/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "replacements.h" #include "target.h" #include "target_request.h" #include "log.h" #include "configuration.h" #include "binarybuffer.h" #include "jtag.h" #include <string.h> #include <stdlib.h> #include <inttypes.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include <errno.h> #include <sys/time.h> #include <time.h> #include <time_support.h> #include <fileio.h> #include <image.h> int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv); int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc); /* targets */ extern target_type_t arm7tdmi_target; extern target_type_t arm720t_target; extern target_type_t arm9tdmi_target; extern target_type_t arm920t_target; extern target_type_t arm966e_target; extern target_type_t arm926ejs_target; extern target_type_t feroceon_target; extern target_type_t xscale_target; extern target_type_t cortexm3_target; target_type_t *target_types[] = { &arm7tdmi_target, &arm9tdmi_target, &arm920t_target, &arm720t_target, &arm966e_target, &arm926ejs_target, &feroceon_target, &xscale_target, &cortexm3_target, NULL, }; target_t *targets = NULL; target_event_callback_t *target_event_callbacks = NULL; target_timer_callback_t *target_timer_callbacks = NULL; char *target_state_strings[] = { "unknown", "running", "halted", "reset", "debug_running", }; char *target_debug_reason_strings[] = { "debug request", "breakpoint", "watchpoint", "watchpoint and breakpoint", "single step", "target not halted" }; char *target_endianess_strings[] = { "big endian", "little endian", }; enum daemon_startup_mode startup_mode = DAEMON_ATTACH; static int target_continous_poll = 1; /* read a u32 from a buffer in target memory endianness */ u32 target_buffer_get_u32(target_t *target, u8 *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u32(buffer); else return be_to_h_u32(buffer); } /* read a u16 from a buffer in target memory endianness */ u16 target_buffer_get_u16(target_t *target, u8 *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u16(buffer); else return be_to_h_u16(buffer); } /* write a u32 to a buffer in target memory endianness */ void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u32_to_le(buffer, value); else h_u32_to_be(buffer, value); } /* write a u16 to a buffer in target memory endianness */ void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u16_to_le(buffer, value); else h_u16_to_be(buffer, value); } /* returns a pointer to the n-th configured target */ target_t* get_target_by_num(int num) { target_t *target = targets; int i = 0; while (target) { if (num == i) return target; target = target->next; i++; } return NULL; } int get_num_by_target(target_t *query_target) { target_t *target = targets; int i = 0; while (target) { if (target == query_target) return i; target = target->next; i++; } return -1; } target_t* get_current_target(command_context_t *cmd_ctx) { target_t *target = get_target_by_num(cmd_ctx->current_target); if (target == NULL) { ERROR("BUG: current_target out of bounds"); exit(-1); } return target; } /* Process target initialization, when target entered debug out of reset * the handler is unregistered at the end of this function, so it's only called once */ int target_init_handler(struct target_s *target, enum target_event event, void *priv) { FILE *script; struct command_context_s *cmd_ctx = priv; if ((event == TARGET_EVENT_HALTED) && (target->reset_script)) { target_unregister_event_callback(target_init_handler, priv); script = open_file_from_path(cmd_ctx, target->reset_script, "r"); if (!script) { ERROR("couldn't open script file %s", target->reset_script); return ERROR_OK; } INFO("executing reset script '%s'", target->reset_script); command_run_file(cmd_ctx, script, COMMAND_EXEC); fclose(script); jtag_execute_queue(); } return ERROR_OK; } int target_run_and_halt_handler(void *priv) { target_t *target = priv; target->type->halt(target); return ERROR_OK; } int target_process_reset(struct command_context_s *cmd_ctx) { int retval = ERROR_OK; target_t *target; struct timeval timeout, now; /* prepare reset_halt where necessary */ target = targets; while (target) { if (jtag_reset_config & RESET_SRST_PULLS_TRST) { switch (target->reset_mode) { case RESET_HALT: command_print(cmd_ctx, "nSRST pulls nTRST, falling back to RESET_RUN_AND_HALT"); target->reset_mode = RESET_RUN_AND_HALT; break; case RESET_INIT: command_print(cmd_ctx, "nSRST pulls nTRST, falling back to RESET_RUN_AND_INIT"); target->reset_mode = RESET_RUN_AND_INIT; break; default: break; } } switch (target->reset_mode) { case RESET_HALT: case RESET_INIT: target->type->prepare_reset_halt(target); break; default: break; } target = target->next; } target = targets; while (target) { target->type->assert_reset(target); target = target->next; } jtag_execute_queue(); /* request target halt if necessary, and schedule further action */ target = targets; while (target) { switch (target->reset_mode) { case RESET_RUN: /* nothing to do if target just wants to be run */ break; case RESET_RUN_AND_HALT: /* schedule halt */ target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target); break; case RESET_RUN_AND_INIT: /* schedule halt */ target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target); target_register_event_callback(target_init_handler, cmd_ctx); break; case RESET_HALT: target->type->halt(target); break; case RESET_INIT: target->type->halt(target); target_register_event_callback(target_init_handler, cmd_ctx); break; default: ERROR("BUG: unknown target->reset_mode"); } target = target->next; } target = targets; while (target) { target->type->deassert_reset(target); target = target->next; } jtag_execute_queue(); /* Wait for reset to complete, maximum 5 seconds. */ gettimeofday(&timeout, NULL); timeval_add_time(&timeout, 5, 0); for(;;) { gettimeofday(&now, NULL); target_call_timer_callbacks(); target = targets; while (target) { target->type->poll(target); if ((target->reset_mode == RESET_RUN_AND_INIT) || (target->reset_mode == RESET_RUN_AND_HALT)) { if (target->state != TARGET_HALTED) { if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) { command_print(cmd_ctx, "Timed out waiting for reset"); goto done; } usleep(100*1000); /* Do not eat all cpu */ goto again; } } target = target->next; } /* All targets we're waiting for are halted */ break; again:; } done: /* We want any events to be processed before the prompt */ target_call_timer_callbacks(); return retval; } static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical) { *physical = virtual; return ERROR_OK; } static int default_mmu(struct target_s *target, int *enabled) { *enabled = 0; return ERROR_OK; } int target_init(struct command_context_s *cmd_ctx) { target_t *target = targets; while (target) { if (target->type->init_target(cmd_ctx, target) != ERROR_OK) { ERROR("target '%s' init failed", target->type->name); exit(-1); } /* Set up default functions if none are provided by target */ if (target->type->virt2phys == NULL) { target->type->virt2phys = default_virt2phys; } if (target->type->mmu == NULL) { target->type->mmu = default_mmu; } target = target->next; } if (targets) { target_register_user_commands(cmd_ctx); target_register_timer_callback(handle_target, 100, 1, NULL); } return ERROR_OK; } int target_init_reset(struct command_context_s *cmd_ctx) { if (startup_mode == DAEMON_RESET) target_process_reset(cmd_ctx); return ERROR_OK; } int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **callbacks_p = &target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_event_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv) { target_timer_callback_t **callbacks_p = &target_timer_callbacks; struct timeval now; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_timer_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->periodic = periodic; (*callbacks_p)->time_ms = time_ms; gettimeofday(&now, NULL); (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000); if ((*callbacks_p)->when.tv_usec > 1000000) { (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000; (*callbacks_p)->when.tv_sec += 1; } (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **p = &target_event_callbacks; target_event_callback_t *c = target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_event_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_unregister_timer_callback(int (*callback)(void *priv), void *priv) { target_timer_callback_t **p = &target_timer_callbacks; target_timer_callback_t *c = target_timer_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_timer_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_call_event_callbacks(target_t *target, enum target_event event) { target_event_callback_t *callback = target_event_callbacks; target_event_callback_t *next_callback; DEBUG("target event %i", event); while (callback) { next_callback = callback->next; callback->callback(target, event, callback->priv); callback = next_callback; } return ERROR_OK; } int target_call_timer_callbacks() { target_timer_callback_t *callback = target_timer_callbacks; target_timer_callback_t *next_callback; struct timeval now; gettimeofday(&now, NULL); while (callback) { next_callback = callback->next; if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec)) || (now.tv_sec > callback->when.tv_sec)) { callback->callback(callback->priv); if (callback->periodic) { int time_ms = callback->time_ms; callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); callback->when.tv_sec = now.tv_sec + time_ms / 1000; if (callback->when.tv_usec > 1000000) { callback->when.tv_usec = callback->when.tv_usec - 1000000; callback->when.tv_sec += 1; } } else target_unregister_timer_callback(callback->callback, callback->priv); } callback = next_callback; } return ERROR_OK; } int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area) { working_area_t *c = target->working_areas; working_area_t *new_wa = NULL; /* Reevaluate working area address based on MMU state*/ if (target->working_areas == NULL) { int retval; int enabled; retval = target->type->mmu(target, &enabled); if (retval != ERROR_OK) { return retval; } if (enabled) { target->working_area = target->working_area_virt; } else { target->working_area = target->working_area_phys; } } /* only allocate multiples of 4 byte */ if (size % 4) { ERROR("BUG: code tried to allocate unaligned number of bytes, padding"); size = CEIL(size, 4); } /* see if there's already a matching working area */ while (c) { if ((c->free) && (c->size == size)) { new_wa = c; break; } c = c->next; } /* if not, allocate a new one */ if (!new_wa) { working_area_t **p = &target->working_areas; u32 first_free = target->working_area; u32 free_size = target->working_area_size; DEBUG("allocating new working area"); c = target->working_areas; while (c) { first_free += c->size; free_size -= c->size; p = &c->next; c = c->next; } if (free_size < size) { WARNING("not enough working area available(requested %d, free %d)", size, free_size); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } new_wa = malloc(sizeof(working_area_t)); new_wa->next = NULL; new_wa->size = size; new_wa->address = first_free; if (target->backup_working_area) { new_wa->backup = malloc(new_wa->size); target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup); } else { new_wa->backup = NULL; } /* put new entry in list */ *p = new_wa; } /* mark as used, and return the new (reused) area */ new_wa->free = 0; *area = new_wa; /* user pointer */ new_wa->user = area; return ERROR_OK; } int target_free_working_area(struct target_s *target, working_area_t *area) { if (area->free) return ERROR_OK; if (target->backup_working_area) target->type->write_memory(target, area->address, 4, area->size / 4, area->backup); area->free = 1; /* mark user pointer invalid */ *area->user = NULL; area->user = NULL; return ERROR_OK; } int target_free_all_working_areas(struct target_s *target) { working_area_t *c = target->working_areas; while (c) { working_area_t *next = c->next; target_free_working_area(target, c); if (c->backup) free(c->backup); free(c); c = next; } target->working_areas = NULL; return ERROR_OK; } int target_register_commands(struct command_context_s *cmd_ctx) { register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL); register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL); register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL); register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL); register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, NULL); register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]"); register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>"); return ERROR_OK; } int target_arch_state(struct target_s *target) { int retval; if (target==NULL) { USER("No target has been configured"); return ERROR_OK; } USER("target state: %s", target_state_strings[target->state]); if (target->state!=TARGET_HALTED) return ERROR_OK; retval=target->type->arch_state(target); return retval; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer) { int retval; DEBUG("writing buffer of %i byte at 0x%8.8x", size, address); if (((address % 2) == 0) && (size == 2)) { return target->type->write_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { int unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); /* use bulk writes above a certain limit. This may have to be changed */ if (aligned > 128) { if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK) return retval; } else { if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; } buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer) { int retval; DEBUG("reading buffer of %i byte at 0x%8.8x", size, address); if (((address % 2) == 0) && (size == 2)) { return target->type->read_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { int unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc) { u8 *buffer; int retval; int i; u32 checksum = 0; if ((retval = target->type->checksum_memory(target, address, size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { buffer = malloc(size); if (buffer == NULL) { ERROR("error allocating buffer for section (%d bytes)", size); return ERROR_INVALID_ARGUMENTS; } retval = target_read_buffer(target, address, size, buffer); if (retval != ERROR_OK) { free(buffer); return retval; } /* convert to target endianess */ for (i = 0; i < (size/sizeof(u32)); i++) { u32 target_data; target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]); target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data); } retval = image_calculate_checksum( buffer, size, &checksum ); free(buffer); } *crc = checksum; return retval; } int target_read_u32(struct target_s *target, u32 address, u32 *value) { u8 value_buf[4]; int retval = target->type->read_memory(target, address, 4, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u32(target, value_buf); DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value); } else { *value = 0x0; DEBUG("address: 0x%8.8x failed", address); } return retval; } int target_read_u16(struct target_s *target, u32 address, u16 *value) { u8 value_buf[2]; int retval = target->type->read_memory(target, address, 2, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u16(target, value_buf); DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value); } else { *value = 0x0; DEBUG("address: 0x%8.8x failed", address); } return retval; } int target_read_u8(struct target_s *target, u32 address, u8 *value) { int retval = target->type->read_memory(target, address, 1, 1, value); if (retval == ERROR_OK) { DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value); } else { *value = 0x0; DEBUG("address: 0x%8.8x failed", address); } return retval; } int target_write_u32(struct target_s *target, u32 address, u32 value) { int retval; u8 value_buf[4]; DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value); target_buffer_set_u32(target, value_buf, value); if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK) { DEBUG("failed: %i", retval); } return retval; } int target_write_u16(struct target_s *target, u32 address, u16 value) { int retval; u8 value_buf[2]; DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value); target_buffer_set_u16(target, value_buf, value); if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK) { DEBUG("failed: %i", retval); } return retval; } int target_write_u8(struct target_s *target, u32 address, u8 value) { int retval; DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value); if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK) { DEBUG("failed: %i", retval); } return retval; } int target_register_user_commands(struct command_context_s *cmd_ctx) { register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL); register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state"); register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]"); register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target"); register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]"); register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]"); register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]"); register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset"); register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]"); register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]"); register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]"); register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>"); register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>"); register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>"); register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]"); register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>"); register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]"); register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>"); register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']"); register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>"); register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]"); register_command(cmd_ctx, NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>"); register_command(cmd_ctx, NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>"); target_request_register_commands(cmd_ctx); trace_register_commands(cmd_ctx); return ERROR_OK; } int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = targets; int count = 0; if (argc == 1) { int num = strtoul(args[0], NULL, 0); while (target) { count++; target = target->next; } if (num < count) cmd_ctx->current_target = num; else command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count); return ERROR_OK; } while (target) { command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]); target = target->next; } return ERROR_OK; } int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int i; int found = 0; if (argc < 3) { ERROR("target command requires at least three arguments: <type> <endianess> <reset_mode>"); exit(-1); } /* search for the specified target */ if (args[0] && (args[0][0] != 0)) { for (i = 0; target_types[i]; i++) { if (strcmp(args[0], target_types[i]->name) == 0) { target_t **last_target_p = &targets; /* register target specific commands */ if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK) { ERROR("couldn't register '%s' commands", args[0]); exit(-1); } if (*last_target_p) { while ((*last_target_p)->next) last_target_p = &((*last_target_p)->next); last_target_p = &((*last_target_p)->next); } *last_target_p = malloc(sizeof(target_t)); (*last_target_p)->type = target_types[i]; if (strcmp(args[1], "big") == 0) (*last_target_p)->endianness = TARGET_BIG_ENDIAN; else if (strcmp(args[1], "little") == 0) (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN; else { ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]); exit(-1); } /* what to do on a target reset */ if (strcmp(args[2], "reset_halt") == 0) (*last_target_p)->reset_mode = RESET_HALT; else if (strcmp(args[2], "reset_run") == 0) (*last_target_p)->reset_mode = RESET_RUN; else if (strcmp(args[2], "reset_init") == 0) (*last_target_p)->reset_mode = RESET_INIT; else if (strcmp(args[2], "run_and_halt") == 0) (*last_target_p)->reset_mode = RESET_RUN_AND_HALT; else if (strcmp(args[2], "run_and_init") == 0) (*last_target_p)->reset_mode = RESET_RUN_AND_INIT; else { ERROR("unknown target startup mode %s", args[2]); exit(-1); } (*last_target_p)->run_and_halt_time = 1000; /* default 1s */ (*last_target_p)->reset_script = NULL; (*last_target_p)->post_halt_script = NULL; (*last_target_p)->pre_resume_script = NULL; (*last_target_p)->gdb_program_script = NULL; (*last_target_p)->working_area = 0x0; (*last_target_p)->working_area_size = 0x0; (*last_target_p)->working_areas = NULL; (*last_target_p)->backup_working_area = 0; (*last_target_p)->state = TARGET_UNKNOWN; (*last_target_p)->reg_cache = NULL; (*last_target_p)->breakpoints = NULL; (*last_target_p)->watchpoints = NULL; (*last_target_p)->next = NULL; (*last_target_p)->arch_info = NULL; /* initialize trace information */ (*last_target_p)->trace_info = malloc(sizeof(trace_t)); (*last_target_p)->trace_info->num_trace_points = 0; (*last_target_p)->trace_info->trace_points_size = 0; (*last_target_p)->trace_info->trace_points = NULL; (*last_target_p)->trace_info->trace_history_size = 0; (*last_target_p)->trace_info->trace_history = NULL; (*last_target_p)->trace_info->trace_history_pos = 0; (*last_target_p)->trace_info->trace_history_overflowed = 0; (*last_target_p)->dbgmsg = NULL; (*last_target_p)->dbg_msg_enabled = 0; (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p); found = 1; break; } } } /* no matching target found */ if (!found) { ERROR("target '%s' not found", args[0]); exit(-1); } return ERROR_OK; } /* usage: target_script <target#> <event> <script_file> */ int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = NULL; if (argc < 3) { ERROR("incomplete target_script command"); exit(-1); } target = get_target_by_num(strtoul(args[0], NULL, 0)); if (!target) { ERROR("target number '%s' not defined", args[0]); exit(-1); } if (strcmp(args[1], "reset") == 0) { if (target->reset_script) free(target->reset_script); target->reset_script = strdup(args[2]); } else if (strcmp(args[1], "post_halt") == 0) { if (target->post_halt_script) free(target->post_halt_script); target->post_halt_script = strdup(args[2]); } else if (strcmp(args[1], "pre_resume") == 0) { if (target->pre_resume_script) free(target->pre_resume_script); target->pre_resume_script = strdup(args[2]); } else if (strcmp(args[1], "gdb_program_config") == 0) { if (target->gdb_program_script) free(target->gdb_program_script); target->gdb_program_script = strdup(args[2]); } else { ERROR("unknown event type: '%s", args[1]); exit(-1); } return ERROR_OK; } int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = NULL; if (argc < 2) { ERROR("incomplete run_and_halt_time command"); exit(-1); } target = get_target_by_num(strtoul(args[0], NULL, 0)); if (!target) { ERROR("target number '%s' not defined", args[0]); exit(-1); } target->run_and_halt_time = strtoul(args[1], NULL, 0); return ERROR_OK; } int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = NULL; if ((argc < 4) || (argc > 5)) { return ERROR_COMMAND_SYNTAX_ERROR; } target = get_target_by_num(strtoul(args[0], NULL, 0)); if (!target) { ERROR("target number '%s' not defined", args[0]); exit(-1); } target_free_all_working_areas(target); target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0); if (argc == 5) { target->working_area_virt = strtoul(args[4], NULL, 0); } target->working_area_size = strtoul(args[2], NULL, 0); if (strcmp(args[3], "backup") == 0) { target->backup_working_area = 1; } else if (strcmp(args[3], "nobackup") == 0) { target->backup_working_area = 0; } else { ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]); return ERROR_COMMAND_SYNTAX_ERROR; } return ERROR_OK; } /* process target state changes */ int handle_target(void *priv) { int retval; target_t *target = targets; while (target) { /* only poll if target isn't already halted */ if (target->state != TARGET_HALTED) { if (target_continous_poll) if ((retval = target->type->poll(target)) != ERROR_OK) { ERROR("couldn't poll target(%d). It's due for a reset.", retval); } } target = target->next; } return ERROR_OK; } int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target; reg_t *reg = NULL; int count = 0; char *value; DEBUG("-"); target = get_current_target(cmd_ctx); /* list all available registers for the current target */ if (argc == 0) { reg_cache_t *cache = target->reg_cache; count = 0; while(cache) { int i; for (i = 0; i < cache->num_regs; i++) { value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16); command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid); free(value); } cache = cache->next; } return ERROR_OK; } /* access a single register by its ordinal number */ if ((args[0][0] >= '0') && (args[0][0] <= '9')) { int num = strtoul(args[0], NULL, 0); reg_cache_t *cache = target->reg_cache; count = 0; while(cache) { int i; for (i = 0; i < cache->num_regs; i++) { if (count++ == num) { reg = &cache->reg_list[i]; break; } } if (reg) break; cache = cache->next; } if (!reg) { command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1); return ERROR_OK; } } else /* access a single register by its name */ { reg = register_get_by_name(target->reg_cache, args[0], 1); if (!reg) { command_print(cmd_ctx, "register %s not found in current target", args[0]); return ERROR_OK; } } /* display a register */ if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9')))) { if ((argc == 2) && (strcmp(args[1], "force") == 0)) reg->valid = 0; if (reg->valid == 0) { reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); if (arch_type == NULL) { ERROR("BUG: encountered unregistered arch type"); return ERROR_OK; } arch_type->get(reg); } value = buf_to_str(reg->value, reg->size, 16); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value); free(value); return ERROR_OK; } /* set register value */ if (argc == 2) { u8 *buf = malloc(CEIL(reg->size, 8)); str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0); reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); if (arch_type == NULL) { ERROR("BUG: encountered unregistered arch type"); return ERROR_OK; } arch_type->set(reg, buf); value = buf_to_str(reg->value, reg->size, 16); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value); free(value); free(buf); return ERROR_OK; } command_print(cmd_ctx, "usage: reg <#|name> [value]"); return ERROR_OK; } static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms); int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc == 0) { target->type->poll(target); target_arch_state(target); } else { if (strcmp(args[0], "on") == 0) { target_continous_poll = 1; } else if (strcmp(args[0], "off") == 0) { target_continous_poll = 0; } else { command_print(cmd_ctx, "arg is \"on\" or \"off\""); } } return ERROR_OK; } int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int ms = 5000; if (argc > 0) { char *end; ms = strtoul(args[0], &end, 0) * 1000; if (*end) { command_print(cmd_ctx, "usage: %s [seconds]", cmd); return ERROR_OK; } } return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); } static void target_process_events(struct command_context_s *cmd_ctx) { target_t *target = get_current_target(cmd_ctx); target->type->poll(target); target_call_timer_callbacks(); } static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms) { int retval; struct timeval timeout, now; gettimeofday(&timeout, NULL); timeval_add_time(&timeout, 0, ms * 1000); target_t *target = get_current_target(cmd_ctx); for (;;) { if ((retval=target->type->poll(target))!=ERROR_OK) return retval; target_call_timer_callbacks(); if (target->state == state) { break; } command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]); gettimeofday(&now, NULL); if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) { command_print(cmd_ctx, "timed out while waiting for target %s", target_state_strings[state]); ERROR("timed out while waiting for target %s", target_state_strings[state]); break; } } return ERROR_OK; } int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); DEBUG("-"); command_print(cmd_ctx, "requesting target halt..."); if ((retval = target->type->halt(target)) != ERROR_OK) { switch (retval) { case ERROR_TARGET_ALREADY_HALTED: command_print(cmd_ctx, "target already halted"); break; case ERROR_TARGET_TIMEOUT: command_print(cmd_ctx, "target timed out... shutting down"); return retval; default: command_print(cmd_ctx, "unknown error... shutting down"); return retval; } } return handle_wait_halt_command(cmd_ctx, cmd, args, argc); } /* what to do on daemon startup */ int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc == 1) { if (strcmp(args[0], "attach") == 0) { startup_mode = DAEMON_ATTACH; return ERROR_OK; } else if (strcmp(args[0], "reset") == 0) { startup_mode = DAEMON_RESET; return ERROR_OK; } } WARNING("invalid daemon_startup configuration directive: %s", args[0]); return ERROR_OK; } int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); int retval; command_print(cmd_ctx, "requesting target halt and executing a soft reset"); if ((retval = target->type->soft_reset_halt(target)) != ERROR_OK) { switch (retval) { case ERROR_TARGET_TIMEOUT: command_print(cmd_ctx, "target timed out... shutting down"); exit(-1); default: command_print(cmd_ctx, "unknown error... shutting down"); exit(-1); } } return ERROR_OK; } int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); enum target_reset_mode reset_mode = target->reset_mode; enum target_reset_mode save = target->reset_mode; DEBUG("-"); if (argc >= 1) { if (strcmp("run", args[0]) == 0) reset_mode = RESET_RUN; else if (strcmp("halt", args[0]) == 0) reset_mode = RESET_HALT; else if (strcmp("init", args[0]) == 0) reset_mode = RESET_INIT; else if (strcmp("run_and_halt", args[0]) == 0) { reset_mode = RESET_RUN_AND_HALT; if (argc >= 2) { target->run_and_halt_time = strtoul(args[1], NULL, 0); } } else if (strcmp("run_and_init", args[0]) == 0) { reset_mode = RESET_RUN_AND_INIT; if (argc >= 2) { target->run_and_halt_time = strtoul(args[1], NULL, 0); } } else { command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]"); return ERROR_OK; } } /* temporarily modify mode of current reset target */ target->reset_mode = reset_mode; /* reset *all* targets */ target_process_reset(cmd_ctx); /* Restore default reset mode for this target */ target->reset_mode = save; return ERROR_OK; } int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); if (argc == 0) retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */ else if (argc == 1) retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */ else { return ERROR_COMMAND_SYNTAX_ERROR; } target_process_events(cmd_ctx); target_arch_state(target); return retval; } int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); DEBUG("-"); if (argc == 0) target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */ if (argc == 1) target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */ return ERROR_OK; } int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { const int line_bytecnt = 32; int count = 1; int size = 4; u32 address = 0; int line_modulo; int i; char output[128]; int output_len; int retval; u8 *buffer; target_t *target = get_current_target(cmd_ctx); if (argc < 1) return ERROR_OK; if (argc == 2) count = strtoul(args[1], NULL, 0); address = strtoul(args[0], NULL, 0); switch (cmd[2]) { case 'w': size = 4; line_modulo = line_bytecnt / 4; break; case 'h': size = 2; line_modulo = line_bytecnt / 2; break; case 'b': size = 1; line_modulo = line_bytecnt / 1; break; default: return ERROR_OK; } buffer = calloc(count, size); retval = target->type->read_memory(target, address, size, count, buffer); if (retval != ERROR_OK) { switch (retval) { case ERROR_TARGET_UNALIGNED_ACCESS: command_print(cmd_ctx, "error: address not aligned"); break; case ERROR_TARGET_NOT_HALTED: command_print(cmd_ctx, "error: target must be halted for memory accesses"); break; case ERROR_TARGET_DATA_ABORT: command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted"); break; default: command_print(cmd_ctx, "error: unknown error"); break; } return ERROR_OK; } output_len = 0; for (i = 0; i < count; i++) { if (i%line_modulo == 0) output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size)); switch (size) { case 4: output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4])); break; case 2: output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2])); break; case 1: output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]); break; } if ((i%line_modulo == line_modulo-1) || (i == count - 1)) { command_print(cmd_ctx, output); output_len = 0; } } free(buffer); return ERROR_OK; } int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u32 address = 0; u32 value = 0; int retval; target_t *target = get_current_target(cmd_ctx); u8 value_buf[4]; if (argc < 2) return ERROR_OK; address = strtoul(args[0], NULL, 0); value = strtoul(args[1], NULL, 0); switch (cmd[2]) { case 'w': target_buffer_set_u32(target, value_buf, value); retval = target->type->write_memory(target, address, 4, 1, value_buf); break; case 'h': target_buffer_set_u16(target, value_buf, value); retval = target->type->write_memory(target, address, 2, 1, value_buf); break; case 'b': value_buf[0] = value; retval = target->type->write_memory(target, address, 1, 1, value_buf); break; default: return ERROR_OK; } switch (retval) { case ERROR_TARGET_UNALIGNED_ACCESS: command_print(cmd_ctx, "error: address not aligned"); break; case ERROR_TARGET_DATA_ABORT: command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted"); break; case ERROR_TARGET_NOT_HALTED: command_print(cmd_ctx, "error: target must be halted for memory accesses"); break; case ERROR_OK: break; default: command_print(cmd_ctx, "error: unknown error"); break; } return ERROR_OK; } int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u8 *buffer; u32 buf_cnt; u32 image_size; int i; int retval; image_t image; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if (argc < 1) { command_print(cmd_ctx, "usage: load_image <filename> [address] [type]"); return ERROR_OK; } /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */ if (argc >= 2) { image.base_address_set = 1; image.base_address = strtoul(args[1], NULL, 0); } else { image.base_address_set = 0; } image.start_address_set = 0; duration_start_measure(&duration); if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK) { command_print(cmd_ctx, "load_image error: %s", image.error_str); return ERROR_OK; } image_size = 0x0; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { ERROR("image_read_section failed with error code: %i", retval); command_print(cmd_ctx, "image reading failed, download aborted"); free(buffer); image_close(&image); return ERROR_OK; } target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer); image_size += buf_cnt; command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address); free(buffer); } duration_stop_measure(&duration, &duration_text); command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text); free(duration_text); image_close(&image); return ERROR_OK; } int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { fileio_t fileio; u32 address; u32 size; u8 buffer[560]; int retval; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if (argc != 3) { command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>"); return ERROR_OK; } address = strtoul(args[1], NULL, 0); size = strtoul(args[2], NULL, 0); if ((address & 3) || (size & 3)) { command_print(cmd_ctx, "only 32-bit aligned address and size are supported"); return ERROR_OK; } if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK) { command_print(cmd_ctx, "dump_image error: %s", fileio.error_str); return ERROR_OK; } duration_start_measure(&duration); while (size > 0) { u32 size_written; u32 this_run_size = (size > 560) ? 560 : size; retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer); if (retval != ERROR_OK) { command_print(cmd_ctx, "Reading memory failed %d", retval); break; } fileio_write(&fileio, this_run_size, buffer, &size_written); size -= this_run_size; address += this_run_size; } fileio_close(&fileio); duration_stop_measure(&duration, &duration_text); command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text); free(duration_text); return ERROR_OK; } int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u8 *buffer; u32 buf_cnt; u32 image_size; int i; int retval; u32 checksum = 0; u32 mem_checksum = 0; image_t image; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if (argc < 1) { command_print(cmd_ctx, "usage: verify_image <file> [offset] [type]"); return ERROR_OK; } if (!target) { ERROR("no target selected"); return ERROR_OK; } duration_start_measure(&duration); if (argc >= 2) { image.base_address_set = 1; image.base_address = strtoul(args[1], NULL, 0); } else { image.base_address_set = 0; image.base_address = 0x0; } image.start_address_set = 0; if (image_open(&image, args[0], (argc == 3) ? args[2] : NULL) != ERROR_OK) { command_print(cmd_ctx, "verify_image error: %s", image.error_str); return ERROR_OK; } image_size = 0x0; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { ERROR("image_read_section failed with error code: %i", retval); command_print(cmd_ctx, "image reading failed, verify aborted"); free(buffer); image_close(&image); return ERROR_OK; } /* calculate checksum of image */ image_calculate_checksum( buffer, buf_cnt, &checksum ); retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum); if( retval != ERROR_OK ) { command_print(cmd_ctx, "could not calculate checksum, verify aborted"); free(buffer); image_close(&image); return ERROR_OK; } if( checksum != mem_checksum ) { /* failed crc checksum, fall back to a binary compare */ u8 *data; command_print(cmd_ctx, "checksum mismatch - attempting binary compare"); data = (u8*)malloc(buf_cnt); /* Can we use 32bit word accesses? */ int size = 1; int count = buf_cnt; if ((count % 4) == 0) { size *= 4; count /= 4; } retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data); if (retval == ERROR_OK) { int t; for (t = 0; t < buf_cnt; t++) { if (data[t] != buffer[t]) { command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]); free(data); free(buffer); image_close(&image); return ERROR_OK; } } } free(data); } free(buffer); image_size += buf_cnt; } duration_stop_measure(&duration, &duration_text); command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text); free(duration_text); image_close(&image); return ERROR_OK; } int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); if (argc == 0) { breakpoint_t *breakpoint = target->breakpoints; while (breakpoint) { if (breakpoint->type == BKPT_SOFT) { char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16); command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf); free(buf); } else { command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set); } breakpoint = breakpoint->next; } } else if (argc >= 2) { int hw = BKPT_SOFT; u32 length = 0; length = strtoul(args[1], NULL, 0); if (argc >= 3) if (strcmp(args[2], "hw") == 0) hw = BKPT_HARD; if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK) { switch (retval) { case ERROR_TARGET_NOT_HALTED: command_print(cmd_ctx, "target must be halted to set breakpoints"); break; case ERROR_TARGET_RESOURCE_NOT_AVAILABLE: command_print(cmd_ctx, "no more breakpoints available"); break; default: command_print(cmd_ctx, "unknown error, breakpoint not set"); break; } } else { command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0)); } } else { command_print(cmd_ctx, "usage: bp <address> <length> ['hw']"); } return ERROR_OK; } int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc > 0) breakpoint_remove(target, strtoul(args[0], NULL, 0)); return ERROR_OK; } int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); int retval; if (argc == 0) { watchpoint_t *watchpoint = target->watchpoints; while (watchpoint) { command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask); watchpoint = watchpoint->next; } } else if (argc >= 2) { enum watchpoint_rw type = WPT_ACCESS; u32 data_value = 0x0; u32 data_mask = 0xffffffff; if (argc >= 3) { switch(args[2][0]) { case 'r': type = WPT_READ; break; case 'w': type = WPT_WRITE; break; case 'a': type = WPT_ACCESS; break; default: command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]"); return ERROR_OK; } } if (argc >= 4) { data_value = strtoul(args[3], NULL, 0); } if (argc >= 5) { data_mask = strtoul(args[4], NULL, 0); } if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0), strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK) { switch (retval) { case ERROR_TARGET_NOT_HALTED: command_print(cmd_ctx, "target must be halted to set watchpoints"); break; case ERROR_TARGET_RESOURCE_NOT_AVAILABLE: command_print(cmd_ctx, "no more watchpoints available"); break; default: command_print(cmd_ctx, "unknown error, watchpoint not set"); break; } } } else { command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]"); } return ERROR_OK; } int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc > 0) watchpoint_remove(target, strtoul(args[0], NULL, 0)); return ERROR_OK; } int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); u32 va; u32 pa; if (argc != 1) { return ERROR_COMMAND_SYNTAX_ERROR; } va = strtoul(args[0], NULL, 0); retval = target->type->virt2phys(target, va, &pa); if (retval == ERROR_OK) { command_print(cmd_ctx, "Physical address 0x%08x", pa); } else { /* lower levels will have logged a detailed error which is * forwarded to telnet/GDB session. */ } return retval; }