/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2006 by Magnus Lundin * * lundin@mlu.mine.nu * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * * * * * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) * * * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "cortex_m3.h" #include "target_request.h" #include "target_type.h" #include "arm_disassembler.h" #define ARRAY_SIZE(x) ((int)(sizeof(x)/sizeof((x)[0]))) /* forward declarations */ static int cortex_m3_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint); static int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint); static void cortex_m3_enable_watchpoints(struct target_s *target); static int cortex_m3_store_core_reg_u32(target_t *target, enum armv7m_regtype type, uint32_t num, uint32_t value); #ifdef ARMV7_GDB_HACKS extern uint8_t armv7m_gdb_dummy_cpsr_value[]; extern reg_t armv7m_gdb_dummy_cpsr_reg; #endif static int cortexm3_dap_read_coreregister_u32(swjdp_common_t *swjdp, uint32_t *value, int regnum) { int retval; uint32_t dcrdr; /* because the DCB_DCRDR is used for the emulated dcc channel * we have to save/restore the DCB_DCRDR when used */ mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr); swjdp->trans_mode = TRANS_MODE_COMPOSITE; /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */ dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0); dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum); /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */ dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0); dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value); retval = swjdp_transaction_endcheck(swjdp); /* restore DCB_DCRDR - this needs to be in a seperate * transaction otherwise the emulated DCC channel breaks */ if (retval == ERROR_OK) retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr); return retval; } static int cortexm3_dap_write_coreregister_u32(swjdp_common_t *swjdp, uint32_t value, int regnum) { int retval; uint32_t dcrdr; /* because the DCB_DCRDR is used for the emulated dcc channel * we have to save/restore the DCB_DCRDR when used */ mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr); swjdp->trans_mode = TRANS_MODE_COMPOSITE; /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */ dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0); dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value); /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */ dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0); dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR); retval = swjdp_transaction_endcheck(swjdp); /* restore DCB_DCRDR - this needs to be in a seperate * transaction otherwise the emulated DCC channel breaks */ if (retval == ERROR_OK) retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr); return retval; } static int cortex_m3_write_debug_halt_mask(target_t *target, uint32_t mask_on, uint32_t mask_off) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; /* mask off status bits */ cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off); /* create new register mask */ cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on; return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr); } static int cortex_m3_clear_halt(target_t *target) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; /* clear step if any */ cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP); /* Read Debug Fault Status Register */ mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr); /* Clear Debug Fault Status */ mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr); LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr); return ERROR_OK; } static int cortex_m3_single_step_core(target_t *target) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; uint32_t dhcsr_save; /* backup dhcsr reg */ dhcsr_save = cortex_m3->dcb_dhcsr; /* mask interrupts if not done already */ if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN); mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN); LOG_DEBUG(" "); /* restore dhcsr reg */ cortex_m3->dcb_dhcsr = dhcsr_save; cortex_m3_clear_halt(target); return ERROR_OK; } static int cortex_m3_endreset_event(target_t *target) { int i; uint32_t dcb_demcr; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; cortex_m3_fp_comparator_t *fp_list = cortex_m3->fp_comparator_list; cortex_m3_dwt_comparator_t *dwt_list = cortex_m3->dwt_comparator_list; mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr); LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr); /* this regsiter is used for emulated dcc channel */ mem_ap_write_u32(swjdp, DCB_DCRDR, 0); /* Enable debug requests */ mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr); if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN); /* clear any interrupt masking */ cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS); /* Enable trace and dwt */ mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR); /* Monitor bus faults */ mem_ap_write_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA); /* Enable FPB */ target_write_u32(target, FP_CTRL, 3); cortex_m3->fpb_enabled = 1; /* Restore FPB registers */ for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) { target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value); } /* Restore DWT registers */ for (i = 0; i < cortex_m3->dwt_num_comp; i++) { target_write_u32(target, dwt_list[i].dwt_comparator_address, dwt_list[i].comp); target_write_u32(target, dwt_list[i].dwt_comparator_address | 0x4, dwt_list[i].mask); target_write_u32(target, dwt_list[i].dwt_comparator_address | 0x8, dwt_list[i].function); } swjdp_transaction_endcheck(swjdp); armv7m_invalidate_core_regs(target); /* make sure we have latest dhcsr flags */ mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr); return ERROR_OK; } static int cortex_m3_examine_debug_reason(target_t *target) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */ /* only check the debug reason if we don't know it already */ if ((target->debug_reason != DBG_REASON_DBGRQ) && (target->debug_reason != DBG_REASON_SINGLESTEP)) { if (cortex_m3->nvic_dfsr & DFSR_BKPT) { target->debug_reason = DBG_REASON_BREAKPOINT; if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP) target->debug_reason = DBG_REASON_WPTANDBKPT; } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP) target->debug_reason = DBG_REASON_WATCHPOINT; else if (cortex_m3->nvic_dfsr & DFSR_VCATCH) target->debug_reason = DBG_REASON_BREAKPOINT; else /* EXTERNAL, HALTED, DWTTRAP w/o BKPT */ target->debug_reason = DBG_REASON_UNDEFINED; } return ERROR_OK; } static int cortex_m3_examine_exception_reason(target_t *target) { uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr); switch (armv7m->exception_number) { case 2: /* NMI */ break; case 3: /* Hard Fault */ mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr); if (except_sr & 0x40000000) { mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr); } break; case 4: /* Memory Management */ mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr); mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar); break; case 5: /* Bus Fault */ mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr); mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar); break; case 6: /* Usage Fault */ mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr); break; case 11: /* SVCall */ break; case 12: /* Debug Monitor */ mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr); break; case 14: /* PendSV */ break; case 15: /* SysTick */ break; default: except_sr = 0; break; } swjdp_transaction_endcheck(swjdp); LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \ shcsr, except_sr, cfsr, except_ar); return ERROR_OK; } static int cortex_m3_debug_entry(target_t *target) { int i; uint32_t xPSR; int retval; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; LOG_DEBUG(" "); cortex_m3_clear_halt(target); mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr); if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK) return retval; /* Examine target state and mode */ /* First load register acessible through core debug port*/ int num_regs = armv7m->core_cache->num_regs; for (i = 0; i < num_regs; i++) { if (!armv7m->core_cache->reg_list[i].valid) armv7m->read_core_reg(target, i); } xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32); #ifdef ARMV7_GDB_HACKS /* copy real xpsr reg for gdb, setting thumb bit */ buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR); buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1); armv7m_gdb_dummy_cpsr_reg.valid = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid; armv7m_gdb_dummy_cpsr_reg.dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty; #endif /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */ if (xPSR & 0xf00) { armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid; cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff); } /* Are we in an exception handler */ if (xPSR & 0x1FF) { armv7m->core_mode = ARMV7M_MODE_HANDLER; armv7m->exception_number = (xPSR & 0x1FF); } else { armv7m->core_mode = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1); armv7m->exception_number = 0; } if (armv7m->exception_number) { cortex_m3_examine_exception_reason(target); } LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s", armv7m_mode_strings[armv7m->core_mode], *(uint32_t*)(armv7m->core_cache->reg_list[15].value), target_state_name(target)); if (armv7m->post_debug_entry) armv7m->post_debug_entry(target); return ERROR_OK; } static int cortex_m3_poll(target_t *target) { int retval; enum target_state prev_target_state = target->state; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; /* Read from Debug Halting Control and Status Register */ retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr); if (retval != ERROR_OK) { target->state = TARGET_UNKNOWN; return retval; } if (cortex_m3->dcb_dhcsr & S_RESET_ST) { /* check if still in reset */ mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr); if (cortex_m3->dcb_dhcsr & S_RESET_ST) { target->state = TARGET_RESET; return ERROR_OK; } } if (target->state == TARGET_RESET) { /* Cannot switch context while running so endreset is called with target->state == TARGET_RESET */ LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32 "", cortex_m3->dcb_dhcsr); cortex_m3_endreset_event(target); target->state = TARGET_RUNNING; prev_target_state = TARGET_RUNNING; } if (cortex_m3->dcb_dhcsr & S_HALT) { target->state = TARGET_HALTED; if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) { if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK) return retval; target_call_event_callbacks(target, TARGET_EVENT_HALTED); } if (prev_target_state == TARGET_DEBUG_RUNNING) { LOG_DEBUG(" "); if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK) return retval; target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED); } } /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state. * How best to model low power modes? */ if (target->state == TARGET_UNKNOWN) { /* check if processor is retiring instructions */ if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) { target->state = TARGET_RUNNING; return ERROR_OK; } } return ERROR_OK; } static int cortex_m3_halt(target_t *target) { LOG_DEBUG("target->state: %s", target_state_name(target)); if (target->state == TARGET_HALTED) { LOG_DEBUG("target was already halted"); return ERROR_OK; } if (target->state == TARGET_UNKNOWN) { LOG_WARNING("target was in unknown state when halt was requested"); } if (target->state == TARGET_RESET) { if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) { LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST"); return ERROR_TARGET_FAILURE; } else { /* we came here in a reset_halt or reset_init sequence * debug entry was already prepared in cortex_m3_prepare_reset_halt() */ target->debug_reason = DBG_REASON_DBGRQ; return ERROR_OK; } } /* Write to Debug Halting Control and Status Register */ cortex_m3_write_debug_halt_mask(target, C_HALT, 0); target->debug_reason = DBG_REASON_DBGRQ; return ERROR_OK; } static int cortex_m3_soft_reset_halt(struct target_s *target) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; uint32_t dcb_dhcsr = 0; int retval, timeout = 0; /* Enter debug state on reset, cf. end_reset_event() */ mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET); /* Request a reset */ mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET); target->state = TARGET_RESET; /* registers are now invalid */ armv7m_invalidate_core_regs(target); while (timeout < 100) { retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr); if (retval == ERROR_OK) { mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr); if ((dcb_dhcsr & S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) { LOG_DEBUG("system reset-halted, dcb_dhcsr 0x%" PRIx32 ", nvic_dfsr 0x%" PRIx32 "", dcb_dhcsr, cortex_m3->nvic_dfsr); cortex_m3_poll(target); return ERROR_OK; } else LOG_DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%" PRIx32 ", %i ms", dcb_dhcsr, timeout); } timeout++; alive_sleep(1); } return ERROR_OK; } static void cortex_m3_enable_breakpoints(struct target_s *target) { breakpoint_t *breakpoint = target->breakpoints; /* set any pending breakpoints */ while (breakpoint) { if (breakpoint->set == 0) cortex_m3_set_breakpoint(target, breakpoint); breakpoint = breakpoint->next; } } static int cortex_m3_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; breakpoint_t *breakpoint = NULL; uint32_t resume_pc; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!debug_execution) { target_free_all_working_areas(target); cortex_m3_enable_breakpoints(target); cortex_m3_enable_watchpoints(target); } if (debug_execution) { /* Disable interrupts */ /* We disable interrupts in the PRIMASK register instead of masking with C_MASKINTS, * This is probably the same issue as Cortex-M3 Errata 377493: * C_MASKINTS in parallel with disabled interrupts can cause local faults to not be taken. */ buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1); armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1; armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1; /* Make sure we are in Thumb mode */ buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32, buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24)); armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1; armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1; } /* current = 1: continue on current pc, otherwise continue at
*/ if (!current) { buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address); armv7m->core_cache->reg_list[15].dirty = 1; armv7m->core_cache->reg_list[15].valid = 1; } resume_pc = buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32); armv7m_restore_context(target); /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) { /* Single step past breakpoint at current address */ if ((breakpoint = breakpoint_find(target, resume_pc))) { LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)", breakpoint->address, breakpoint->unique_id ); cortex_m3_unset_breakpoint(target, breakpoint); cortex_m3_single_step_core(target); cortex_m3_set_breakpoint(target, breakpoint); } } /* Restart core */ cortex_m3_write_debug_halt_mask(target, 0, C_HALT); target->debug_reason = DBG_REASON_NOTHALTED; /* registers are now invalid */ armv7m_invalidate_core_regs(target); if (!debug_execution) { target->state = TARGET_RUNNING; target_call_event_callbacks(target, TARGET_EVENT_RESUMED); LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc); } else { target->state = TARGET_DEBUG_RUNNING; target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED); LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc); } return ERROR_OK; } /* int irqstepcount = 0; */ static int cortex_m3_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; breakpoint_t *breakpoint = NULL; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* current = 1: continue on current pc, otherwise continue at */ if (!current) buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address); /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) if ((breakpoint = breakpoint_find(target, buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32)))) cortex_m3_unset_breakpoint(target, breakpoint); target->debug_reason = DBG_REASON_SINGLESTEP; armv7m_restore_context(target); target_call_event_callbacks(target, TARGET_EVENT_RESUMED); /* set step and clear halt */ cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT); mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr); /* registers are now invalid */ armv7m_invalidate_core_regs(target); if (breakpoint) cortex_m3_set_breakpoint(target, breakpoint); LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr); cortex_m3_debug_entry(target); target_call_event_callbacks(target, TARGET_EVENT_HALTED); LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr); return ERROR_OK; } static int cortex_m3_assert_reset(target_t *target) { armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; int assert_srst = 1; LOG_DEBUG("target->state: %s", target_state_name(target)); enum reset_types jtag_reset_config = jtag_get_reset_config(); /* * We can reset Cortex-M3 targets using just the NVIC without * requiring SRST, getting a SoC reset (or a core-only reset) * instead of a system reset. */ if (!(jtag_reset_config & RESET_HAS_SRST)) assert_srst = 0; /* Enable debug requests */ mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr); if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN); mem_ap_write_u32(swjdp, DCB_DCRDR, 0); if (!target->reset_halt) { /* Set/Clear C_MASKINTS in a separate operation */ if (cortex_m3->dcb_dhcsr & C_MASKINTS) mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN | C_HALT); /* clear any debug flags before resuming */ cortex_m3_clear_halt(target); /* clear C_HALT in dhcsr reg */ cortex_m3_write_debug_halt_mask(target, 0, C_HALT); /* Enter debug state on reset, cf. end_reset_event() */ mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR); } else { /* Enter debug state on reset, cf. end_reset_event() */ mem_ap_write_atomic_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET); } /* * When nRST is asserted on most Stellaris devices, it clears some of * the debug state. The ARMv7M and Cortex-M3 TRMs say that's wrong; * and OpenOCD depends on those TRMs. So we won't use SRST on those * chips. (Only power-on reset should affect debug state, beyond a * few specified bits; not the chip's nRST input, wired to SRST.) * * REVISIT current errata specs don't seem to cover this issue. * Do we have more details than this email? * https://lists.berlios.de/pipermail * /openocd-development/2008-August/003065.html */ if (strcmp(target->variant, "lm3s") == 0) { /* Check for silicon revisions with the issue. */ uint32_t did0; if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK) { switch ((did0 >> 16) & 0xff) { case 0: /* all Sandstorm suffer issue */ assert_srst = 0; break; case 1: case 3: /* Fury and DustDevil rev A have * this nRST problem. It should * be fixed in rev B silicon. */ if (((did0 >> 8) & 0xff) == 0) assert_srst = 0; break; case 4: /* Tempest should be fine. */ break; } } } if (assert_srst) { /* default to asserting srst */ if (jtag_reset_config & RESET_SRST_PULLS_TRST) { jtag_add_reset(1, 1); } else { jtag_add_reset(0, 1); } } else { /* Use a standard Cortex-M3 software reset mechanism. * SYSRESETREQ will reset SoC peripherals outside the * core, like watchdog timers, if the SoC wires it up * correctly. Else VECRESET can reset just the core. */ mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_SYSRESETREQ); LOG_DEBUG("Using Cortex-M3 SYSRESETREQ"); { /* I do not know why this is necessary, but it * fixes strange effects (step/resume cause NMI * after reset) on LM3S6918 -- Michael Schwingen */ uint32_t tmp; mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp); } } target->state = TARGET_RESET; jtag_add_sleep(50000); armv7m_invalidate_core_regs(target); if (target->reset_halt) { int retval; if ((retval = target_halt(target)) != ERROR_OK) return retval; } return ERROR_OK; } static int cortex_m3_deassert_reset(target_t *target) { LOG_DEBUG("target->state: %s", target_state_name(target)); /* deassert reset lines */ jtag_add_reset(0, 0); return ERROR_OK; } static int cortex_m3_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { int retval; int fp_num = 0; uint32_t hilo; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_fp_comparator_t * comparator_list = cortex_m3->fp_comparator_list; if (breakpoint->set) { LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id); return ERROR_OK; } if (cortex_m3->auto_bp_type) { breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT; } if (breakpoint->type == BKPT_HARD) { while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code)) fp_num++; if (fp_num >= cortex_m3->fp_num_code) { LOG_DEBUG("ERROR Can not find free FP Comparator"); LOG_WARNING("ERROR Can not find free FP Comparator"); exit(-1); } breakpoint->set = fp_num + 1; hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW; comparator_list[fp_num].used = 1; comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1; target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value); LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value); if (!cortex_m3->fpb_enabled) { LOG_DEBUG("FPB wasn't enabled, do it now"); target_write_u32(target, FP_CTRL, 3); } } else if (breakpoint->type == BKPT_SOFT) { uint8_t code[4]; buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11)); if ((retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code)) != ERROR_OK) { return retval; } breakpoint->set = 0x11; /* Any nice value but 0 */ } LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)", breakpoint->unique_id, (int)(breakpoint->type), breakpoint->address, breakpoint->length, breakpoint->set); return ERROR_OK; } static int cortex_m3_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { int retval; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_fp_comparator_t * comparator_list = cortex_m3->fp_comparator_list; if (!breakpoint->set) { LOG_WARNING("breakpoint not set"); return ERROR_OK; } LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)", breakpoint->unique_id, (int)(breakpoint->type), breakpoint->address, breakpoint->length, breakpoint->set); if (breakpoint->type == BKPT_HARD) { int fp_num = breakpoint->set - 1; if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) { LOG_DEBUG("Invalid FP Comparator number in breakpoint"); return ERROR_OK; } comparator_list[fp_num].used = 0; comparator_list[fp_num].fpcr_value = 0; target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value); } else { /* restore original instruction (kept in target endianness) */ if (breakpoint->length == 4) { if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } } else { if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } } } breakpoint->set = 0; return ERROR_OK; } static int cortex_m3_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; if (cortex_m3->auto_bp_type) { breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT; #ifdef ARMV7_GDB_HACKS if (breakpoint->length != 2) { /* XXX Hack: Replace all breakpoints with length != 2 with * a hardware breakpoint. */ breakpoint->type = BKPT_HARD; breakpoint->length = 2; } #endif } if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000)) { LOG_INFO("flash patch comparator requested outside code memory region"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000)) { LOG_INFO("soft breakpoint requested in code (flash) memory region"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) { LOG_INFO("no flash patch comparator unit available for hardware breakpoint"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if ((breakpoint->length != 2)) { LOG_INFO("only breakpoints of two bytes length supported"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if (breakpoint->type == BKPT_HARD) cortex_m3->fp_code_available--; cortex_m3_set_breakpoint(target, breakpoint); return ERROR_OK; } static int cortex_m3_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (cortex_m3->auto_bp_type) { breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT; } if (breakpoint->set) { cortex_m3_unset_breakpoint(target, breakpoint); } if (breakpoint->type == BKPT_HARD) cortex_m3->fp_code_available++; return ERROR_OK; } static int cortex_m3_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint) { int dwt_num = 0; uint32_t mask, temp; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_dwt_comparator_t * comparator_list = cortex_m3->dwt_comparator_list; if (watchpoint->set) { LOG_WARNING("watchpoint (%d) already set", watchpoint->unique_id ); return ERROR_OK; } if (watchpoint->mask == 0xffffffffu) { while (comparator_list[dwt_num].used && (dwt_num < cortex_m3->dwt_num_comp)) dwt_num++; if (dwt_num >= cortex_m3->dwt_num_comp) { LOG_DEBUG("ERROR Can not find free DWT Comparator"); LOG_WARNING("ERROR Can not find free DWT Comparator"); return -1; } watchpoint->set = dwt_num + 1; mask = 0; temp = watchpoint->length; while (temp > 1) { temp = temp / 2; mask++; } comparator_list[dwt_num].used = 1; comparator_list[dwt_num].comp = watchpoint->address; comparator_list[dwt_num].mask = mask; comparator_list[dwt_num].function = watchpoint->rw + 5; target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address, comparator_list[dwt_num].comp); target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address | 0x4, comparator_list[dwt_num].mask); target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address | 0x8, comparator_list[dwt_num].function); LOG_DEBUG("dwt_num %i 0x%" PRIx32 " 0x%" PRIx32 " 0x%" PRIx32 "", dwt_num, comparator_list[dwt_num].comp, comparator_list[dwt_num].mask, comparator_list[dwt_num].function); } else { /* Move this test to add_watchpoint */ LOG_WARNING("Cannot watch data values (id: %d)", watchpoint->unique_id ); return ERROR_OK; } LOG_DEBUG("Watchpoint (ID: %d) address: 0x%08" PRIx32 " set=%d ", watchpoint->unique_id, watchpoint->address, watchpoint->set ); return ERROR_OK; } static int cortex_m3_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; cortex_m3_dwt_comparator_t * comparator_list = cortex_m3->dwt_comparator_list; int dwt_num; if (!watchpoint->set) { LOG_WARNING("watchpoint (wpid: %d) not set", watchpoint->unique_id ); return ERROR_OK; } LOG_DEBUG("Watchpoint (ID: %d) address: 0x%08" PRIx32 " set=%d ", watchpoint->unique_id, watchpoint->address,watchpoint->set ); dwt_num = watchpoint->set - 1; if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) { LOG_DEBUG("Invalid DWT Comparator number in watchpoint"); return ERROR_OK; } comparator_list[dwt_num].used = 0; comparator_list[dwt_num].function = 0; target_write_u32(target, comparator_list[dwt_num].dwt_comparator_address | 0x8, comparator_list[dwt_num].function); watchpoint->set = 0; return ERROR_OK; } static int cortex_m3_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (cortex_m3->dwt_comp_available < 1) { return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4)) { return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } cortex_m3->dwt_comp_available--; LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available); return ERROR_OK; } static int cortex_m3_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (watchpoint->set) { cortex_m3_unset_watchpoint(target, watchpoint); } cortex_m3->dwt_comp_available++; LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available); return ERROR_OK; } static void cortex_m3_enable_watchpoints(struct target_s *target) { watchpoint_t *watchpoint = target->watchpoints; /* set any pending watchpoints */ while (watchpoint) { if (watchpoint->set == 0) cortex_m3_set_watchpoint(target, watchpoint); watchpoint = watchpoint->next; } } static int cortex_m3_load_core_reg_u32(struct target_s *target, enum armv7m_regtype type, uint32_t num, uint32_t * value) { int retval; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; /* NOTE: we "know" here that the register identifiers used * in the v7m header match the Cortex-M3 Debug Core Register * Selector values for R0..R15, xPSR, MSP, and PSP. */ switch (num) { case 0 ... 18: /* read a normal core register */ retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num); if (retval != ERROR_OK) { LOG_ERROR("JTAG failure %i",retval); return ERROR_JTAG_DEVICE_ERROR; } LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "",(int)num,*value); break; case ARMV7M_PRIMASK: case ARMV7M_BASEPRI: case ARMV7M_FAULTMASK: case ARMV7M_CONTROL: /* Cortex-M3 packages these four registers as bitfields * in one Debug Core register. So say r0 and r2 docs; * it was removed from r1 docs, but still works. */ cortexm3_dap_read_coreregister_u32(swjdp, value, 20); switch (num) { case ARMV7M_PRIMASK: *value = buf_get_u32((uint8_t*)value, 0, 1); break; case ARMV7M_BASEPRI: *value = buf_get_u32((uint8_t*)value, 8, 8); break; case ARMV7M_FAULTMASK: *value = buf_get_u32((uint8_t*)value, 16, 1); break; case ARMV7M_CONTROL: *value = buf_get_u32((uint8_t*)value, 24, 2); break; } LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value); break; default: return ERROR_INVALID_ARGUMENTS; } return ERROR_OK; } static int cortex_m3_store_core_reg_u32(struct target_s *target, enum armv7m_regtype type, uint32_t num, uint32_t value) { int retval; uint32_t reg; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; #ifdef ARMV7_GDB_HACKS /* If the LR register is being modified, make sure it will put us * in "thumb" mode, or an INVSTATE exception will occur. This is a * hack to deal with the fact that gdb will sometimes "forge" * return addresses, and doesn't set the LSB correctly (i.e., when * printing expressions containing function calls, it sets LR = 0.) * Valid exception return codes have bit 0 set too. */ if (num == ARMV7M_R14) value |= 0x01; #endif /* NOTE: we "know" here that the register identifiers used * in the v7m header match the Cortex-M3 Debug Core Register * Selector values for R0..R15, xPSR, MSP, and PSP. */ switch (num) { case 0 ... 18: retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num); if (retval != ERROR_OK) { LOG_ERROR("JTAG failure %i", retval); armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid; return ERROR_JTAG_DEVICE_ERROR; } LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value); break; case ARMV7M_PRIMASK: case ARMV7M_BASEPRI: case ARMV7M_FAULTMASK: case ARMV7M_CONTROL: /* Cortex-M3 packages these four registers as bitfields * in one Debug Core register. So say r0 and r2 docs; * it was removed from r1 docs, but still works. */ cortexm3_dap_read_coreregister_u32(swjdp, ®, 20); switch (num) { case ARMV7M_PRIMASK: buf_set_u32((uint8_t*)®, 0, 1, value); break; case ARMV7M_BASEPRI: buf_set_u32((uint8_t*)®, 8, 8, value); break; case ARMV7M_FAULTMASK: buf_set_u32((uint8_t*)®, 16, 1, value); break; case ARMV7M_CONTROL: buf_set_u32((uint8_t*)®, 24, 2, value); break; } cortexm3_dap_write_coreregister_u32(swjdp, reg, 20); LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value); break; default: return ERROR_INVALID_ARGUMENTS; } return ERROR_OK; } static int cortex_m3_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; int retval; /* sanitize arguments */ if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer)) return ERROR_INVALID_ARGUMENTS; /* cortex_m3 handles unaligned memory access */ switch (size) { case 4: retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address); break; case 2: retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address); break; case 1: retval = mem_ap_read_buf_u8(swjdp, buffer, count, address); break; default: LOG_ERROR("BUG: we shouldn't get here"); exit(-1); } return retval; } static int cortex_m3_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; int retval; /* sanitize arguments */ if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer)) return ERROR_INVALID_ARGUMENTS; switch (size) { case 4: retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address); break; case 2: retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address); break; case 1: retval = mem_ap_write_buf_u8(swjdp, buffer, count, address); break; default: LOG_ERROR("BUG: we shouldn't get here"); exit(-1); } return retval; } static int cortex_m3_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer) { return cortex_m3_write_memory(target, address, 4, count, buffer); } static void cortex_m3_build_reg_cache(target_t *target) { armv7m_build_reg_cache(target); } static int cortex_m3_init_target(struct command_context_s *cmd_ctx, struct target_s *target) { cortex_m3_build_reg_cache(target); return ERROR_OK; } static int cortex_m3_examine(struct target_s *target) { int retval; uint32_t cpuid, fpcr, dwtcr, ictr; int i; /* get pointers to arch-specific information */ armv7m_common_t *armv7m = target->arch_info; cortex_m3_common_t *cortex_m3 = armv7m->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK) return retval; if (!target_was_examined(target)) { target_set_examined(target); /* Read from Device Identification Registers */ if ((retval = target_read_u32(target, CPUID, &cpuid)) != ERROR_OK) return retval; if (((cpuid >> 4) & 0xc3f) == 0xc23) LOG_DEBUG("CORTEX-M3 processor detected"); LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid); target_read_u32(target, NVIC_ICTR, &ictr); cortex_m3->intlinesnum = (ictr & 0x1F) + 1; cortex_m3->intsetenable = calloc(cortex_m3->intlinesnum, 4); for (i = 0; i < cortex_m3->intlinesnum; i++) { target_read_u32(target, NVIC_ISE0 + 4 * i, cortex_m3->intsetenable + i); LOG_DEBUG("interrupt enable[%i] = 0x%8.8" PRIx32 "", i, cortex_m3->intsetenable[i]); } /* Setup FPB */ target_read_u32(target, FP_CTRL, &fpcr); cortex_m3->auto_bp_type = 1; cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */ cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF; cortex_m3->fp_code_available = cortex_m3->fp_num_code; cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(cortex_m3_fp_comparator_t)); cortex_m3->fpb_enabled = fpcr & 1; for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) { cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL; cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i; } LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit); /* Setup DWT */ target_read_u32(target, DWT_CTRL, &dwtcr); cortex_m3->dwt_num_comp = (dwtcr >> 28) & 0xF; cortex_m3->dwt_comp_available = cortex_m3->dwt_num_comp; cortex_m3->dwt_comparator_list = calloc(cortex_m3->dwt_num_comp, sizeof(cortex_m3_dwt_comparator_t)); for (i = 0; i < cortex_m3->dwt_num_comp; i++) { cortex_m3->dwt_comparator_list[i].dwt_comparator_address = DWT_COMP0 + 0x10 * i; } } return ERROR_OK; } static int cortex_m3_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl) { uint16_t dcrdr; mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR); *ctrl = (uint8_t)dcrdr; *value = (uint8_t)(dcrdr >> 8); LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl); /* write ack back to software dcc register * signify we have read data */ if (dcrdr & (1 << 0)) { dcrdr = 0; mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR); } return ERROR_OK; } static int cortex_m3_target_request_data(target_t *target, uint32_t size, uint8_t *buffer) { armv7m_common_t *armv7m = target->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; uint8_t data; uint8_t ctrl; uint32_t i; for (i = 0; i < (size * 4); i++) { cortex_m3_dcc_read(swjdp, &data, &ctrl); buffer[i] = data; } return ERROR_OK; } static int cortex_m3_handle_target_request(void *priv) { target_t *target = priv; if (!target_was_examined(target)) return ERROR_OK; armv7m_common_t *armv7m = target->arch_info; swjdp_common_t *swjdp = &armv7m->swjdp_info; if (!target->dbg_msg_enabled) return ERROR_OK; if (target->state == TARGET_RUNNING) { uint8_t data; uint8_t ctrl; cortex_m3_dcc_read(swjdp, &data, &ctrl); /* check if we have data */ if (ctrl & (1 << 0)) { uint32_t request; /* we assume target is quick enough */ request = data; cortex_m3_dcc_read(swjdp, &data, &ctrl); request |= (data << 8); cortex_m3_dcc_read(swjdp, &data, &ctrl); request |= (data << 16); cortex_m3_dcc_read(swjdp, &data, &ctrl); request |= (data << 24); target_request(target, request); } } return ERROR_OK; } static int cortex_m3_init_arch_info(target_t *target, cortex_m3_common_t *cortex_m3, jtag_tap_t *tap) { int retval; armv7m_common_t *armv7m; armv7m = &cortex_m3->armv7m; armv7m_init_arch_info(target, armv7m); /* prepare JTAG information for the new target */ cortex_m3->jtag_info.tap = tap; cortex_m3->jtag_info.scann_size = 4; armv7m->swjdp_info.dp_select_value = -1; armv7m->swjdp_info.ap_csw_value = -1; armv7m->swjdp_info.ap_tar_value = -1; armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info; armv7m->swjdp_info.memaccess_tck = 8; armv7m->swjdp_info.tar_autoincr_block = (1 << 12); /* Cortex-M3 has 4096 bytes autoincrement range */ /* initialize arch-specific breakpoint handling */ cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC; cortex_m3->arch_info = NULL; /* register arch-specific functions */ armv7m->examine_debug_reason = cortex_m3_examine_debug_reason; armv7m->post_debug_entry = NULL; armv7m->pre_restore_context = NULL; armv7m->post_restore_context = NULL; armv7m->arch_info = cortex_m3; armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32; armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32; target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target); if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK) { return retval; } return ERROR_OK; } static int cortex_m3_target_create(struct target_s *target, Jim_Interp *interp) { cortex_m3_common_t *cortex_m3 = calloc(1,sizeof(cortex_m3_common_t)); cortex_m3_init_arch_info(target, cortex_m3, target->tap); return ERROR_OK; } /* * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well * as at least ARM-1156T2. The interesting thing about Cortex-M is * that *only* Thumb2 disassembly matters. There are also some small * additions to Thumb2 that are specific to ARMv7-M. */ static int handle_cortex_m3_disassemble_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval = ERROR_OK; target_t *target = get_current_target(cmd_ctx); uint32_t address; unsigned long count = 1; arm_instruction_t cur_instruction; errno = 0; switch (argc) { case 2: count = strtoul(args[1], NULL, 0); if (errno) return ERROR_FAIL; /* FALL THROUGH */ case 1: address = strtoul(args[0], NULL, 0); if (errno) return ERROR_FAIL; break; default: command_print(cmd_ctx, "usage: cortex_m3 disassemble [