRTX */ do { retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); } while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */ retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DTRTX, value); return retval; } static int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum) { int retval = ERROR_OK; uint8_t Rd = regnum&0xFF; uint32_t dscr; struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value); /* Check that DCCRX is not full */ retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); if (dscr & (1 << DSCR_DTR_RX_FULL)) { LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr); /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */ cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0)); } if (Rd > 16) return retval; /* Write to DCCRX */ retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_DTRRX, value); if (Rd < 15) { /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0, 0xEE000E15 */ cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0)); } else if (Rd == 15) { cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0)); cortex_a8_exec_opcode(target, 0xE1A0F000); } else if (Rd == 16) { cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0)); cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0)); /* Execute a PrefetchFlush instruction through the ITR. */ cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4)); } return retval; } /* Write to memory mapped registers directly with no cache or mmu handling */ static int cortex_a8_dap_write_memap_register_u32(target_t *target, uint32_t address, uint32_t value) { int retval; struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; retval = mem_ap_write_atomic_u32(swjdp, address, value); return retval; } /* * Cortex-A8 Run control */ static int cortex_a8_poll(target_t *target) { int retval = ERROR_OK; uint32_t dscr; struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target); struct armv7a_common *armv7a = &cortex_a8->armv7a_common; struct swjdp_common *swjdp = &armv7a->swjdp_info; enum target_state prev_target_state = target->state; uint8_t saved_apsel = dap_ap_get_select(swjdp); dap_ap_select(swjdp, swjdp_debugap); retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); if (retval != ERROR_OK) { dap_ap_select(swjdp, saved_apsel); return retval; } cortex_a8->cpudbg_dscr = dscr; if ((dscr & 0x3) == 0x3) { if (prev_target_state != TARGET_HALTED) { /* We have a halting debug event */ LOG_DEBUG("Target halted"); target->state = TARGET_HALTED; if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) { retval = cortex_a8_debug_entry(target); if (retval != ERROR_OK) return retval; target_call_event_callbacks(target, TARGET_EVENT_HALTED); } if (prev_target_state == TARGET_DEBUG_RUNNING) { LOG_DEBUG(" "); retval = cortex_a8_debug_entry(target); if (retval != ERROR_OK) return retval; target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED); } } } else if ((dscr & 0x3) == 0x2) { target->state = TARGET_RUNNING; } else { LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr); target->state = TARGET_UNKNOWN; } dap_ap_select(swjdp, saved_apsel); return retval; } static int cortex_a8_halt(target_t *target) { int retval = ERROR_OK; uint32_t dscr; struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; uint8_t saved_apsel = dap_ap_get_select(swjdp); dap_ap_select(swjdp, swjdp_debugap); /* * Tell the core to be halted by writing DRCR with 0x1 * and then wait for the core to be halted. */ retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x1); /* * enter halting debug mode */ mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE)); if (retval != ERROR_OK) goto out; do { mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0); target->debug_reason = DBG_REASON_DBGRQ; out: dap_ap_select(swjdp, saved_apsel); return retval; } static int cortex_a8_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution) { struct armv7a_common *armv7a = target_to_armv7a(target); struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common; struct swjdp_common *swjdp = &armv7a->swjdp_info; // breakpoint_t *breakpoint = NULL; uint32_t resume_pc, dscr; uint8_t saved_apsel = dap_ap_get_select(swjdp); dap_ap_select(swjdp, swjdp_debugap); if (!debug_execution) { target_free_all_working_areas(target); // cortex_m3_enable_breakpoints(target); // cortex_m3_enable_watchpoints(target); } #if 0 if (debug_execution) { /* Disable interrupts */ /* We disable interrupts in the PRIMASK register instead of * masking with C_MASKINTS, * This is probably the same issue as Cortex-M3 Errata 377493: * C_MASKINTS in parallel with disabled interrupts can cause * local faults to not be taken. */ buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1); armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1; armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1; /* Make sure we are in Thumb mode */ buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32, buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24)); armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1; armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1; } #endif /* current = 1: continue on current pc, otherwise continue at
*/ resume_pc = buf_get_u32( ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).value, 0, 32); if (!current) resume_pc = address; /* Make sure that the Armv7 gdb thumb fixups does not * kill the return address */ if (armv7a->core_state == ARMV7A_STATE_ARM) { resume_pc &= 0xFFFFFFFC; } /* When the return address is loaded into PC * bit 0 must be 1 to stay in Thumb state */ if (armv7a->core_state == ARMV7A_STATE_THUMB) { resume_pc |= 0x1; } LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc); buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).value, 0, 32, resume_pc); ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = 1; ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid = 1; cortex_a8_restore_context(target); // arm7_9_restore_context(target); TODO Context is currently NOT Properly restored #if 0 /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) { /* Single step past breakpoint at current address */ if ((breakpoint = breakpoint_find(target, resume_pc))) { LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address); cortex_m3_unset_breakpoint(target, breakpoint); cortex_m3_single_step_core(target); cortex_m3_set_breakpoint(target, breakpoint); } } #endif /* Restart core and wait for it to be started */ mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2); do { mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0); target->debug_reason = DBG_REASON_NOTHALTED; target->state = TARGET_RUNNING; /* registers are now invalid */ armv4_5_invalidate_core_regs(target); if (!debug_execution) { target->state = TARGET_RUNNING; target_call_event_callbacks(target, TARGET_EVENT_RESUMED); LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc); } else { target->state = TARGET_DEBUG_RUNNING; target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED); LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc); } dap_ap_select(swjdp, saved_apsel); return ERROR_OK; } static int cortex_a8_debug_entry(target_t *target) { int i; uint32_t regfile[16], pc, cpsr, dscr; int retval = ERROR_OK; struct working_area *regfile_working_area = NULL; struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target); struct armv7a_common *armv7a = target_to_armv7a(target); struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common; struct swjdp_common *swjdp = &armv7a->swjdp_info; LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr); /* Enable the ITR execution once we are in debug mode */ mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr); dscr |= (1 << DSCR_EXT_INT_EN); retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, dscr); /* Examine debug reason */ switch ((cortex_a8->cpudbg_dscr >> 2)&0xF) { case 0: case 4: target->debug_reason = DBG_REASON_DBGRQ; break; case 1: case 3: target->debug_reason = DBG_REASON_BREAKPOINT; break; case 10: target->debug_reason = DBG_REASON_WATCHPOINT; break; default: target->debug_reason = DBG_REASON_UNDEFINED; break; } /* Examine target state and mode */ if (cortex_a8->fast_reg_read) target_alloc_working_area(target, 64, ®file_working_area); /* First load register acessible through core debug port*/ if (!regfile_working_area) { for (i = 0; i <= 15; i++) cortex_a8_dap_read_coreregister_u32(target, ®file[i], i); } else { dap_ap_select(swjdp, swjdp_memoryap); cortex_a8_read_regs_through_mem(target, regfile_working_area->address, regfile); dap_ap_select(swjdp, swjdp_memoryap); target_free_working_area(target, regfile_working_area); } cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16); pc = regfile[15]; dap_ap_select(swjdp, swjdp_debugap); LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr); armv4_5->core_mode = cpsr & 0x1F; armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM; for (i = 0; i <= ARM_PC; i++) { buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, regfile[i]); ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1; ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0; } buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, cpsr); ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1; ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0; /* Fixup PC Resume Address */ if (armv7a->core_state == ARMV7A_STATE_THUMB) { // T bit set for Thumb or ThumbEE state regfile[ARM_PC] -= 4; } else { // ARM state regfile[ARM_PC] -= 8; } buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, ARM_PC).value, 0, 32, regfile[ARM_PC]); ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0) .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid; ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15) .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid; #if 0 /* TODO, Move this */ uint32_t cp15_control_register, cp15_cacr, cp15_nacr; cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0); LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register); cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2); LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr); cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2); LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr); #endif /* Are we in an exception handler */ // armv4_5->exception_number = 0; if (armv7a->post_debug_entry) armv7a->post_debug_entry(target); return retval; } static void cortex_a8_post_debug_entry(target_t *target) { struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target); struct armv7a_common *armv7a = &cortex_a8->armv7a_common; // cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0); /* examine cp15 control reg */ armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg); jtag_execute_queue(); LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg); if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1) { uint32_t cache_type_reg; /* identify caches */ armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg); jtag_execute_queue(); /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */ armv4_5_identify_cache(cache_type_reg, &armv7a->armv4_5_mmu.armv4_5_cache); } armv7a->armv4_5_mmu.mmu_enabled = (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0; armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0; armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled = (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0; } static int cortex_a8_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints) { struct armv7a_common *armv7a = target_to_armv7a(target); struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common; breakpoint_t *breakpoint = NULL; breakpoint_t stepbreakpoint; int timeout = 100; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* current = 1: continue on current pc, otherwise continue at */ if (!current) { buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, ARM_PC).value, 0, 32, address); } else { address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, ARM_PC).value, 0, 32); } /* The front-end may request us not to handle breakpoints. * But since Cortex-A8 uses breakpoint for single step, * we MUST handle breakpoints. */ handle_breakpoints = 1; if (handle_breakpoints) { breakpoint = breakpoint_find(target, buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).value, 0, 32)); if (breakpoint) cortex_a8_unset_breakpoint(target, breakpoint); } /* Setup single step breakpoint */ stepbreakpoint.address = address; stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4; stepbreakpoint.type = BKPT_HARD; stepbreakpoint.set = 0; /* Break on IVA mismatch */ cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04); target->debug_reason = DBG_REASON_SINGLESTEP; cortex_a8_resume(target, 1, address, 0, 0); while (target->state != TARGET_HALTED) { cortex_a8_poll(target); if (--timeout == 0) { LOG_WARNING("timeout waiting for target halt"); break; } } cortex_a8_unset_breakpoint(target, &stepbreakpoint); if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT; if (breakpoint) cortex_a8_set_breakpoint(target, breakpoint, 0); if (target->state != TARGET_HALTED) LOG_DEBUG("target stepped"); return ERROR_OK; } static int cortex_a8_restore_context(target_t *target) { int i; uint32_t value; struct armv7a_common *armv7a = target_to_armv7a(target); struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common; LOG_DEBUG(" "); if (armv7a->pre_restore_context) armv7a->pre_restore_context(target); for (i = 15; i >= 0; i--) { if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty) { value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32); /* TODO Check return values */ cortex_a8_dap_write_coreregister_u32(target, value, i); } } if (armv7a->post_restore_context) armv7a->post_restore_context(target); return ERROR_OK; } #if 0 /* * Cortex-A8 Core register functions */ static int cortex_a8_load_core_reg_u32(struct target_s *target, int num, armv4_5_mode_t mode, uint32_t * value) { int retval; struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); if ((num <= ARM_CPSR)) { /* read a normal core register */ retval = cortex_a8_dap_read_coreregister_u32(target, value, num); if (retval != ERROR_OK) { LOG_ERROR("JTAG failure %i", retval); return ERROR_JTAG_DEVICE_ERROR; } LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value); } else { return ERROR_INVALID_ARGUMENTS; } /* Register other than r0 - r14 uses r0 for access */ if (num > 14) ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid; ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid; return ERROR_OK; } static int cortex_a8_store_core_reg_u32(struct target_s *target, int num, armv4_5_mode_t mode, uint32_t value) { int retval; // uint32_t reg; struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); #ifdef ARMV7_GDB_HACKS /* If the LR register is being modified, make sure it will put us * in "thumb" mode, or an INVSTATE exception will occur. This is a * hack to deal with the fact that gdb will sometimes "forge" * return addresses, and doesn't set the LSB correctly (i.e., when * printing expressions containing function calls, it sets LR=0.) */ if (num == 14) value |= 0x01; #endif if ((num <= ARM_CPSR)) { retval = cortex_a8_dap_write_coreregister_u32(target, value, num); if (retval != ERROR_OK) { LOG_ERROR("JTAG failure %i", retval); ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, num).dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, num).valid; return ERROR_JTAG_DEVICE_ERROR; } LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value); } else { return ERROR_INVALID_ARGUMENTS; } return ERROR_OK; } #endif static int cortex_a8_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode) { uint32_t value; int retval; struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); cortex_a8_dap_read_coreregister_u32(target, &value, num); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1; ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0; buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value); return ERROR_OK; } int cortex_a8_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, uint32_t value) { int retval; struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); cortex_a8_dap_write_coreregister_u32(target, value, num); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1; ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0; return ERROR_OK; } /* * Cortex-A8 Breakpoint and watchpoint fuctions */ /* Setup hardware Breakpoint Register Pair */ static int cortex_a8_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint, uint8_t matchmode) { int retval; int brp_i=0; uint32_t control; uint8_t byte_addr_select = 0x0F; struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target); struct armv7a_common *armv7a = &cortex_a8->armv7a_common; cortex_a8_brp_t * brp_list = cortex_a8->brp_list; if (breakpoint->set) { LOG_WARNING("breakpoint already set"); return ERROR_OK; } if (breakpoint->type == BKPT_HARD) { while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num)) brp_i++ ; if (brp_i >= cortex_a8->brp_num) { LOG_ERROR("ERROR Can not find free Breakpoint Register Pair"); exit(-1); } breakpoint->set = brp_i + 1; if (breakpoint->length == 2) { byte_addr_select = (3 << (breakpoint->address & 0x02)); } control = ((matchmode & 0x7) << 20) | (byte_addr_select << 5) | (3 << 1) | 1; brp_list[brp_i].used = 1; brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC); brp_list[brp_i].control = control; cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn, brp_list[brp_i].value); cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn, brp_list[brp_i].control); LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i, brp_list[brp_i].control, brp_list[brp_i].value); } else if (breakpoint->type == BKPT_SOFT) { uint8_t code[4]; if (breakpoint->length == 2) { buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11)); } else { buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11)); } retval = target->type->read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr); if (retval != ERROR_OK) return retval; retval = target->type->write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code); if (retval != ERROR_OK) return retval; breakpoint->set = 0x11; /* Any nice value but 0 */ } return ERROR_OK; } static int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { int retval; struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target); struct armv7a_common *armv7a = &cortex_a8->armv7a_common; cortex_a8_brp_t * brp_list = cortex_a8->brp_list; if (!breakpoint->set) { LOG_WARNING("breakpoint not set"); return ERROR_OK; } if (breakpoint->type == BKPT_HARD) { int brp_i = breakpoint->set - 1; if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num)) { LOG_DEBUG("Invalid BRP number in breakpoint"); return ERROR_OK; } LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i, brp_list[brp_i].control, brp_list[brp_i].value); brp_list[brp_i].used = 0; brp_list[brp_i].value = 0; brp_list[brp_i].control = 0; cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn, brp_list[brp_i].control); cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn, brp_list[brp_i].value); } else { /* restore original instruction (kept in target endianness) */ if (breakpoint->length == 4) { retval = target->type->write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr); if (retval != ERROR_OK) return retval; } else { retval = target->type->write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr); if (retval != ERROR_OK) return retval; } } breakpoint->set = 0; return ERROR_OK; } int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target); if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) { LOG_INFO("no hardware breakpoint available"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if (breakpoint->type == BKPT_HARD) cortex_a8->brp_num_available--; cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */ return ERROR_OK; } static int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target); #if 0 /* It is perfectly possible to remove brakpoints while the taget is running */ if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } #endif if (breakpoint->set) { cortex_a8_unset_breakpoint(target, breakpoint); if (breakpoint->type == BKPT_HARD) cortex_a8->brp_num_available++ ; } return ERROR_OK; } /* * Cortex-A8 Reset fuctions */ static int cortex_a8_assert_reset(target_t *target) { LOG_DEBUG(" "); /* registers are now invalid */ armv4_5_invalidate_core_regs(target); target->state = TARGET_RESET; return ERROR_OK; } static int cortex_a8_deassert_reset(target_t *target) { LOG_DEBUG(" "); if (target->reset_halt) { int retval; if ((retval = target_halt(target)) != ERROR_OK) return retval; } return ERROR_OK; } /* * Cortex-A8 Memory access * * This is same Cortex M3 but we must also use the correct * ap number for every access. */ static int cortex_a8_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; int retval = ERROR_OK; /* sanitize arguments */ if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer)) return ERROR_INVALID_ARGUMENTS; /* cortex_a8 handles unaligned memory access */ // ??? dap_ap_select(swjdp, swjdp_memoryap); switch (size) { case 4: retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address); break; case 2: retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address); break; case 1: retval = mem_ap_read_buf_u8(swjdp, buffer, count, address); break; default: LOG_ERROR("BUG: we shouldn't get here"); exit(-1); } return retval; } int cortex_a8_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; int retval; /* sanitize arguments */ if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer)) return ERROR_INVALID_ARGUMENTS; // ??? dap_ap_select(swjdp, swjdp_memoryap); switch (size) { case 4: retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address); break; case 2: retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address); break; case 1: retval = mem_ap_write_buf_u8(swjdp, buffer, count, address); break; default: LOG_ERROR("BUG: we shouldn't get here"); exit(-1); } if (target->state == TARGET_HALTED) { /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */ /* invalidate I-Cache */ if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled) { /* Invalidate ICache single entry with MVA, repeat this for all cache lines in the address range, Cortex-A8 has fixed 64 byte line length */ /* Invalidate Cache single entry with MVA to PoU */ for (uint32_t cacheline=address; cachelinewrite_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */ } /* invalidate D-Cache */ if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) { /* Invalidate Cache single entry with MVA to PoC */ for (uint32_t cacheline=address; cachelinewrite_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */ } } return retval; } static int cortex_a8_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer) { return cortex_a8_write_memory(target, address, 4, count, buffer); } static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl) { #if 0 u16 dcrdr; mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR); *ctrl = (uint8_t)dcrdr; *value = (uint8_t)(dcrdr >> 8); LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl); /* write ack back to software dcc register * signify we have read data */ if (dcrdr & (1 << 0)) { dcrdr = 0; mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR); } #endif return ERROR_OK; } static int cortex_a8_handle_target_request(void *priv) { target_t *target = priv; if (!target->type->examined) return ERROR_OK; struct armv7a_common *armv7a = target_to_armv7a(target); struct swjdp_common *swjdp = &armv7a->swjdp_info; if (!target->dbg_msg_enabled) return ERROR_OK; if (target->state == TARGET_RUNNING) { uint8_t data = 0; uint8_t ctrl = 0; cortex_a8_dcc_read(swjdp, &data, &ctrl); /* check if we have data */ if (ctrl & (1 << 0)) { uint32_t request; /* we assume target is quick enough */ request = data; cortex_a8_dcc_read(swjdp, &data, &ctrl); request |= (data << 8); cortex_a8_dcc_read(swjdp, &data, &ctrl); request |= (data << 16); cortex_a8_dcc_read(swjdp, &data, &ctrl); request |= (data << 24); target_request(target, request); } } return ERROR_OK; } /* * Cortex-A8 target information and configuration */ static int cortex_a8_examine(struct target_s *target) { struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target); struct armv7a_common *armv7a = &cortex_a8->armv7a_common; struct swjdp_common *swjdp = &armv7a->swjdp_info; int i; int retval = ERROR_OK; uint32_t didr, ctypr, ttypr, cpuid; LOG_DEBUG("TODO"); /* Here we shall insert a proper ROM Table scan */ armv7a->debug_base = OMAP3530_DEBUG_BASE; /* We do one extra read to ensure DAP is configured, * we call ahbap_debugport_init(swjdp) instead */ ahbap_debugport_init(swjdp); mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid); if ((retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK) { LOG_DEBUG("Examine failed"); return retval; } if ((retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK) { LOG_DEBUG("Examine failed"); return retval; } if ((retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK) { LOG_DEBUG("Examine failed"); return retval; } if ((retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK) { LOG_DEBUG("Examine failed"); return retval; } LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid); LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr); LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr); LOG_DEBUG("didr = 0x%08" PRIx32, didr); /* Setup Breakpoint Register Pairs */ cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1; cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1; cortex_a8->brp_num_available = cortex_a8->brp_num; cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t)); // cortex_a8->brb_enabled = ????; for (i = 0; i < cortex_a8->brp_num; i++) { cortex_a8->brp_list[i].used = 0; if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context)) cortex_a8->brp_list[i].type = BRP_NORMAL; else cortex_a8->brp_list[i].type = BRP_CONTEXT; cortex_a8->brp_list[i].value = 0; cortex_a8->brp_list[i].control = 0; cortex_a8->brp_list[i].BRPn = i; } /* Setup Watchpoint Register Pairs */ cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1; cortex_a8->wrp_num_available = cortex_a8->wrp_num; cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t)); for (i = 0; i < cortex_a8->wrp_num; i++) { cortex_a8->wrp_list[i].used = 0; cortex_a8->wrp_list[i].type = 0; cortex_a8->wrp_list[i].value = 0; cortex_a8->wrp_list[i].control = 0; cortex_a8->wrp_list[i].WRPn = i; } LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs", cortex_a8->brp_num , cortex_a8->wrp_num); /* Configure core debug access */ cortex_a8_init_debug_access(target); target->type->examined = 1; return retval; } /* * Cortex-A8 target creation and initialization */ static void cortex_a8_build_reg_cache(target_t *target) { struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache); struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); (*cache_p) = armv4_5_build_reg_cache(target, armv4_5); armv4_5->core_cache = (*cache_p); } static int cortex_a8_init_target(struct command_context_s *cmd_ctx, struct target_s *target) { cortex_a8_build_reg_cache(target); return ERROR_OK; } int cortex_a8_init_arch_info(target_t *target, struct cortex_a8_common *cortex_a8, struct jtag_tap *tap) { armv4_5_common_t *armv4_5; struct armv7a_common *armv7a; armv7a = &cortex_a8->armv7a_common; armv4_5 = &armv7a->armv4_5_common; struct swjdp_common *swjdp = &armv7a->swjdp_info; /* Setup struct cortex_a8_common */ cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC; armv4_5->arch_info = armv7a; armv4_5_init_arch_info(target, armv4_5); /* prepare JTAG information for the new target */ cortex_a8->jtag_info.tap = tap; cortex_a8->jtag_info.scann_size = 4; LOG_DEBUG(" "); swjdp->dp_select_value = -1; swjdp->ap_csw_value = -1; swjdp->ap_tar_value = -1; swjdp->jtag_info = &cortex_a8->jtag_info; swjdp->memaccess_tck = 80; /* Number of bits for tar autoincrement, impl. dep. at least 10 */ swjdp->tar_autoincr_block = (1 << 10); cortex_a8->fast_reg_read = 0; /* register arch-specific functions */ armv7a->examine_debug_reason = NULL; armv7a->post_debug_entry = cortex_a8_post_debug_entry; armv7a->pre_restore_context = NULL; armv7a->post_restore_context = NULL; armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1; // armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb; armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory; armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory; // armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches; // armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches; armv7a->armv4_5_mmu.has_tiny_pages = 1; armv7a->armv4_5_mmu.mmu_enabled = 0; armv7a->read_cp15 = cortex_a8_read_cp15; armv7a->write_cp15 = cortex_a8_write_cp15; // arm7_9->handle_target_request = cortex_a8_handle_target_request; armv4_5->read_core_reg = cortex_a8_read_core_reg; armv4_5->write_core_reg = cortex_a8_write_core_reg; // armv4_5->full_context = arm7_9_full_context; // armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32; // armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32; // armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */ // armv4_5->write_core_reg = armv4_5_write_core_reg; target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target); return ERROR_OK; } static int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp) { struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common)); cortex_a8_init_arch_info(target, cortex_a8, target->tap); return ERROR_OK; } COMMAND_HANDLER(cortex_a8_handle_cache_info_command) { target_t *target = get_current_target(cmd_ctx); struct armv7a_common *armv7a = target_to_armv7a(target); return armv4_5_handle_cache_info_command(cmd_ctx, &armv7a->armv4_5_mmu.armv4_5_cache); } COMMAND_HANDLER(cortex_a8_handle_dbginit_command) { target_t *target = get_current_target(cmd_ctx); cortex_a8_init_debug_access(target); return ERROR_OK; } static int cortex_a8_register_commands(struct command_context_s *cmd_ctx) { command_t *cortex_a8_cmd; int retval = ERROR_OK; armv4_5_register_commands(cmd_ctx); armv7a_register_commands(cmd_ctx); cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8", NULL, COMMAND_ANY, "cortex_a8 specific commands"); register_command(cmd_ctx, cortex_a8_cmd, "cache_info", cortex_a8_handle_cache_info_command, COMMAND_EXEC, "display information about target caches"); register_command(cmd_ctx, cortex_a8_cmd, "dbginit", cortex_a8_handle_dbginit_command, COMMAND_EXEC, "Initialize core debug"); return retval; } target_type_t cortexa8_target = { .name = "cortex_a8", .poll = cortex_a8_poll, .arch_state = armv7a_arch_state, .target_request_data = NULL, .halt = cortex_a8_halt, .resume = cortex_a8_resume, .step = cortex_a8_step, .assert_reset = cortex_a8_assert_reset, .deassert_reset = cortex_a8_deassert_reset, .soft_reset_halt = NULL, .get_gdb_reg_list = armv4_5_get_gdb_reg_list, .read_memory = cortex_a8_read_memory, .write_memory = cortex_a8_write_memory, .bulk_write_memory = cortex_a8_bulk_write_memory, .checksum_memory = arm7_9_checksum_memory, .blank_check_memory = arm7_9_blank_check_memory, .run_algorithm = armv4_5_run_algorithm, .add_breakpoint = cortex_a8_add_breakpoint, .remove_breakpoint = cortex_a8_remove_breakpoint, .add_watchpoint = NULL, .remove_watchpoint = NULL, .register_commands = cortex_a8_register_commands, .target_create = cortex_a8_target_create, .init_target = cortex_a8_init_target, .examine = cortex_a8_examine, .mrc = cortex_a8_mrc, .mcr = cortex_a8_mcr, };