/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2007,2008 �yvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2008, Duane Ellis * * openocd@duaneeellis.com * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by Rick Altherr * * kc8apf@kc8apf.net> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "replacements.h" #include "target.h" #include "target_request.h" #include "log.h" #include "configuration.h" #include "binarybuffer.h" #include "jtag.h" #include <string.h> #include <stdlib.h> #include <inttypes.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include <errno.h> #include <sys/time.h> #include <time.h> #include <time_support.h> #include <fileio.h> #include <image.h> int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv); int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc); int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv); static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv); static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv); static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv); static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv); /* targets */ extern target_type_t arm7tdmi_target; extern target_type_t arm720t_target; extern target_type_t arm9tdmi_target; extern target_type_t arm920t_target; extern target_type_t arm966e_target; extern target_type_t arm926ejs_target; extern target_type_t feroceon_target; extern target_type_t xscale_target; extern target_type_t cortexm3_target; extern target_type_t arm11_target; extern target_type_t mips_m4k_target; target_type_t *target_types[] = { &arm7tdmi_target, &arm9tdmi_target, &arm920t_target, &arm720t_target, &arm966e_target, &arm926ejs_target, &feroceon_target, &xscale_target, &cortexm3_target, &arm11_target, &mips_m4k_target, NULL, }; target_t *all_targets = NULL; target_event_callback_t *target_event_callbacks = NULL; target_timer_callback_t *target_timer_callbacks = NULL; const Jim_Nvp nvp_assert[] = { { .name = "assert", NVP_ASSERT }, { .name = "deassert", NVP_DEASSERT }, { .name = "T", NVP_ASSERT }, { .name = "F", NVP_DEASSERT }, { .name = "t", NVP_ASSERT }, { .name = "f", NVP_DEASSERT }, { .name = NULL, .value = -1 } }; const Jim_Nvp nvp_error_target[] = { { .value = ERROR_TARGET_INVALID, .name = "err-invalid" }, { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" }, { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" }, { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" }, { .value = ERROR_TARGET_FAILURE, .name = "err-failure" }, { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" }, { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" }, { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" }, { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" }, { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" }, { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" }, { .value = -1, .name = NULL } }; const char *target_strerror_safe( int err ) { const Jim_Nvp *n; n = Jim_Nvp_value2name_simple( nvp_error_target, err ); if( n->name == NULL ){ return "unknown"; } else { return n->name; } } const Jim_Nvp nvp_target_event[] = { { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" }, { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" }, { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" }, { .value = TARGET_EVENT_HALTED, .name = "halted" }, { .value = TARGET_EVENT_RESUMED, .name = "resumed" }, { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" }, { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" }, { .name = "gdb-start", .value = TARGET_EVENT_GDB_START }, { .name = "gdb-end", .value = TARGET_EVENT_GDB_END }, /* historical name */ { .value = TARGET_EVENT_RESET_START, .name = "reset-start" }, { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" }, { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" }, { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" }, { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" }, { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" }, { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" }, { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" }, { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" }, { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" }, { .value = TARGET_EVENT_RESET_END, .name = "reset-end" }, { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" }, { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" }, { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" }, { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" }, { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" }, { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" }, { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" }, { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" }, { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" }, { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" }, { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" }, { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" }, { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" }, { .name = NULL, .value = -1 } }; const Jim_Nvp nvp_target_state[] = { { .name = "unknown", .value = TARGET_UNKNOWN }, { .name = "running", .value = TARGET_RUNNING }, { .name = "halted", .value = TARGET_HALTED }, { .name = "reset", .value = TARGET_RESET }, { .name = "debug-running", .value = TARGET_DEBUG_RUNNING }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_target_debug_reason [] = { { .name = "debug-request" , .value = DBG_REASON_DBGRQ }, { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT }, { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT }, { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT }, { .name = "single-step" , .value = DBG_REASON_SINGLESTEP }, { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED }, { .name = "undefined" , .value = DBG_REASON_UNDEFINED }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_target_endian[] = { { .name = "big", .value = TARGET_BIG_ENDIAN }, { .name = "little", .value = TARGET_LITTLE_ENDIAN }, { .name = "be", .value = TARGET_BIG_ENDIAN }, { .name = "le", .value = TARGET_LITTLE_ENDIAN }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_reset_modes[] = { { .name = "unknown", .value = RESET_UNKNOWN }, { .name = "run" , .value = RESET_RUN }, { .name = "halt" , .value = RESET_HALT }, { .name = "init" , .value = RESET_INIT }, { .name = NULL , .value = -1 }, }; static int max_target_number(void) { target_t *t; int x; x = -1; t = all_targets; while( t ){ if( x < t->target_number ){ x = (t->target_number)+1; } t = t->next; } return x; } /* determine the number of the new target */ static int new_target_number(void) { target_t *t; int x; /* number is 0 based */ x = -1; t = all_targets; while(t){ if( x < t->target_number ){ x = t->target_number; } t = t->next; } return x+1; } static int target_continous_poll = 1; /* read a u32 from a buffer in target memory endianness */ u32 target_buffer_get_u32(target_t *target, u8 *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u32(buffer); else return be_to_h_u32(buffer); } /* read a u16 from a buffer in target memory endianness */ u16 target_buffer_get_u16(target_t *target, u8 *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u16(buffer); else return be_to_h_u16(buffer); } /* read a u8 from a buffer in target memory endianness */ u8 target_buffer_get_u8(target_t *target, u8 *buffer) { return *buffer & 0x0ff; } /* write a u32 to a buffer in target memory endianness */ void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u32_to_le(buffer, value); else h_u32_to_be(buffer, value); } /* write a u16 to a buffer in target memory endianness */ void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u16_to_le(buffer, value); else h_u16_to_be(buffer, value); } /* write a u8 to a buffer in target memory endianness */ void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value) { *buffer = value; } /* returns a pointer to the n-th configured target */ target_t* get_target_by_num(int num) { target_t *target = all_targets; while (target){ if( target->target_number == num ){ return target; } target = target->next; } return NULL; } int get_num_by_target(target_t *query_target) { return query_target->target_number; } target_t* get_current_target(command_context_t *cmd_ctx) { target_t *target = get_target_by_num(cmd_ctx->current_target); if (target == NULL) { LOG_ERROR("BUG: current_target out of bounds"); exit(-1); } return target; } int target_poll(struct target_s *target) { /* We can't poll until after examine */ if (!target->type->examined) { /* Fail silently lest we pollute the log */ return ERROR_FAIL; } return target->type->poll(target); } int target_halt(struct target_s *target) { /* We can't poll until after examine */ if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->halt(target); } int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution) { int retval; /* We can't poll until after examine */ if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?) * the application. */ if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK) return retval; return retval; } int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode) { char buf[100]; int retval; Jim_Nvp *n; n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode ); if( n->name == NULL ){ LOG_ERROR("invalid reset mode"); return ERROR_FAIL; } sprintf( buf, "ocd_process_reset %s", n->name ); retval = Jim_Eval( interp, buf ); if(retval != JIM_OK) { Jim_PrintErrorMessage(interp); return ERROR_FAIL; } /* We want any events to be processed before the prompt */ retval = target_call_timer_callbacks_now(); return retval; } static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical) { *physical = virtual; return ERROR_OK; } static int default_mmu(struct target_s *target, int *enabled) { *enabled = 0; return ERROR_OK; } static int default_examine(struct target_s *target) { target->type->examined = 1; return ERROR_OK; } /* Targets that correctly implement init+examine, i.e. * no communication with target during init: * * XScale */ int target_examine(void) { int retval = ERROR_OK; target_t *target = all_targets; while (target) { if ((retval = target->type->examine(target))!=ERROR_OK) return retval; target = target->next; } return retval; } static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer) { if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->write_memory_imp(target, address, size, count, buffer); } static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer) { if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->read_memory_imp(target, address, size, count, buffer); } static int target_soft_reset_halt_imp(struct target_s *target) { if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->soft_reset_halt_imp(target); } static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info) { if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info); } int target_init(struct command_context_s *cmd_ctx) { target_t *target = all_targets; int retval; while (target) { target->type->examined = 0; if (target->type->examine == NULL) { target->type->examine = default_examine; } if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK) { LOG_ERROR("target '%s' init failed", target->type->name); return retval; } /* Set up default functions if none are provided by target */ if (target->type->virt2phys == NULL) { target->type->virt2phys = default_virt2phys; } target->type->virt2phys = default_virt2phys; /* a non-invasive way(in terms of patches) to add some code that * runs before the type->write/read_memory implementation */ target->type->write_memory_imp = target->type->write_memory; target->type->write_memory = target_write_memory_imp; target->type->read_memory_imp = target->type->read_memory; target->type->read_memory = target_read_memory_imp; target->type->soft_reset_halt_imp = target->type->soft_reset_halt; target->type->soft_reset_halt = target_soft_reset_halt_imp; target->type->run_algorithm_imp = target->type->run_algorithm; target->type->run_algorithm = target_run_algorithm_imp; if (target->type->mmu == NULL) { target->type->mmu = default_mmu; } target = target->next; } if (all_targets) { if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK) return retval; if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK) return retval; } return ERROR_OK; } int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **callbacks_p = &target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_event_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv) { target_timer_callback_t **callbacks_p = &target_timer_callbacks; struct timeval now; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_timer_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->periodic = periodic; (*callbacks_p)->time_ms = time_ms; gettimeofday(&now, NULL); (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000); if ((*callbacks_p)->when.tv_usec > 1000000) { (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000; (*callbacks_p)->when.tv_sec += 1; } (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **p = &target_event_callbacks; target_event_callback_t *c = target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_event_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_unregister_timer_callback(int (*callback)(void *priv), void *priv) { target_timer_callback_t **p = &target_timer_callbacks; target_timer_callback_t *c = target_timer_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_timer_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_call_event_callbacks(target_t *target, enum target_event event) { target_event_callback_t *callback = target_event_callbacks; target_event_callback_t *next_callback; if (event == TARGET_EVENT_HALTED) { /* execute early halted first */ target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED); } LOG_DEBUG("target event %i (%s)", event, Jim_Nvp_value2name_simple( nvp_target_event, event )->name ); target_handle_event( target, event ); while (callback) { next_callback = callback->next; callback->callback(target, event, callback->priv); callback = next_callback; } return ERROR_OK; } static int target_call_timer_callbacks_check_time(int checktime) { target_timer_callback_t *callback = target_timer_callbacks; target_timer_callback_t *next_callback; struct timeval now; keep_alive(); gettimeofday(&now, NULL); while (callback) { next_callback = callback->next; if ((!checktime&&callback->periodic)|| (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec)) || (now.tv_sec > callback->when.tv_sec))) { if(callback->callback != NULL) { callback->callback(callback->priv); if (callback->periodic) { int time_ms = callback->time_ms; callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); callback->when.tv_sec = now.tv_sec + time_ms / 1000; if (callback->when.tv_usec > 1000000) { callback->when.tv_usec = callback->when.tv_usec - 1000000; callback->when.tv_sec += 1; } } else { int retval; if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK) return retval; } } } callback = next_callback; } return ERROR_OK; } int target_call_timer_callbacks(void) { return target_call_timer_callbacks_check_time(1); } /* invoke periodic callbacks immediately */ int target_call_timer_callbacks_now(void) { return target_call_timer_callbacks_check_time(0); } int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area) { working_area_t *c = target->working_areas; working_area_t *new_wa = NULL; /* Reevaluate working area address based on MMU state*/ if (target->working_areas == NULL) { int retval; int enabled; retval = target->type->mmu(target, &enabled); if (retval != ERROR_OK) { return retval; } if (enabled) { target->working_area = target->working_area_virt; } else { target->working_area = target->working_area_phys; } } /* only allocate multiples of 4 byte */ if (size % 4) { LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding"); size = CEIL(size, 4); } /* see if there's already a matching working area */ while (c) { if ((c->free) && (c->size == size)) { new_wa = c; break; } c = c->next; } /* if not, allocate a new one */ if (!new_wa) { working_area_t **p = &target->working_areas; u32 first_free = target->working_area; u32 free_size = target->working_area_size; LOG_DEBUG("allocating new working area"); c = target->working_areas; while (c) { first_free += c->size; free_size -= c->size; p = &c->next; c = c->next; } if (free_size < size) { LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } new_wa = malloc(sizeof(working_area_t)); new_wa->next = NULL; new_wa->size = size; new_wa->address = first_free; if (target->backup_working_area) { int retval; new_wa->backup = malloc(new_wa->size); if((retval = target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK) { free(new_wa->backup); free(new_wa); return retval; } } else { new_wa->backup = NULL; } /* put new entry in list */ *p = new_wa; } /* mark as used, and return the new (reused) area */ new_wa->free = 0; *area = new_wa; /* user pointer */ new_wa->user = area; return ERROR_OK; } int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore) { if (area->free) return ERROR_OK; if (restore&&target->backup_working_area) { int retval; if((retval = target->type->write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK) return retval; } area->free = 1; /* mark user pointer invalid */ *area->user = NULL; area->user = NULL; return ERROR_OK; } int target_free_working_area(struct target_s *target, working_area_t *area) { return target_free_working_area_restore(target, area, 1); } /* free resources and restore memory, if restoring memory fails, * free up resources anyway */ void target_free_all_working_areas_restore(struct target_s *target, int restore) { working_area_t *c = target->working_areas; while (c) { working_area_t *next = c->next; target_free_working_area_restore(target, c, restore); if (c->backup) free(c->backup); free(c); c = next; } target->working_areas = NULL; } void target_free_all_working_areas(struct target_s *target) { target_free_all_working_areas_restore(target, 1); } int target_register_commands(struct command_context_s *cmd_ctx) { register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)"); register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address"); register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC"); register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY, "same args as load_image, image stored in memory - mainly for profiling purposes"); register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY, "loads active fast load image to current target - mainly for profiling purposes"); register_jim(cmd_ctx, "target", jim_target, "configure target" ); /* script procedures */ register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing"); register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values"); return ERROR_OK; } int target_arch_state(struct target_s *target) { int retval; if (target==NULL) { LOG_USER("No target has been configured"); return ERROR_OK; } LOG_USER("target state: %s", Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name); if (target->state!=TARGET_HALTED) return ERROR_OK; retval=target->type->arch_state(target); return retval; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer) { int retval; LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address); if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if ((address + size - 1) < address) { /* GDB can request this when e.g. PC is 0xfffffffc*/ LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size); return ERROR_FAIL; } if (((address % 2) == 0) && (size == 2)) { return target->type->write_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { int unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); /* use bulk writes above a certain limit. This may have to be changed */ if (aligned > 128) { if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK) return retval; } else { if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; } buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer) { int retval; LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address); if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if ((address + size - 1) < address) { /* GDB can request this when e.g. PC is 0xfffffffc*/ LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size); return ERROR_FAIL; } if (((address % 2) == 0) && (size == 2)) { return target->type->read_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { int unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc) { u8 *buffer; int retval; int i; u32 checksum = 0; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if ((retval = target->type->checksum_memory(target, address, size, &checksum)) != ERROR_OK) { buffer = malloc(size); if (buffer == NULL) { LOG_ERROR("error allocating buffer for section (%d bytes)", size); return ERROR_INVALID_ARGUMENTS; } retval = target_read_buffer(target, address, size, buffer); if (retval != ERROR_OK) { free(buffer); return retval; } /* convert to target endianess */ for (i = 0; i < (size/sizeof(u32)); i++) { u32 target_data; target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]); target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data); } retval = image_calculate_checksum( buffer, size, &checksum ); free(buffer); } *crc = checksum; return retval; } int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank) { int retval; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (target->type->blank_check_memory == 0) return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; retval = target->type->blank_check_memory(target, address, size, blank); return retval; } int target_read_u32(struct target_s *target, u32 address, u32 *value) { u8 value_buf[4]; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } int retval = target->type->read_memory(target, address, 4, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u32(target, value_buf); LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8x failed", address); } return retval; } int target_read_u16(struct target_s *target, u32 address, u16 *value) { u8 value_buf[2]; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } int retval = target->type->read_memory(target, address, 2, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u16(target, value_buf); LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8x failed", address); } return retval; } int target_read_u8(struct target_s *target, u32 address, u8 *value) { int retval = target->type->read_memory(target, address, 1, 1, value); if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (retval == ERROR_OK) { LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8x failed", address); } return retval; } int target_write_u32(struct target_s *target, u32 address, u32 value) { int retval; u8 value_buf[4]; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value); target_buffer_set_u32(target, value_buf, value); if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_write_u16(struct target_s *target, u32 address, u16 value) { int retval; u8 value_buf[2]; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value); target_buffer_set_u16(target, value_buf, value); if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_write_u8(struct target_s *target, u32 address, u8 value) { int retval; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value); if ((retval = target->type->write_memory(target, address, 1, 1, &value)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_register_user_commands(struct command_context_s *cmd_ctx) { int retval = ERROR_OK; register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register"); register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state"); register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]"); register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target"); register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]"); register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]"); register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run"); register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset"); register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]"); register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]"); register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]"); register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]"); register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]"); register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]"); register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]"); register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>"); register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]"); register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>"); register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]"); register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>"); register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]"); if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK) return retval; if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK) return retval; return retval; } int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { char *cp; target_t *target = all_targets; if (argc == 1) { /* try as tcltarget name */ for( target = all_targets ; target ; target = target->next ){ if( target->cmd_name ){ if( 0 == strcmp( args[0], target->cmd_name ) ){ /* MATCH */ goto Match; } } } /* no match, try as number */ int num = strtoul(args[0], &cp, 0 ); if( *cp != 0 ){ /* then it was not a number */ command_print( cmd_ctx, "Target: %s unknown, try one of:\n", args[0] ); goto DumpTargets; } target = get_target_by_num( num ); if( target == NULL ){ command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] ); goto DumpTargets; } Match: cmd_ctx->current_target = target->target_number; return ERROR_OK; } DumpTargets: target = all_targets; command_print(cmd_ctx, " CmdName Type Endian AbsChainPos Name State "); command_print(cmd_ctx, "-- ---------- ---------- ---------- ----------- ------------- ----------"); while (target) { /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */ command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s", target->target_number, target->cmd_name, target->type->name, Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name, target->tap->abs_chain_position, target->tap->dotted_name, Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name ); target = target->next; } return ERROR_OK; } /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */ static int powerDropout; static int srstAsserted; static int runPowerRestore; static int runPowerDropout; static int runSrstAsserted; static int runSrstDeasserted; static int sense_handler(void) { static int prevSrstAsserted = 0; static int prevPowerdropout = 0; int retval; if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK) return retval; int powerRestored; powerRestored = prevPowerdropout && !powerDropout; if (powerRestored) { runPowerRestore = 1; } long long current = timeval_ms(); static long long lastPower = 0; int waitMore = lastPower + 2000 > current; if (powerDropout && !waitMore) { runPowerDropout = 1; lastPower = current; } if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK) return retval; int srstDeasserted; srstDeasserted = prevSrstAsserted && !srstAsserted; static long long lastSrst = 0; waitMore = lastSrst + 2000 > current; if (srstDeasserted && !waitMore) { runSrstDeasserted = 1; lastSrst = current; } if (!prevSrstAsserted && srstAsserted) { runSrstAsserted = 1; } prevSrstAsserted = srstAsserted; prevPowerdropout = powerDropout; if (srstDeasserted || powerRestored) { /* Other than logging the event we can't do anything here. * Issuing a reset is a particularly bad idea as we might * be inside a reset already. */ } return ERROR_OK; } /* process target state changes */ int handle_target(void *priv) { int retval = ERROR_OK; /* we do not want to recurse here... */ static int recursive = 0; if (! recursive) { recursive = 1; sense_handler(); /* danger! running these procedures can trigger srst assertions and power dropouts. * We need to avoid an infinite loop/recursion here and we do that by * clearing the flags after running these events. */ int did_something = 0; if (runSrstAsserted) { Jim_Eval( interp, "srst_asserted"); did_something = 1; } if (runSrstDeasserted) { Jim_Eval( interp, "srst_deasserted"); did_something = 1; } if (runPowerDropout) { Jim_Eval( interp, "power_dropout"); did_something = 1; } if (runPowerRestore) { Jim_Eval( interp, "power_restore"); did_something = 1; } if (did_something) { /* clear detect flags */ sense_handler(); } /* clear action flags */ runSrstAsserted=0; runSrstDeasserted=0; runPowerRestore=0; runPowerDropout=0; recursive = 0; } target_t *target = all_targets; while (target) { /* only poll target if we've got power and srst isn't asserted */ if (target_continous_poll&&!powerDropout&&!srstAsserted) { /* polling may fail silently until the target has been examined */ if((retval = target_poll(target)) != ERROR_OK) return retval; } target = target->next; } return retval; } int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target; reg_t *reg = NULL; int count = 0; char *value; LOG_DEBUG("-"); target = get_current_target(cmd_ctx); /* list all available registers for the current target */ if (argc == 0) { reg_cache_t *cache = target->reg_cache; count = 0; while(cache) { int i; for (i = 0; i < cache->num_regs; i++) { value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16); command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid); free(value); } cache = cache->next; } return ERROR_OK; } /* access a single register by its ordinal number */ if ((args[0][0] >= '0') && (args[0][0] <= '9')) { int num = strtoul(args[0], NULL, 0); reg_cache_t *cache = target->reg_cache; count = 0; while(cache) { int i; for (i = 0; i < cache->num_regs; i++) { if (count++ == num) { reg = &cache->reg_list[i]; break; } } if (reg) break; cache = cache->next; } if (!reg) { command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1); return ERROR_OK; } } else /* access a single register by its name */ { reg = register_get_by_name(target->reg_cache, args[0], 1); if (!reg) { command_print(cmd_ctx, "register %s not found in current target", args[0]); return ERROR_OK; } } /* display a register */ if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9')))) { if ((argc == 2) && (strcmp(args[1], "force") == 0)) reg->valid = 0; if (reg->valid == 0) { reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); arch_type->get(reg); } value = buf_to_str(reg->value, reg->size, 16); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value); free(value); return ERROR_OK; } /* set register value */ if (argc == 2) { u8 *buf = malloc(CEIL(reg->size, 8)); str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0); reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); arch_type->set(reg, buf); value = buf_to_str(reg->value, reg->size, 16); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value); free(value); free(buf); return ERROR_OK; } command_print(cmd_ctx, "usage: reg <#|name> [value]"); return ERROR_OK; } int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval = ERROR_OK; target_t *target = get_current_target(cmd_ctx); if (argc == 0) { if((retval = target_poll(target)) != ERROR_OK) return retval; if((retval = target_arch_state(target)) != ERROR_OK) return retval; } else if (argc==1) { if (strcmp(args[0], "on") == 0) { target_continous_poll = 1; } else if (strcmp(args[0], "off") == 0) { target_continous_poll = 0; } else { command_print(cmd_ctx, "arg is \"on\" or \"off\""); } } else { return ERROR_COMMAND_SYNTAX_ERROR; } return retval; } int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int ms = 5000; if (argc > 0) { char *end; ms = strtoul(args[0], &end, 0) * 1000; if (*end) { command_print(cmd_ctx, "usage: %s [seconds]", cmd); return ERROR_OK; } } target_t *target = get_current_target(cmd_ctx); return target_wait_state(target, TARGET_HALTED, ms); } int target_wait_state(target_t *target, enum target_state state, int ms) { int retval; struct timeval timeout, now; int once=1; gettimeofday(&timeout, NULL); timeval_add_time(&timeout, 0, ms * 1000); for (;;) { if ((retval=target_poll(target))!=ERROR_OK) return retval; keep_alive(); if (target->state == state) { break; } if (once) { once=0; LOG_DEBUG("waiting for target %s...", Jim_Nvp_value2name_simple(nvp_target_state,state)->name); } gettimeofday(&now, NULL); if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) { LOG_ERROR("timed out while waiting for target %s", Jim_Nvp_value2name_simple(nvp_target_state,state)->name); return ERROR_FAIL; } } return ERROR_OK; } int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); LOG_DEBUG("-"); if ((retval = target_halt(target)) != ERROR_OK) { return retval; } return handle_wait_halt_command(cmd_ctx, cmd, args, argc); } int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); LOG_USER("requesting target halt and executing a soft reset"); target->type->soft_reset_halt(target); return ERROR_OK; } int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { const Jim_Nvp *n; enum target_reset_mode reset_mode = RESET_RUN; if (argc >= 1) { n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] ); if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){ return ERROR_COMMAND_SYNTAX_ERROR; } reset_mode = n->value; } /* reset *all* targets */ return target_process_reset(cmd_ctx, reset_mode); } int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); target_handle_event( target, TARGET_EVENT_OLD_pre_resume ); if (argc == 0) retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */ else if (argc == 1) retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */ else { retval = ERROR_COMMAND_SYNTAX_ERROR; } return retval; } int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); LOG_DEBUG("-"); if (argc == 0) return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */ if (argc == 1) return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */ return ERROR_OK; } int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { const int line_bytecnt = 32; int count = 1; int size = 4; u32 address = 0; int line_modulo; int i; char output[128]; int output_len; int retval; u8 *buffer; target_t *target = get_current_target(cmd_ctx); if (argc < 1) return ERROR_OK; if (argc == 2) count = strtoul(args[1], NULL, 0); address = strtoul(args[0], NULL, 0); switch (cmd[2]) { case 'w': size = 4; line_modulo = line_bytecnt / 4; break; case 'h': size = 2; line_modulo = line_bytecnt / 2; break; case 'b': size = 1; line_modulo = line_bytecnt / 1; break; default: return ERROR_OK; } buffer = calloc(count, size); retval = target->type->read_memory(target, address, size, count, buffer); if (retval == ERROR_OK) { output_len = 0; for (i = 0; i < count; i++) { if (i%line_modulo == 0) output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size)); switch (size) { case 4: output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4])); break; case 2: output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2])); break; case 1: output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]); break; } if ((i%line_modulo == line_modulo-1) || (i == count - 1)) { command_print(cmd_ctx, output); output_len = 0; } } } free(buffer); return retval; } int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u32 address = 0; u32 value = 0; int count = 1; int i; int wordsize; target_t *target = get_current_target(cmd_ctx); u8 value_buf[4]; if ((argc < 2) || (argc > 3)) return ERROR_COMMAND_SYNTAX_ERROR; address = strtoul(args[0], NULL, 0); value = strtoul(args[1], NULL, 0); if (argc == 3) count = strtoul(args[2], NULL, 0); switch (cmd[2]) { case 'w': wordsize = 4; target_buffer_set_u32(target, value_buf, value); break; case 'h': wordsize = 2; target_buffer_set_u16(target, value_buf, value); break; case 'b': wordsize = 1; value_buf[0] = value; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } for (i=0; i<count; i++) { int retval; switch (wordsize) { case 4: retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf); break; case 2: retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf); break; case 1: retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf); break; default: return ERROR_OK; } keep_alive(); if (retval!=ERROR_OK) { return retval; } } return ERROR_OK; } int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u8 *buffer; u32 buf_cnt; u32 image_size; u32 min_address=0; u32 max_address=0xffffffff; int i; int retval, retvaltemp; image_t image; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if ((argc < 1)||(argc > 5)) { return ERROR_COMMAND_SYNTAX_ERROR; } /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */ if (argc >= 2) { image.base_address_set = 1; image.base_address = strtoul(args[1], NULL, 0); } else { image.base_address_set = 0; } image.start_address_set = 0; if (argc>=4) { min_address=strtoul(args[3], NULL, 0); } if (argc>=5) { max_address=strtoul(args[4], NULL, 0)+min_address; } if (min_address>max_address) { return ERROR_COMMAND_SYNTAX_ERROR; } duration_start_measure(&duration); if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK) { return ERROR_OK; } image_size = 0x0; retval = ERROR_OK; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } u32 offset=0; u32 length=buf_cnt; /* DANGER!!! beware of unsigned comparision here!!! */ if ((image.sections[i].base_address+buf_cnt>=min_address)&& (image.sections[i].base_address<max_address)) { if (image.sections[i].base_address<min_address) { /* clip addresses below */ offset+=min_address-image.sections[i].base_address; length-=offset; } if (image.sections[i].base_address+buf_cnt>max_address) { length-=(image.sections[i].base_address+buf_cnt)-max_address; } if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK) { free(buffer); break; } image_size += length; command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset); } free(buffer); } if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK) { image_close(&image); return retvaltemp; } if (retval==ERROR_OK) { command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text); } free(duration_text); image_close(&image); return retval; } int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { fileio_t fileio; u32 address; u32 size; u8 buffer[560]; int retval=ERROR_OK, retvaltemp; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if (argc != 3) { command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>"); return ERROR_OK; } address = strtoul(args[1], NULL, 0); size = strtoul(args[2], NULL, 0); if ((address & 3) || (size & 3)) { command_print(cmd_ctx, "only 32-bit aligned address and size are supported"); return ERROR_OK; } if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK) { return ERROR_OK; } duration_start_measure(&duration); while (size > 0) { u32 size_written; u32 this_run_size = (size > 560) ? 560 : size; retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer); if (retval != ERROR_OK) { break; } retval = fileio_write(&fileio, this_run_size, buffer, &size_written); if (retval != ERROR_OK) { break; } size -= this_run_size; address += this_run_size; } if((retvaltemp = fileio_close(&fileio)) != ERROR_OK) return retvaltemp; if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK) return retvaltemp; if (retval==ERROR_OK) { command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text); } free(duration_text); return ERROR_OK; } int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u8 *buffer; u32 buf_cnt; u32 image_size; int i; int retval, retvaltemp; u32 checksum = 0; u32 mem_checksum = 0; image_t image; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if (argc < 1) { return ERROR_COMMAND_SYNTAX_ERROR; } if (!target) { LOG_ERROR("no target selected"); return ERROR_FAIL; } duration_start_measure(&duration); if (argc >= 2) { image.base_address_set = 1; image.base_address = strtoul(args[1], NULL, 0); } else { image.base_address_set = 0; image.base_address = 0x0; } image.start_address_set = 0; if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK) { return retval; } image_size = 0x0; retval=ERROR_OK; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } /* calculate checksum of image */ image_calculate_checksum( buffer, buf_cnt, &checksum ); retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum); if( retval != ERROR_OK ) { free(buffer); break; } if( checksum != mem_checksum ) { /* failed crc checksum, fall back to a binary compare */ u8 *data; command_print(cmd_ctx, "checksum mismatch - attempting binary compare"); data = (u8*)malloc(buf_cnt); /* Can we use 32bit word accesses? */ int size = 1; int count = buf_cnt; if ((count % 4) == 0) { size *= 4; count /= 4; } retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data); if (retval == ERROR_OK) { int t; for (t = 0; t < buf_cnt; t++) { if (data[t] != buffer[t]) { command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]); free(data); free(buffer); retval=ERROR_FAIL; goto done; } if ((t%16384)==0) { keep_alive(); } } } free(data); } free(buffer); image_size += buf_cnt; } done: if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK) { image_close(&image); return retvaltemp; } if (retval==ERROR_OK) { command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text); } free(duration_text); image_close(&image); return retval; } int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); if (argc == 0) { breakpoint_t *breakpoint = target->breakpoints; while (breakpoint) { if (breakpoint->type == BKPT_SOFT) { char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16); command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf); free(buf); } else { command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set); } breakpoint = breakpoint->next; } } else if (argc >= 2) { int hw = BKPT_SOFT; u32 length = 0; length = strtoul(args[1], NULL, 0); if (argc >= 3) if (strcmp(args[2], "hw") == 0) hw = BKPT_HARD; if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK) { LOG_ERROR("Failure setting breakpoints"); } else { command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0)); } } else { command_print(cmd_ctx, "usage: bp <address> <length> ['hw']"); } return ERROR_OK; } int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc > 0) breakpoint_remove(target, strtoul(args[0], NULL, 0)); return ERROR_OK; } int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); int retval; if (argc == 0) { watchpoint_t *watchpoint = target->watchpoints; while (watchpoint) { command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask); watchpoint = watchpoint->next; } } else if (argc >= 2) { enum watchpoint_rw type = WPT_ACCESS; u32 data_value = 0x0; u32 data_mask = 0xffffffff; if (argc >= 3) { switch(args[2][0]) { case 'r': type = WPT_READ; break; case 'w': type = WPT_WRITE; break; case 'a': type = WPT_ACCESS; break; default: command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]"); return ERROR_OK; } } if (argc >= 4) { data_value = strtoul(args[3], NULL, 0); } if (argc >= 5) { data_mask = strtoul(args[4], NULL, 0); } if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0), strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK) { LOG_ERROR("Failure setting breakpoints"); } } else { command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]"); } return ERROR_OK; } int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc > 0) watchpoint_remove(target, strtoul(args[0], NULL, 0)); return ERROR_OK; } int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); u32 va; u32 pa; if (argc != 1) { return ERROR_COMMAND_SYNTAX_ERROR; } va = strtoul(args[0], NULL, 0); retval = target->type->virt2phys(target, va, &pa); if (retval == ERROR_OK) { command_print(cmd_ctx, "Physical address 0x%08x", pa); } else { /* lower levels will have logged a detailed error which is * forwarded to telnet/GDB session. */ } return retval; } static void writeLong(FILE *f, int l) { int i; for (i=0; i<4; i++) { char c=(l>>(i*8))&0xff; fwrite(&c, 1, 1, f); } } static void writeString(FILE *f, char *s) { fwrite(s, 1, strlen(s), f); } /* Dump a gmon.out histogram file. */ static void writeGmon(u32 *samples, int sampleNum, char *filename) { int i; FILE *f=fopen(filename, "w"); if (f==NULL) return; fwrite("gmon", 1, 4, f); writeLong(f, 0x00000001); /* Version */ writeLong(f, 0); /* padding */ writeLong(f, 0); /* padding */ writeLong(f, 0); /* padding */ fwrite("", 1, 1, f); /* GMON_TAG_TIME_HIST */ /* figure out bucket size */ u32 min=samples[0]; u32 max=samples[0]; for (i=0; i<sampleNum; i++) { if (min>samples[i]) { min=samples[i]; } if (max<samples[i]) { max=samples[i]; } } int addressSpace=(max-min+1); static int const maxBuckets=256*1024; /* maximum buckets. */ int length=addressSpace; if (length > maxBuckets) { length=maxBuckets; } int *buckets=malloc(sizeof(int)*length); if (buckets==NULL) { fclose(f); return; } memset(buckets, 0, sizeof(int)*length); for (i=0; i<sampleNum;i++) { u32 address=samples[i]; long long a=address-min; long long b=length-1; long long c=addressSpace-1; int index=(a*b)/c; /* danger!!!! int32 overflows */ buckets[index]++; } /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */ writeLong(f, min); /* low_pc */ writeLong(f, max); /* high_pc */ writeLong(f, length); /* # of samples */ writeLong(f, 64000000); /* 64MHz */ writeString(f, "seconds"); for (i=0; i<(15-strlen("seconds")); i++) { fwrite("", 1, 1, f); /* padding */ } writeString(f, "s"); /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */ char *data=malloc(2*length); if (data!=NULL) { for (i=0; i<length;i++) { int val; val=buckets[i]; if (val>65535) { val=65535; } data[i*2]=val&0xff; data[i*2+1]=(val>>8)&0xff; } free(buckets); fwrite(data, 1, length*2, f); free(data); } else { free(buckets); } fclose(f); } /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */ int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); struct timeval timeout, now; gettimeofday(&timeout, NULL); if (argc!=2) { return ERROR_COMMAND_SYNTAX_ERROR; } char *end; timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0); if (*end) { return ERROR_OK; } command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can..."); static const int maxSample=10000; u32 *samples=malloc(sizeof(u32)*maxSample); if (samples==NULL) return ERROR_OK; int numSamples=0; int retval=ERROR_OK; /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */ reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1); for (;;) { target_poll(target); if (target->state == TARGET_HALTED) { u32 t=*((u32 *)reg->value); samples[numSamples++]=t; retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */ target_poll(target); alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */ } else if (target->state == TARGET_RUNNING) { /* We want to quickly sample the PC. */ if((retval = target_halt(target)) != ERROR_OK) { free(samples); return retval; } } else { command_print(cmd_ctx, "Target not halted or running"); retval=ERROR_OK; break; } if (retval!=ERROR_OK) { break; } gettimeofday(&now, NULL); if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) { command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples); if((retval = target_poll(target)) != ERROR_OK) { free(samples); return retval; } if (target->state == TARGET_HALTED) { target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */ } if((retval = target_poll(target)) != ERROR_OK) { free(samples); return retval; } writeGmon(samples, numSamples, args[1]); command_print(cmd_ctx, "Wrote %s", args[1]); break; } } free(samples); return ERROR_OK; } static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val) { char *namebuf; Jim_Obj *nameObjPtr, *valObjPtr; int result; namebuf = alloc_printf("%s(%d)", varname, idx); if (!namebuf) return JIM_ERR; nameObjPtr = Jim_NewStringObj(interp, namebuf, -1); valObjPtr = Jim_NewIntObj(interp, val); if (!nameObjPtr || !valObjPtr) { free(namebuf); return JIM_ERR; } Jim_IncrRefCount(nameObjPtr); Jim_IncrRefCount(valObjPtr); result = Jim_SetVariable(interp, nameObjPtr, valObjPtr); Jim_DecrRefCount(interp, nameObjPtr); Jim_DecrRefCount(interp, valObjPtr); free(namebuf); /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */ return result; } static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { command_context_t *context; target_t *target; context = Jim_GetAssocData(interp, "context"); if (context == NULL) { LOG_ERROR("mem2array: no command context"); return JIM_ERR; } target = get_current_target(context); if (target == NULL) { LOG_ERROR("mem2array: no current target"); return JIM_ERR; } return target_mem2array(interp, target, argc,argv); } static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv) { long l; u32 width; int len; u32 addr; u32 count; u32 v; const char *varname; u8 buffer[4096]; int i, n, e, retval; /* argv[1] = name of array to receive the data * argv[2] = desired width * argv[3] = memory address * argv[4] = count of times to read */ if (argc != 5) { Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems"); return JIM_ERR; } varname = Jim_GetString(argv[1], &len); /* given "foo" get space for worse case "foo(%d)" .. add 20 */ e = Jim_GetLong(interp, argv[2], &l); width = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[3], &l); addr = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[4], &l); len = l; if (e != JIM_OK) { return e; } switch (width) { case 8: width = 1; break; case 16: width = 2; break; case 32: width = 4; break; default: Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL ); return JIM_ERR; } if (len == 0) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL); return JIM_ERR; } if ((addr + (len * width)) < addr) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL); return JIM_ERR; } /* absurd transfer size? */ if (len > 65536) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL); return JIM_ERR; } if ((width == 1) || ((width == 2) && ((addr & 1) == 0)) || ((width == 4) && ((addr & 3) == 0))) { /* all is well */ } else { char buf[100]; Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width); Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL); return JIM_ERR; } /* Transfer loop */ /* index counter */ n = 0; /* assume ok */ e = JIM_OK; while (len) { /* Slurp... in buffer size chunks */ count = len; /* in objects.. */ if (count > (sizeof(buffer)/width)) { count = (sizeof(buffer)/width); } retval = target->type->read_memory( target, addr, width, count, buffer ); if (retval != ERROR_OK) { /* BOO !*/ LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL); e = JIM_ERR; len = 0; } else { v = 0; /* shut up gcc */ for (i = 0 ;i < count ;i++, n++) { switch (width) { case 4: v = target_buffer_get_u32(target, &buffer[i*width]); break; case 2: v = target_buffer_get_u16(target, &buffer[i*width]); break; case 1: v = buffer[i] & 0x0ff; break; } new_int_array_element(interp, varname, n, v); } len -= count; } } Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); return JIM_OK; } static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val) { char *namebuf; Jim_Obj *nameObjPtr, *valObjPtr; int result; long l; namebuf = alloc_printf("%s(%d)", varname, idx); if (!namebuf) return JIM_ERR; nameObjPtr = Jim_NewStringObj(interp, namebuf, -1); if (!nameObjPtr) { free(namebuf); return JIM_ERR; } Jim_IncrRefCount(nameObjPtr); valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG); Jim_DecrRefCount(interp, nameObjPtr); free(namebuf); if (valObjPtr == NULL) return JIM_ERR; result = Jim_GetLong(interp, valObjPtr, &l); /* printf("%s(%d) => 0%08x\n", varname, idx, val); */ *val = l; return result; } static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { command_context_t *context; target_t *target; context = Jim_GetAssocData(interp, "context"); if (context == NULL){ LOG_ERROR("array2mem: no command context"); return JIM_ERR; } target = get_current_target(context); if (target == NULL){ LOG_ERROR("array2mem: no current target"); return JIM_ERR; } return target_array2mem( interp,target, argc, argv ); } static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv) { long l; u32 width; int len; u32 addr; u32 count; u32 v; const char *varname; u8 buffer[4096]; int i, n, e, retval; /* argv[1] = name of array to get the data * argv[2] = desired width * argv[3] = memory address * argv[4] = count to write */ if (argc != 5) { Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems"); return JIM_ERR; } varname = Jim_GetString(argv[1], &len); /* given "foo" get space for worse case "foo(%d)" .. add 20 */ e = Jim_GetLong(interp, argv[2], &l); width = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[3], &l); addr = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[4], &l); len = l; if (e != JIM_OK) { return e; } switch (width) { case 8: width = 1; break; case 16: width = 2; break; case 32: width = 4; break; default: Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL ); return JIM_ERR; } if (len == 0) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL); return JIM_ERR; } if ((addr + (len * width)) < addr) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL); return JIM_ERR; } /* absurd transfer size? */ if (len > 65536) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL); return JIM_ERR; } if ((width == 1) || ((width == 2) && ((addr & 1) == 0)) || ((width == 4) && ((addr & 3) == 0))) { /* all is well */ } else { char buf[100]; Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width); Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL); return JIM_ERR; } /* Transfer loop */ /* index counter */ n = 0; /* assume ok */ e = JIM_OK; while (len) { /* Slurp... in buffer size chunks */ count = len; /* in objects.. */ if (count > (sizeof(buffer)/width)) { count = (sizeof(buffer)/width); } v = 0; /* shut up gcc */ for (i = 0 ;i < count ;i++, n++) { get_int_array_element(interp, varname, n, &v); switch (width) { case 4: target_buffer_set_u32(target, &buffer[i*width], v); break; case 2: target_buffer_set_u16(target, &buffer[i*width], v); break; case 1: buffer[i] = v & 0x0ff; break; } } len -= count; retval = target->type->write_memory(target, addr, width, count, buffer); if (retval != ERROR_OK) { /* BOO !*/ LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL); e = JIM_ERR; len = 0; } } Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); return JIM_OK; } void target_all_handle_event( enum target_event e ) { target_t *target; LOG_DEBUG( "**all*targets: event: %d, %s", e, Jim_Nvp_value2name_simple( nvp_target_event, e )->name ); target = all_targets; while (target){ target_handle_event( target, e ); target = target->next; } } void target_handle_event( target_t *target, enum target_event e ) { target_event_action_t *teap; int done; teap = target->event_action; done = 0; while( teap ){ if( teap->event == e ){ done = 1; LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n", target->target_number, target->cmd_name, target->type->name, e, Jim_Nvp_value2name_simple( nvp_target_event, e )->name, Jim_GetString( teap->body, NULL ) ); if (Jim_EvalObj( interp, teap->body )!=JIM_OK) { Jim_PrintErrorMessage(interp); } } teap = teap->next; } if( !done ){ LOG_DEBUG( "event: %d %s - no action", e, Jim_Nvp_value2name_simple( nvp_target_event, e )->name ); } } enum target_cfg_param { TCFG_TYPE, TCFG_EVENT, TCFG_WORK_AREA_VIRT, TCFG_WORK_AREA_PHYS, TCFG_WORK_AREA_SIZE, TCFG_WORK_AREA_BACKUP, TCFG_ENDIAN, TCFG_VARIANT, TCFG_CHAIN_POSITION, }; static Jim_Nvp nvp_config_opts[] = { { .name = "-type", .value = TCFG_TYPE }, { .name = "-event", .value = TCFG_EVENT }, { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT }, { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS }, { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE }, { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP }, { .name = "-endian" , .value = TCFG_ENDIAN }, { .name = "-variant", .value = TCFG_VARIANT }, { .name = "-chain-position", .value = TCFG_CHAIN_POSITION }, { .name = NULL, .value = -1 } }; static int target_configure( Jim_GetOptInfo *goi, target_t *target ) { Jim_Nvp *n; Jim_Obj *o; jim_wide w; char *cp; int e; /* parse config or cget options ... */ while( goi->argc > 0 ){ Jim_SetEmptyResult( goi->interp ); /* Jim_GetOpt_Debug( goi ); */ if( target->type->target_jim_configure ){ /* target defines a configure function */ /* target gets first dibs on parameters */ e = (*(target->type->target_jim_configure))( target, goi ); if( e == JIM_OK ){ /* more? */ continue; } if( e == JIM_ERR ){ /* An error */ return e; } /* otherwise we 'continue' below */ } e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n ); if( e != JIM_OK ){ Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 ); return e; } switch( n->value ){ case TCFG_TYPE: /* not setable */ if( goi->isconfigure ){ Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name ); return JIM_ERR; } else { no_params: if( goi->argc != 0 ){ Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS"); return JIM_ERR; } } Jim_SetResultString( goi->interp, target->type->name, -1 ); /* loop for more */ break; case TCFG_EVENT: if( goi->argc == 0 ){ Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ..."); return JIM_ERR; } e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n ); if( e != JIM_OK ){ Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 ); return e; } if( goi->isconfigure ){ if( goi->argc != 1 ){ Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?"); return JIM_ERR; } } else { if( goi->argc != 0 ){ Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?"); return JIM_ERR; } } { target_event_action_t *teap; teap = target->event_action; /* replace existing? */ while( teap ){ if( teap->event == n->value ){ break; } teap = teap->next; } if( goi->isconfigure ){ if( teap == NULL ){ /* create new */ teap = calloc( 1, sizeof(*teap) ); } teap->event = n->value; Jim_GetOpt_Obj( goi, &o ); if( teap->body ){ Jim_DecrRefCount( interp, teap->body ); } teap->body = Jim_DuplicateObj( goi->interp, o ); /* * FIXME: * Tcl/TK - "tk events" have a nice feature. * See the "BIND" command. * We should support that here. * You can specify %X and %Y in the event code. * The idea is: %T - target name. * The idea is: %N - target number * The idea is: %E - event name. */ Jim_IncrRefCount( teap->body ); /* add to head of event list */ teap->next = target->event_action; target->event_action = teap; Jim_SetEmptyResult(goi->interp); } else { /* get */ if( teap == NULL ){ Jim_SetEmptyResult( goi->interp ); } else { Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) ); } } } /* loop for more */ break; case TCFG_WORK_AREA_VIRT: if( goi->isconfigure ){ target_free_all_working_areas(target); e = Jim_GetOpt_Wide( goi, &w ); if( e != JIM_OK ){ return e; } target->working_area_virt = w; } else { if( goi->argc != 0 ){ goto no_params; } } Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) ); /* loop for more */ break; case TCFG_WORK_AREA_PHYS: if( goi->isconfigure ){ target_free_all_working_areas(target); e = Jim_GetOpt_Wide( goi, &w ); if( e != JIM_OK ){ return e; } target->working_area_phys = w; } else { if( goi->argc != 0 ){ goto no_params; } } Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) ); /* loop for more */ break; case TCFG_WORK_AREA_SIZE: if( goi->isconfigure ){ target_free_all_working_areas(target); e = Jim_GetOpt_Wide( goi, &w ); if( e != JIM_OK ){ return e; } target->working_area_size = w; } else { if( goi->argc != 0 ){ goto no_params; } } Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) ); /* loop for more */ break; case TCFG_WORK_AREA_BACKUP: if( goi->isconfigure ){ target_free_all_working_areas(target); e = Jim_GetOpt_Wide( goi, &w ); if( e != JIM_OK ){ return e; } /* make this exactly 1 or 0 */ target->backup_working_area = (!!w); } else { if( goi->argc != 0 ){ goto no_params; } } Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) ); /* loop for more e*/ break; case TCFG_ENDIAN: if( goi->isconfigure ){ e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n ); if( e != JIM_OK ){ Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 ); return e; } target->endianness = n->value; } else { if( goi->argc != 0 ){ goto no_params; } } n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness ); if( n->name == NULL ){ target->endianness = TARGET_LITTLE_ENDIAN; n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness ); } Jim_SetResultString( goi->interp, n->name, -1 ); /* loop for more */ break; case TCFG_VARIANT: if( goi->isconfigure ){ if( goi->argc < 1 ){ Jim_SetResult_sprintf( goi->interp, "%s ?STRING?", n->name ); return JIM_ERR; } if( target->variant ){ free((void *)(target->variant)); } e = Jim_GetOpt_String( goi, &cp, NULL ); target->variant = strdup(cp); } else { if( goi->argc != 0 ){ goto no_params; } } Jim_SetResultString( goi->interp, target->variant,-1 ); /* loop for more */ break; case TCFG_CHAIN_POSITION: if( goi->isconfigure ){ Jim_Obj *o; jtag_tap_t *tap; target_free_all_working_areas(target); e = Jim_GetOpt_Obj( goi, &o ); if( e != JIM_OK ){ return e; } tap = jtag_TapByJimObj( goi->interp, o ); if( tap == NULL ){ return JIM_ERR; } /* make this exactly 1 or 0 */ target->tap = tap; } else { if( goi->argc != 0 ){ goto no_params; } } Jim_SetResultString( interp, target->tap->dotted_name, -1 ); /* loop for more e*/ break; } } /* while( goi->argc ) */ /* done - we return */ return JIM_OK; } /** this is the 'tcl' handler for the target specific command */ static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv ) { Jim_GetOptInfo goi; jim_wide a,b,c; int x,y,z; u8 target_buf[32]; Jim_Nvp *n; target_t *target; struct command_context_s *cmd_ctx; int e; enum { TS_CMD_CONFIGURE, TS_CMD_CGET, TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB, TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB, TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB, TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM, TS_CMD_EXAMINE, TS_CMD_POLL, TS_CMD_RESET, TS_CMD_HALT, TS_CMD_WAITSTATE, TS_CMD_EVENTLIST, TS_CMD_CURSTATE, TS_CMD_INVOKE_EVENT, }; static const Jim_Nvp target_options[] = { { .name = "configure", .value = TS_CMD_CONFIGURE }, { .name = "cget", .value = TS_CMD_CGET }, { .name = "mww", .value = TS_CMD_MWW }, { .name = "mwh", .value = TS_CMD_MWH }, { .name = "mwb", .value = TS_CMD_MWB }, { .name = "mdw", .value = TS_CMD_MDW }, { .name = "mdh", .value = TS_CMD_MDH }, { .name = "mdb", .value = TS_CMD_MDB }, { .name = "mem2array", .value = TS_CMD_MEM2ARRAY }, { .name = "array2mem", .value = TS_CMD_ARRAY2MEM }, { .name = "eventlist", .value = TS_CMD_EVENTLIST }, { .name = "curstate", .value = TS_CMD_CURSTATE }, { .name = "arp_examine", .value = TS_CMD_EXAMINE }, { .name = "arp_poll", .value = TS_CMD_POLL }, { .name = "arp_reset", .value = TS_CMD_RESET }, { .name = "arp_halt", .value = TS_CMD_HALT }, { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE }, { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT }, { .name = NULL, .value = -1 }, }; /* go past the "command" */ Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 ); target = Jim_CmdPrivData( goi.interp ); cmd_ctx = Jim_GetAssocData(goi.interp, "context"); /* commands here are in an NVP table */ e = Jim_GetOpt_Nvp( &goi, target_options, &n ); if( e != JIM_OK ){ Jim_GetOpt_NvpUnknown( &goi, target_options, 0 ); return e; } /* Assume blank result */ Jim_SetEmptyResult( goi.interp ); switch( n->value ){ case TS_CMD_CONFIGURE: if( goi.argc < 2 ){ Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ..."); return JIM_ERR; } goi.isconfigure = 1; return target_configure( &goi, target ); case TS_CMD_CGET: // some things take params if( goi.argc < 1 ){ Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?"); return JIM_ERR; } goi.isconfigure = 0; return target_configure( &goi, target ); break; case TS_CMD_MWW: case TS_CMD_MWH: case TS_CMD_MWB: /* argv[0] = cmd * argv[1] = address * argv[2] = data * argv[3] = optional count. */ if( (goi.argc == 3) || (goi.argc == 4) ){ /* all is well */ } else { mwx_error: Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name ); return JIM_ERR; } e = Jim_GetOpt_Wide( &goi, &a ); if( e != JIM_OK ){ goto mwx_error; } e = Jim_GetOpt_Wide( &goi, &b ); if( e != JIM_OK ){ goto mwx_error; } if( goi.argc ){ e = Jim_GetOpt_Wide( &goi, &c ); if( e != JIM_OK ){ goto mwx_error; } } else { c = 1; } switch( n->value ){ case TS_CMD_MWW: target_buffer_set_u32( target, target_buf, b ); b = 4; break; case TS_CMD_MWH: target_buffer_set_u16( target, target_buf, b ); b = 2; break; case TS_CMD_MWB: target_buffer_set_u8( target, target_buf, b ); b = 1; break; } for( x = 0 ; x < c ; x++ ){ e = target->type->write_memory( target, a, b, 1, target_buf ); if( e != ERROR_OK ){ Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e ); return JIM_ERR; } /* b = width */ a = a + b; } return JIM_OK; break; /* display */ case TS_CMD_MDW: case TS_CMD_MDH: case TS_CMD_MDB: /* argv[0] = command * argv[1] = address * argv[2] = optional count */ if( (goi.argc == 2) || (goi.argc == 3) ){ Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name ); return JIM_ERR; } e = Jim_GetOpt_Wide( &goi, &a ); if( e != JIM_OK ){ return JIM_ERR; } if( goi.argc ){ e = Jim_GetOpt_Wide( &goi, &c ); if( e != JIM_OK ){ return JIM_ERR; } } else { c = 1; } b = 1; /* shut up gcc */ switch( n->value ){ case TS_CMD_MDW: b = 4; break; case TS_CMD_MDH: b = 2; break; case TS_CMD_MDB: b = 1; break; } /* convert to "bytes" */ c = c * b; /* count is now in 'BYTES' */ while( c > 0 ){ y = c; if( y > 16 ){ y = 16; } e = target->type->read_memory( target, a, b, y / b, target_buf ); if( e != ERROR_OK ){ Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) ); return JIM_ERR; } Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) ); switch( b ){ case 4: for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){ z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) ); Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) ); } for( ; (x < 16) ; x += 4 ){ Jim_fprintf( interp, interp->cookie_stdout, " " ); } break; case 2: for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){ z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) ); Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) ); } for( ; (x < 16) ; x += 2 ){ Jim_fprintf( interp, interp->cookie_stdout, " " ); } break; case 1: default: for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){ z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) ); Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) ); } for( ; (x < 16) ; x += 1 ){ Jim_fprintf( interp, interp->cookie_stdout, " " ); } break; } /* ascii-ify the bytes */ for( x = 0 ; x < y ; x++ ){ if( (target_buf[x] >= 0x20) && (target_buf[x] <= 0x7e) ){ /* good */ } else { /* smack it */ target_buf[x] = '.'; } } /* space pad */ while( x < 16 ){ target_buf[x] = ' '; x++; } /* terminate */ target_buf[16] = 0; /* print - with a newline */ Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf ); /* NEXT... */ c -= 16; a += 16; } return JIM_OK; case TS_CMD_MEM2ARRAY: return target_mem2array( goi.interp, target, goi.argc, goi.argv ); break; case TS_CMD_ARRAY2MEM: return target_array2mem( goi.interp, target, goi.argc, goi.argv ); break; case TS_CMD_EXAMINE: if( goi.argc ){ Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]"); return JIM_ERR; } e = target->type->examine( target ); if( e != ERROR_OK ){ Jim_SetResult_sprintf( interp, "examine-fails: %d", e ); return JIM_ERR; } return JIM_OK; case TS_CMD_POLL: if( goi.argc ){ Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]"); return JIM_ERR; } if( !(target->type->examined) ){ e = ERROR_TARGET_NOT_EXAMINED; } else { e = target->type->poll( target ); } if( e != ERROR_OK ){ Jim_SetResult_sprintf( interp, "poll-fails: %d", e ); return JIM_ERR; } else { return JIM_OK; } break; case TS_CMD_RESET: if( goi.argc != 2 ){ Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL"); return JIM_ERR; } e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n ); if( e != JIM_OK ){ Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 ); return e; } /* the halt or not param */ e = Jim_GetOpt_Wide( &goi, &a); if( e != JIM_OK ){ return e; } /* determine if we should halt or not. */ target->reset_halt = !!a; /* When this happens - all workareas are invalid. */ target_free_all_working_areas_restore(target, 0); /* do the assert */ if( n->value == NVP_ASSERT ){ target->type->assert_reset( target ); } else { target->type->deassert_reset( target ); } return JIM_OK; case TS_CMD_HALT: if( goi.argc ){ Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]"); return JIM_ERR; } target->type->halt( target ); return JIM_OK; case TS_CMD_WAITSTATE: /* params: <name> statename timeoutmsecs */ if( goi.argc != 2 ){ Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name ); return JIM_ERR; } e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n ); if( e != JIM_OK ){ Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 ); return e; } e = Jim_GetOpt_Wide( &goi, &a ); if( e != JIM_OK ){ return e; } e = target_wait_state( target, n->value, a ); if( e != ERROR_OK ){ Jim_SetResult_sprintf( goi.interp, "target: %s wait %s fails (%d) %s", target->cmd_name, n->name, e, target_strerror_safe(e) ); return JIM_ERR; } else { return JIM_OK; } case TS_CMD_EVENTLIST: /* List for human, Events defined for this target. * scripts/programs should use 'name cget -event NAME' */ { target_event_action_t *teap; teap = target->event_action; command_print( cmd_ctx, "Event actions for target (%d) %s\n", target->target_number, target->cmd_name ); command_print( cmd_ctx, "%-25s | Body", "Event"); command_print( cmd_ctx, "------------------------- | ----------------------------------------"); while( teap ){ command_print( cmd_ctx, "%-25s | %s", Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name, Jim_GetString( teap->body, NULL ) ); teap = teap->next; } command_print( cmd_ctx, "***END***"); return JIM_OK; } case TS_CMD_CURSTATE: if( goi.argc != 0 ){ Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]"); return JIM_ERR; } Jim_SetResultString( goi.interp, Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1); return JIM_OK; case TS_CMD_INVOKE_EVENT: if( goi.argc != 1 ){ Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name); return JIM_ERR; } e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n ); if( e != JIM_OK ){ Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 ); return e; } target_handle_event( target, n->value ); return JIM_OK; } return JIM_ERR; } static int target_create( Jim_GetOptInfo *goi ) { Jim_Obj *new_cmd; Jim_Cmd *cmd; const char *cp; char *cp2; int e; int x; target_t *target; struct command_context_s *cmd_ctx; cmd_ctx = Jim_GetAssocData(goi->interp, "context"); if( goi->argc < 3 ){ Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options..."); return JIM_ERR; } /* COMMAND */ Jim_GetOpt_Obj( goi, &new_cmd ); /* does this command exist? */ cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG ); if( cmd ){ cp = Jim_GetString( new_cmd, NULL ); Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp); return JIM_ERR; } /* TYPE */ e = Jim_GetOpt_String( goi, &cp2, NULL ); cp = cp2; /* now does target type exist */ for( x = 0 ; target_types[x] ; x++ ){ if( 0 == strcmp( cp, target_types[x]->name ) ){ /* found */ break; } } if( target_types[x] == NULL ){ Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp ); for( x = 0 ; target_types[x] ; x++ ){ if( target_types[x+1] ){ Jim_AppendStrings( goi->interp, Jim_GetResult(goi->interp), target_types[x]->name, ", ", NULL); } else { Jim_AppendStrings( goi->interp, Jim_GetResult(goi->interp), " or ", target_types[x]->name,NULL ); } } return JIM_ERR; } /* Create it */ target = calloc(1,sizeof(target_t)); /* set target number */ target->target_number = new_target_number(); /* allocate memory for each unique target type */ target->type = (target_type_t*)calloc(1,sizeof(target_type_t)); memcpy( target->type, target_types[x], sizeof(target_type_t)); /* will be set by "-endian" */ target->endianness = TARGET_ENDIAN_UNKNOWN; target->working_area = 0x0; target->working_area_size = 0x0; target->working_areas = NULL; target->backup_working_area = 0; target->state = TARGET_UNKNOWN; target->debug_reason = DBG_REASON_UNDEFINED; target->reg_cache = NULL; target->breakpoints = NULL; target->watchpoints = NULL; target->next = NULL; target->arch_info = NULL; target->display = 1; /* initialize trace information */ target->trace_info = malloc(sizeof(trace_t)); target->trace_info->num_trace_points = 0; target->trace_info->trace_points_size = 0; target->trace_info->trace_points = NULL; target->trace_info->trace_history_size = 0; target->trace_info->trace_history = NULL; target->trace_info->trace_history_pos = 0; target->trace_info->trace_history_overflowed = 0; target->dbgmsg = NULL; target->dbg_msg_enabled = 0; target->endianness = TARGET_ENDIAN_UNKNOWN; /* Do the rest as "configure" options */ goi->isconfigure = 1; e = target_configure( goi, target); if( e != JIM_OK ){ free( target->type ); free( target ); return e; } if( target->endianness == TARGET_ENDIAN_UNKNOWN ){ /* default endian to little if not specified */ target->endianness = TARGET_LITTLE_ENDIAN; } /* incase variant is not set */ if (!target->variant) target->variant = strdup(""); /* create the target specific commands */ if( target->type->register_commands ){ (*(target->type->register_commands))( cmd_ctx ); } if( target->type->target_create ){ (*(target->type->target_create))( target, goi->interp ); } /* append to end of list */ { target_t **tpp; tpp = &(all_targets); while( *tpp ){ tpp = &( (*tpp)->next ); } *tpp = target; } cp = Jim_GetString( new_cmd, NULL ); target->cmd_name = strdup(cp); /* now - create the new target name command */ e = Jim_CreateCommand( goi->interp, /* name */ cp, tcl_target_func, /* C function */ target, /* private data */ NULL ); /* no del proc */ return e; } static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv ) { int x,r,e; jim_wide w; struct command_context_s *cmd_ctx; target_t *target; Jim_GetOptInfo goi; enum tcmd { /* TG = target generic */ TG_CMD_CREATE, TG_CMD_TYPES, TG_CMD_NAMES, TG_CMD_CURRENT, TG_CMD_NUMBER, TG_CMD_COUNT, }; const char *target_cmds[] = { "create", "types", "names", "current", "number", "count", NULL /* terminate */ }; LOG_DEBUG("Target command params:"); LOG_DEBUG(Jim_Debug_ArgvString( interp, argc, argv) ); cmd_ctx = Jim_GetAssocData( interp, "context" ); Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 ); if( goi.argc == 0 ){ Jim_WrongNumArgs(interp, 1, argv, "missing: command ..."); return JIM_ERR; } /* Jim_GetOpt_Debug( &goi ); */ r = Jim_GetOpt_Enum( &goi, target_cmds, &x ); if( r != JIM_OK ){ return r; } switch(x){ default: Jim_Panic(goi.interp,"Why am I here?"); return JIM_ERR; case TG_CMD_CURRENT: if( goi.argc != 0 ){ Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters"); return JIM_ERR; } Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 ); return JIM_OK; case TG_CMD_TYPES: if( goi.argc != 0 ){ Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" ); return JIM_ERR; } Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) ); for( x = 0 ; target_types[x] ; x++ ){ Jim_ListAppendElement( goi.interp, Jim_GetResult(goi.interp), Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) ); } return JIM_OK; case TG_CMD_NAMES: if( goi.argc != 0 ){ Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" ); return JIM_ERR; } Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) ); target = all_targets; while( target ){ Jim_ListAppendElement( goi.interp, Jim_GetResult(goi.interp), Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) ); target = target->next; } return JIM_OK; case TG_CMD_CREATE: if( goi.argc < 3 ){ Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name ... config options ..."); return JIM_ERR; } return target_create( &goi ); break; case TG_CMD_NUMBER: if( goi.argc != 1 ){ Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?"); return JIM_ERR; } e = Jim_GetOpt_Wide( &goi, &w ); if( e != JIM_OK ){ return JIM_ERR; } { target_t *t; t = get_target_by_num(w); if( t == NULL ){ Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w)); return JIM_ERR; } Jim_SetResultString( goi.interp, t->cmd_name, -1 ); return JIM_OK; } case TG_CMD_COUNT: if( goi.argc != 0 ){ Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>"); return JIM_ERR; } Jim_SetResult( goi.interp, Jim_NewIntObj( goi.interp, max_target_number())); return JIM_OK; } return JIM_ERR; } struct FastLoad { u32 address; u8 *data; int length; }; static int fastload_num; static struct FastLoad *fastload; static void free_fastload(void) { if (fastload!=NULL) { int i; for (i=0; i<fastload_num; i++) { if (fastload[i].data) free(fastload[i].data); } free(fastload); fastload=NULL; } } int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u8 *buffer; u32 buf_cnt; u32 image_size; u32 min_address=0; u32 max_address=0xffffffff; int i; int retval; image_t image; duration_t duration; char *duration_text; if ((argc < 1)||(argc > 5)) { return ERROR_COMMAND_SYNTAX_ERROR; } /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */ if (argc >= 2) { image.base_address_set = 1; image.base_address = strtoul(args[1], NULL, 0); } else { image.base_address_set = 0; } image.start_address_set = 0; if (argc>=4) { min_address=strtoul(args[3], NULL, 0); } if (argc>=5) { max_address=strtoul(args[4], NULL, 0)+min_address; } if (min_address>max_address) { return ERROR_COMMAND_SYNTAX_ERROR; } duration_start_measure(&duration); if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK) { return ERROR_OK; } image_size = 0x0; retval = ERROR_OK; fastload_num=image.num_sections; fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections); if (fastload==NULL) { image_close(&image); return ERROR_FAIL; } memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections); for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } u32 offset=0; u32 length=buf_cnt; /* DANGER!!! beware of unsigned comparision here!!! */ if ((image.sections[i].base_address+buf_cnt>=min_address)&& (image.sections[i].base_address<max_address)) { if (image.sections[i].base_address<min_address) { /* clip addresses below */ offset+=min_address-image.sections[i].base_address; length-=offset; } if (image.sections[i].base_address+buf_cnt>max_address) { length-=(image.sections[i].base_address+buf_cnt)-max_address; } fastload[i].address=image.sections[i].base_address+offset; fastload[i].data=malloc(length); if (fastload[i].data==NULL) { free(buffer); break; } memcpy(fastload[i].data, buffer+offset, length); fastload[i].length=length; image_size += length; command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset); } free(buffer); } duration_stop_measure(&duration, &duration_text); if (retval==ERROR_OK) { command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text); command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so."); } free(duration_text); image_close(&image); if (retval!=ERROR_OK) { free_fastload(); } return retval; } int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc>0) return ERROR_COMMAND_SYNTAX_ERROR; if (fastload==NULL) { LOG_ERROR("No image in memory"); return ERROR_FAIL; } int i; int ms=timeval_ms(); int size=0; for (i=0; i<fastload_num;i++) { int retval; target_t *target = get_current_target(cmd_ctx); if ((retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data)) != ERROR_OK) { return retval; } size+=fastload[i].length; } int after=timeval_ms(); command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0)); return ERROR_OK; }