/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2007,2008 Øyvind Harboe * * oyvind.harboe@zylin.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "replacements.h" #include "target.h" #include "target_request.h" #include "log.h" #include "configuration.h" #include "binarybuffer.h" #include "jtag.h" #include #include #include #include #include #include #include #include #include #include #include #include int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv); int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc); int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv); static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv); static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv); static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv); /* targets */ extern target_type_t arm7tdmi_target; extern target_type_t arm720t_target; extern target_type_t arm9tdmi_target; extern target_type_t arm920t_target; extern target_type_t arm966e_target; extern target_type_t arm926ejs_target; extern target_type_t feroceon_target; extern target_type_t xscale_target; extern target_type_t cortexm3_target; extern target_type_t arm11_target; extern target_type_t mips_m4k_target; target_type_t *target_types[] = { &arm7tdmi_target, &arm9tdmi_target, &arm920t_target, &arm720t_target, &arm966e_target, &arm926ejs_target, &feroceon_target, &xscale_target, &cortexm3_target, &arm11_target, &mips_m4k_target, NULL, }; target_t *all_targets = NULL; target_event_callback_t *target_event_callbacks = NULL; target_timer_callback_t *target_timer_callbacks = NULL; const Jim_Nvp nvp_assert[] = { { .name = "assert", NVP_ASSERT }, { .name = "deassert", NVP_DEASSERT }, { .name = "T", NVP_ASSERT }, { .name = "F", NVP_DEASSERT }, { .name = "t", NVP_ASSERT }, { .name = "f", NVP_DEASSERT }, { .name = NULL, .value = -1 } }; const Jim_Nvp nvp_target_event[] = { { .value = TARGET_EVENT_HALTED, .name = "halted" }, { .value = TARGET_EVENT_RESUMED, .name = "resumed" }, { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" }, { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" }, /* historical name */ { .value = TARGET_EVENT_RESET_START , .name = "pre_reset" }, { .value = TARGET_EVENT_RESET_START, .name = "reset-start" }, /* historical name */ { .value = TARGET_EVENT_RESET , .name = "reset" }, { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" }, { .value = TARGET_EVENT_RESET_END, .name = "reset-end" }, { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" }, { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" }, { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" }, { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" }, { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" }, { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" }, { .value = TARGET_EVENT_GDB_FLASH_ERASE_START , .name = "gdb_program_config" }, { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" }, { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" }, { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" }, { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" }, { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" }, { .name = NULL, .value = -1 } }; const Jim_Nvp nvp_target_state[] = { { .name = "unknown", .value = TARGET_UNKNOWN }, { .name = "running", .value = TARGET_RUNNING }, { .name = "halted", .value = TARGET_HALTED }, { .name = "reset", .value = TARGET_RESET }, { .name = "debug-running", .value = TARGET_DEBUG_RUNNING }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_target_debug_reason [] = { { .name = "debug-request" , .value = DBG_REASON_DBGRQ }, { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT }, { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT }, { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT }, { .name = "single-step" , .value = DBG_REASON_SINGLESTEP }, { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED }, { .name = "undefined" , .value = DBG_REASON_UNDEFINED }, { .name = NULL, .value = -1 }, }; const Jim_Nvp nvp_target_endian[] = { { .name = "big", .value = TARGET_BIG_ENDIAN }, { .name = "little", .value = TARGET_LITTLE_ENDIAN }, { .name = "be", .value = TARGET_BIG_ENDIAN }, { .name = "le", .value = TARGET_LITTLE_ENDIAN }, { .name = NULL, .value = -1 }, }; /* determine the number of the new target */ static int new_target_number( void ) { target_t *t; int x; /* number is 0 based */ x = -1; t = all_targets; while(t){ if( x < t->target_number ){ x = t->target_number; } t = t->next; } return x+1; } static int target_continous_poll = 1; /* read a u32 from a buffer in target memory endianness */ u32 target_buffer_get_u32(target_t *target, u8 *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u32(buffer); else return be_to_h_u32(buffer); } /* read a u16 from a buffer in target memory endianness */ u16 target_buffer_get_u16(target_t *target, u8 *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u16(buffer); else return be_to_h_u16(buffer); } /* read a u8 from a buffer in target memory endianness */ u8 target_buffer_get_u8(target_t *target, u8 *buffer) { return *buffer & 0x0ff; } /* write a u32 to a buffer in target memory endianness */ void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u32_to_le(buffer, value); else h_u32_to_be(buffer, value); } /* write a u16 to a buffer in target memory endianness */ void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u16_to_le(buffer, value); else h_u16_to_be(buffer, value); } /* write a u8 to a buffer in target memory endianness */ void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value) { *buffer = value; } /* returns a pointer to the n-th configured target */ target_t* get_target_by_num(int num) { target_t *target = all_targets; while (target){ if( target->target_number == num ){ return target; } target = target->next; } return NULL; } int get_num_by_target(target_t *query_target) { return query_target->target_number; } target_t* get_current_target(command_context_t *cmd_ctx) { target_t *target = get_target_by_num(cmd_ctx->current_target); if (target == NULL) { LOG_ERROR("BUG: current_target out of bounds"); exit(-1); } return target; } int target_poll(struct target_s *target) { /* We can't poll until after examine */ if (!target->type->examined) { /* Fail silently lest we pollute the log */ return ERROR_FAIL; } return target->type->poll(target); } int target_halt(struct target_s *target) { /* We can't poll until after examine */ if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->halt(target); } int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution) { int retval; /* We can't poll until after examine */ if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?) * the application. */ if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK) return retval; return retval; } int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode) { int retval = ERROR_OK; target_t *target; target = all_targets; while (target) { target_invoke_script(cmd_ctx, target, "pre_reset"); target = target->next; } if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK) return retval; keep_alive(); /* we might be running on a very slow JTAG clk */ /* First time this is executed after launching OpenOCD, it will read out * the type of CPU, etc. and init Embedded ICE registers in host * memory. * * It will also set up ICE registers in the target. * * However, if we assert TRST later, we need to set up the registers again. * * For the "reset halt/init" case we must only set up the registers here. */ if ((retval = target_examine()) != ERROR_OK) return retval; keep_alive(); /* we might be running on a very slow JTAG clk */ target = all_targets; while (target) { /* we have no idea what state the target is in, so we * have to drop working areas */ target_free_all_working_areas_restore(target, 0); target->reset_halt=((reset_mode==RESET_HALT)||(reset_mode==RESET_INIT)); if ((retval = target->type->assert_reset(target))!=ERROR_OK) return retval; target = target->next; } target = all_targets; while (target) { if ((retval = target->type->deassert_reset(target))!=ERROR_OK) return retval; target = target->next; } target = all_targets; while (target) { /* We can fail to bring the target into the halted state, try after reset has been deasserted */ if (target->reset_halt) { /* wait up to 1 second for halt. */ target_wait_state(target, TARGET_HALTED, 1000); if (target->state != TARGET_HALTED) { LOG_WARNING("Failed to reset target into halted mode - issuing halt"); if ((retval = target->type->halt(target))!=ERROR_OK) return retval; } } target = target->next; } LOG_DEBUG("Waiting for halted stated as appropriate"); if ((reset_mode == RESET_HALT) || (reset_mode == RESET_INIT)) { target = all_targets; while (target) { /* Wait for reset to complete, maximum 5 seconds. */ if (((retval=target_wait_state(target, TARGET_HALTED, 5000)))==ERROR_OK) { if (reset_mode == RESET_INIT) target_invoke_script(cmd_ctx, target, "post_reset"); } target = target->next; } } /* We want any events to be processed before the prompt */ target_call_timer_callbacks_now(); return retval; } static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical) { *physical = virtual; return ERROR_OK; } static int default_mmu(struct target_s *target, int *enabled) { *enabled = 0; return ERROR_OK; } static int default_examine(struct target_s *target) { target->type->examined = 1; return ERROR_OK; } /* Targets that correctly implement init+examine, i.e. * no communication with target during init: * * XScale */ int target_examine(void) { int retval = ERROR_OK; target_t *target = all_targets; while (target) { if ((retval = target->type->examine(target))!=ERROR_OK) return retval; target = target->next; } return retval; } static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer) { if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->write_memory_imp(target, address, size, count, buffer); } static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer) { if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->read_memory_imp(target, address, size, count, buffer); } static int target_soft_reset_halt_imp(struct target_s *target) { if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->soft_reset_halt_imp(target); } static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info) { if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info); } int target_init(struct command_context_s *cmd_ctx) { target_t *target = all_targets; while (target) { target->type->examined = 0; if (target->type->examine == NULL) { target->type->examine = default_examine; } if (target->type->init_target(cmd_ctx, target) != ERROR_OK) { LOG_ERROR("target '%s' init failed", target->type->name); exit(-1); } /* Set up default functions if none are provided by target */ if (target->type->virt2phys == NULL) { target->type->virt2phys = default_virt2phys; } target->type->virt2phys = default_virt2phys; /* a non-invasive way(in terms of patches) to add some code that * runs before the type->write/read_memory implementation */ target->type->write_memory_imp = target->type->write_memory; target->type->write_memory = target_write_memory_imp; target->type->read_memory_imp = target->type->read_memory; target->type->read_memory = target_read_memory_imp; target->type->soft_reset_halt_imp = target->type->soft_reset_halt; target->type->soft_reset_halt = target_soft_reset_halt_imp; target->type->run_algorithm_imp = target->type->run_algorithm; target->type->run_algorithm = target_run_algorithm_imp; if (target->type->mmu == NULL) { target->type->mmu = default_mmu; } target = target->next; } if (all_targets) { target_register_user_commands(cmd_ctx); target_register_timer_callback(handle_target, 100, 1, NULL); } return ERROR_OK; } int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **callbacks_p = &target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_event_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv) { target_timer_callback_t **callbacks_p = &target_timer_callbacks; struct timeval now; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_timer_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->periodic = periodic; (*callbacks_p)->time_ms = time_ms; gettimeofday(&now, NULL); (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000); if ((*callbacks_p)->when.tv_usec > 1000000) { (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000; (*callbacks_p)->when.tv_sec += 1; } (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **p = &target_event_callbacks; target_event_callback_t *c = target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_event_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_unregister_timer_callback(int (*callback)(void *priv), void *priv) { target_timer_callback_t **p = &target_timer_callbacks; target_timer_callback_t *c = target_timer_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_timer_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_call_event_callbacks(target_t *target, enum target_event event) { target_event_callback_t *callback = target_event_callbacks; target_event_callback_t *next_callback; LOG_DEBUG("target event %i", event); while (callback) { next_callback = callback->next; callback->callback(target, event, callback->priv); callback = next_callback; } return ERROR_OK; } static int target_call_timer_callbacks_check_time(int checktime) { target_timer_callback_t *callback = target_timer_callbacks; target_timer_callback_t *next_callback; struct timeval now; keep_alive(); gettimeofday(&now, NULL); while (callback) { next_callback = callback->next; if ((!checktime&&callback->periodic)|| (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec)) || (now.tv_sec > callback->when.tv_sec))) { if(callback->callback != NULL) { callback->callback(callback->priv); if (callback->periodic) { int time_ms = callback->time_ms; callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); callback->when.tv_sec = now.tv_sec + time_ms / 1000; if (callback->when.tv_usec > 1000000) { callback->when.tv_usec = callback->when.tv_usec - 1000000; callback->when.tv_sec += 1; } } else target_unregister_timer_callback(callback->callback, callback->priv); } } callback = next_callback; } return ERROR_OK; } int target_call_timer_callbacks(void) { return target_call_timer_callbacks_check_time(1); } /* invoke periodic callbacks immediately */ int target_call_timer_callbacks_now(void) { return target_call_timer_callbacks(); } int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area) { working_area_t *c = target->working_areas; working_area_t *new_wa = NULL; /* Reevaluate working area address based on MMU state*/ if (target->working_areas == NULL) { int retval; int enabled; retval = target->type->mmu(target, &enabled); if (retval != ERROR_OK) { return retval; } if (enabled) { target->working_area = target->working_area_virt; } else { target->working_area = target->working_area_phys; } } /* only allocate multiples of 4 byte */ if (size % 4) { LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding"); size = CEIL(size, 4); } /* see if there's already a matching working area */ while (c) { if ((c->free) && (c->size == size)) { new_wa = c; break; } c = c->next; } /* if not, allocate a new one */ if (!new_wa) { working_area_t **p = &target->working_areas; u32 first_free = target->working_area; u32 free_size = target->working_area_size; LOG_DEBUG("allocating new working area"); c = target->working_areas; while (c) { first_free += c->size; free_size -= c->size; p = &c->next; c = c->next; } if (free_size < size) { LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } new_wa = malloc(sizeof(working_area_t)); new_wa->next = NULL; new_wa->size = size; new_wa->address = first_free; if (target->backup_working_area) { new_wa->backup = malloc(new_wa->size); target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup); } else { new_wa->backup = NULL; } /* put new entry in list */ *p = new_wa; } /* mark as used, and return the new (reused) area */ new_wa->free = 0; *area = new_wa; /* user pointer */ new_wa->user = area; return ERROR_OK; } int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore) { if (area->free) return ERROR_OK; if (restore&&target->backup_working_area) target->type->write_memory(target, area->address, 4, area->size / 4, area->backup); area->free = 1; /* mark user pointer invalid */ *area->user = NULL; area->user = NULL; return ERROR_OK; } int target_free_working_area(struct target_s *target, working_area_t *area) { return target_free_working_area_restore(target, area, 1); } int target_free_all_working_areas_restore(struct target_s *target, int restore) { working_area_t *c = target->working_areas; while (c) { working_area_t *next = c->next; target_free_working_area_restore(target, c, restore); if (c->backup) free(c->backup); free(c); c = next; } target->working_areas = NULL; return ERROR_OK; } int target_free_all_working_areas(struct target_s *target) { return target_free_all_working_areas_restore(target, 1); } int target_register_commands(struct command_context_s *cmd_ctx) { register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target [reset_init default - DEPRECATED] [cpu type specifc args]"); register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL); register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area
<'backup'|'nobackup'> [virtual address]"); register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys "); register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile "); /* script procedures */ register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing"); register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values"); return ERROR_OK; } int target_arch_state(struct target_s *target) { int retval; if (target==NULL) { LOG_USER("No target has been configured"); return ERROR_OK; } LOG_USER("target state: %s", Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name); if (target->state!=TARGET_HALTED) return ERROR_OK; retval=target->type->arch_state(target); return retval; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer) { int retval; LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address); if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if ((address + size - 1) < address) { /* GDB can request this when e.g. PC is 0xfffffffc*/ LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size); return ERROR_FAIL; } if (((address % 2) == 0) && (size == 2)) { return target->type->write_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { int unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); /* use bulk writes above a certain limit. This may have to be changed */ if (aligned > 128) { if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK) return retval; } else { if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; } buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } /* Single aligned words are guaranteed to use 16 or 32 bit access * mode respectively, otherwise data is handled as quickly as * possible */ int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer) { int retval; LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address); if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if ((address + size - 1) < address) { /* GDB can request this when e.g. PC is 0xfffffffc*/ LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size); return ERROR_FAIL; } if (((address % 2) == 0) && (size == 2)) { return target->type->read_memory(target, address, 2, 1, buffer); } /* handle unaligned head bytes */ if (address % 4) { int unaligned = 4 - (address % 4); if (unaligned > size) unaligned = size; if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc) { u8 *buffer; int retval; int i; u32 checksum = 0; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if ((retval = target->type->checksum_memory(target, address, size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { buffer = malloc(size); if (buffer == NULL) { LOG_ERROR("error allocating buffer for section (%d bytes)", size); return ERROR_INVALID_ARGUMENTS; } retval = target_read_buffer(target, address, size, buffer); if (retval != ERROR_OK) { free(buffer); return retval; } /* convert to target endianess */ for (i = 0; i < (size/sizeof(u32)); i++) { u32 target_data; target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]); target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data); } retval = image_calculate_checksum( buffer, size, &checksum ); free(buffer); } *crc = checksum; return retval; } int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank) { int retval; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (target->type->blank_check_memory == 0) return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; retval = target->type->blank_check_memory(target, address, size, blank); return retval; } int target_read_u32(struct target_s *target, u32 address, u32 *value) { u8 value_buf[4]; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } int retval = target->type->read_memory(target, address, 4, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u32(target, value_buf); LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8x failed", address); } return retval; } int target_read_u16(struct target_s *target, u32 address, u16 *value) { u8 value_buf[2]; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } int retval = target->type->read_memory(target, address, 2, 1, value_buf); if (retval == ERROR_OK) { *value = target_buffer_get_u16(target, value_buf); LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8x failed", address); } return retval; } int target_read_u8(struct target_s *target, u32 address, u8 *value) { int retval = target->type->read_memory(target, address, 1, 1, value); if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } if (retval == ERROR_OK) { LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value); } else { *value = 0x0; LOG_DEBUG("address: 0x%8.8x failed", address); } return retval; } int target_write_u32(struct target_s *target, u32 address, u32 value) { int retval; u8 value_buf[4]; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value); target_buffer_set_u32(target, value_buf, value); if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_write_u16(struct target_s *target, u32 address, u16 value) { int retval; u8 value_buf[2]; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value); target_buffer_set_u16(target, value_buf, value); if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_write_u8(struct target_s *target, u32 address, u8 value) { int retval; if (!target->type->examined) { LOG_ERROR("Target not examined yet"); return ERROR_FAIL; } LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value); if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK) { LOG_DEBUG("failed: %i", retval); } return retval; } int target_register_user_commands(struct command_context_s *cmd_ctx) { register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL); register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state"); register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]"); register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target"); register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]"); register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]"); register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run"); register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset"); register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words [count]"); register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words [count]"); register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes [count]"); register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word [count]"); register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word [count]"); register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte [count]"); register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint
[hw]"); register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint "); register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint
[value] [mask]"); register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint "); register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image
['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]"); register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image
"); register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image [offset] [type]"); target_request_register_commands(cmd_ctx); trace_register_commands(cmd_ctx); return ERROR_OK; } int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { char *cp; target_t *target = all_targets; if (argc == 1) { /* try as tcltarget name */ for( target = all_targets ; target ; target++ ){ if( target->cmd_name ){ if( 0 == strcmp( args[0], target->cmd_name ) ){ /* MATCH */ goto Match; } } } /* no match, try as number */ int num = strtoul(args[0], &cp, 0 ); if( *cp != 0 ){ /* then it was not a number */ command_print( cmd_ctx, "Target: %s unknown, try one of:\n", args[0] ); goto DumpTargets; } target = get_target_by_num( num ); if( target == NULL ){ command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] ); goto DumpTargets; } Match: cmd_ctx->current_target = target->target_number; return ERROR_OK; } DumpTargets: command_print(cmd_ctx, " CmdName Type Endian State "); command_print(cmd_ctx, "-- ---------- ---------- ---------- ----------"); while (target) { /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */ command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %s", target->target_number, "", // future: target->cmd_name target->type->name, Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name, Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name ); target = target->next; } return ERROR_OK; } int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int i; int found = 0; if (argc < 3) { return ERROR_COMMAND_SYNTAX_ERROR; } /* search for the specified target */ if (args[0] && (args[0][0] != 0)) { for (i = 0; target_types[i]; i++) { if (strcmp(args[0], target_types[i]->name) == 0) { target_t **last_target_p = &all_targets; /* register target specific commands */ if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK) { LOG_ERROR("couldn't register '%s' commands", args[0]); exit(-1); } if (*last_target_p) { while ((*last_target_p)->next) last_target_p = &((*last_target_p)->next); last_target_p = &((*last_target_p)->next); } // get target number *before* adding new target to the list */ int n = new_target_number(); // calloc will init the memory to zero for us *last_target_p = calloc(1,sizeof(target_t)); // save target number. (*last_target_p)->cmd_name = NULL; (*last_target_p)->target_number = n; /* allocate memory for each unique target type */ (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t)); *((*last_target_p)->type) = *target_types[i]; if (strcmp(args[1], "big") == 0) (*last_target_p)->endianness = TARGET_BIG_ENDIAN; else if (strcmp(args[1], "little") == 0) (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN; else { LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]); return ERROR_COMMAND_SYNTAX_ERROR; } if (strcmp(args[2], "reset_halt") == 0) { LOG_WARNING("reset_mode argument is obsolete."); return ERROR_COMMAND_SYNTAX_ERROR; } else if (strcmp(args[2], "reset_run") == 0) { LOG_WARNING("reset_mode argument is obsolete."); return ERROR_COMMAND_SYNTAX_ERROR; } else if (strcmp(args[2], "reset_init") == 0) { LOG_WARNING("reset_mode argument is obsolete."); return ERROR_COMMAND_SYNTAX_ERROR; } else if (strcmp(args[2], "run_and_halt") == 0) { LOG_WARNING("reset_mode argument is obsolete."); return ERROR_COMMAND_SYNTAX_ERROR; } else if (strcmp(args[2], "run_and_init") == 0) { LOG_WARNING("reset_mode argument is obsolete."); return ERROR_COMMAND_SYNTAX_ERROR; } else { /* Kludge! we want to make this reset arg optional while remaining compatible! */ args--; argc++; } (*last_target_p)->working_area = 0x0; (*last_target_p)->working_area_size = 0x0; (*last_target_p)->working_areas = NULL; (*last_target_p)->backup_working_area = 0; (*last_target_p)->state = TARGET_UNKNOWN; (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED; (*last_target_p)->reg_cache = NULL; (*last_target_p)->breakpoints = NULL; (*last_target_p)->watchpoints = NULL; (*last_target_p)->next = NULL; (*last_target_p)->arch_info = NULL; /* initialize trace information */ (*last_target_p)->trace_info = malloc(sizeof(trace_t)); (*last_target_p)->trace_info->num_trace_points = 0; (*last_target_p)->trace_info->trace_points_size = 0; (*last_target_p)->trace_info->trace_points = NULL; (*last_target_p)->trace_info->trace_history_size = 0; (*last_target_p)->trace_info->trace_history = NULL; (*last_target_p)->trace_info->trace_history_pos = 0; (*last_target_p)->trace_info->trace_history_overflowed = 0; (*last_target_p)->dbgmsg = NULL; (*last_target_p)->dbg_msg_enabled = 0; (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p); found = 1; break; } } } /* no matching target found */ if (!found) { LOG_ERROR("target '%s' not found", args[0]); return ERROR_COMMAND_SYNTAX_ERROR; } return ERROR_OK; } int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name) { return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}", get_num_by_target(target), name, get_num_by_target(target), name); } int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = NULL; if ((argc < 4) || (argc > 5)) { return ERROR_COMMAND_SYNTAX_ERROR; } target = get_target_by_num(strtoul(args[0], NULL, 0)); if (!target) { return ERROR_COMMAND_SYNTAX_ERROR; } target_free_all_working_areas(target); target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0); if (argc == 5) { target->working_area_virt = strtoul(args[4], NULL, 0); } target->working_area_size = strtoul(args[2], NULL, 0); if (strcmp(args[3], "backup") == 0) { target->backup_working_area = 1; } else if (strcmp(args[3], "nobackup") == 0) { target->backup_working_area = 0; } else { LOG_ERROR("unrecognized argument (%s)", args[3]); return ERROR_COMMAND_SYNTAX_ERROR; } return ERROR_OK; } /* process target state changes */ int handle_target(void *priv) { target_t *target = all_targets; while (target) { if (target_continous_poll) { /* polling may fail silently until the target has been examined */ target_poll(target); } target = target->next; } return ERROR_OK; } int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target; reg_t *reg = NULL; int count = 0; char *value; LOG_DEBUG("-"); target = get_current_target(cmd_ctx); /* list all available registers for the current target */ if (argc == 0) { reg_cache_t *cache = target->reg_cache; count = 0; while(cache) { int i; for (i = 0; i < cache->num_regs; i++) { value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16); command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid); free(value); } cache = cache->next; } return ERROR_OK; } /* access a single register by its ordinal number */ if ((args[0][0] >= '0') && (args[0][0] <= '9')) { int num = strtoul(args[0], NULL, 0); reg_cache_t *cache = target->reg_cache; count = 0; while(cache) { int i; for (i = 0; i < cache->num_regs; i++) { if (count++ == num) { reg = &cache->reg_list[i]; break; } } if (reg) break; cache = cache->next; } if (!reg) { command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1); return ERROR_OK; } } else /* access a single register by its name */ { reg = register_get_by_name(target->reg_cache, args[0], 1); if (!reg) { command_print(cmd_ctx, "register %s not found in current target", args[0]); return ERROR_OK; } } /* display a register */ if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9')))) { if ((argc == 2) && (strcmp(args[1], "force") == 0)) reg->valid = 0; if (reg->valid == 0) { reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); if (arch_type == NULL) { LOG_ERROR("BUG: encountered unregistered arch type"); return ERROR_OK; } arch_type->get(reg); } value = buf_to_str(reg->value, reg->size, 16); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value); free(value); return ERROR_OK; } /* set register value */ if (argc == 2) { u8 *buf = malloc(CEIL(reg->size, 8)); str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0); reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); if (arch_type == NULL) { LOG_ERROR("BUG: encountered unregistered arch type"); return ERROR_OK; } arch_type->set(reg, buf); value = buf_to_str(reg->value, reg->size, 16); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value); free(value); free(buf); return ERROR_OK; } command_print(cmd_ctx, "usage: reg <#|name> [value]"); return ERROR_OK; } int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc == 0) { target_poll(target); target_arch_state(target); } else { if (strcmp(args[0], "on") == 0) { target_continous_poll = 1; } else if (strcmp(args[0], "off") == 0) { target_continous_poll = 0; } else { command_print(cmd_ctx, "arg is \"on\" or \"off\""); } } return ERROR_OK; } int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int ms = 5000; if (argc > 0) { char *end; ms = strtoul(args[0], &end, 0) * 1000; if (*end) { command_print(cmd_ctx, "usage: %s [seconds]", cmd); return ERROR_OK; } } target_t *target = get_current_target(cmd_ctx); return target_wait_state(target, TARGET_HALTED, ms); } int target_wait_state(target_t *target, enum target_state state, int ms) { int retval; struct timeval timeout, now; int once=1; gettimeofday(&timeout, NULL); timeval_add_time(&timeout, 0, ms * 1000); for (;;) { if ((retval=target_poll(target))!=ERROR_OK) return retval; keep_alive(); if (target->state == state) { break; } if (once) { once=0; LOG_DEBUG("waiting for target %s...", Jim_Nvp_value2name_simple(nvp_target_state,state)->name); } gettimeofday(&now, NULL); if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) { LOG_ERROR("timed out while waiting for target %s", Jim_Nvp_value2name_simple(nvp_target_state,state)->name); return ERROR_FAIL; } } return ERROR_OK; } int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); LOG_DEBUG("-"); if ((retval = target_halt(target)) != ERROR_OK) { return retval; } return handle_wait_halt_command(cmd_ctx, cmd, args, argc); } int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); LOG_USER("requesting target halt and executing a soft reset"); target->type->soft_reset_halt(target); return ERROR_OK; } int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { enum target_reset_mode reset_mode = RESET_RUN; if (argc >= 1) { if (strcmp("run", args[0]) == 0) reset_mode = RESET_RUN; else if (strcmp("halt", args[0]) == 0) reset_mode = RESET_HALT; else if (strcmp("init", args[0]) == 0) reset_mode = RESET_INIT; else { return ERROR_COMMAND_SYNTAX_ERROR; } } /* reset *all* targets */ return target_process_reset(cmd_ctx, reset_mode); } int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); target_invoke_script(cmd_ctx, target, "pre_resume"); if (argc == 0) retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */ else if (argc == 1) retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */ else { return ERROR_COMMAND_SYNTAX_ERROR; } return retval; } int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); LOG_DEBUG("-"); if (argc == 0) target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */ if (argc == 1) target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */ return ERROR_OK; } int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { const int line_bytecnt = 32; int count = 1; int size = 4; u32 address = 0; int line_modulo; int i; char output[128]; int output_len; int retval; u8 *buffer; target_t *target = get_current_target(cmd_ctx); if (argc < 1) return ERROR_OK; if (argc == 2) count = strtoul(args[1], NULL, 0); address = strtoul(args[0], NULL, 0); switch (cmd[2]) { case 'w': size = 4; line_modulo = line_bytecnt / 4; break; case 'h': size = 2; line_modulo = line_bytecnt / 2; break; case 'b': size = 1; line_modulo = line_bytecnt / 1; break; default: return ERROR_OK; } buffer = calloc(count, size); retval = target->type->read_memory(target, address, size, count, buffer); if (retval == ERROR_OK) { output_len = 0; for (i = 0; i < count; i++) { if (i%line_modulo == 0) output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size)); switch (size) { case 4: output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4])); break; case 2: output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2])); break; case 1: output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]); break; } if ((i%line_modulo == line_modulo-1) || (i == count - 1)) { command_print(cmd_ctx, output); output_len = 0; } } } free(buffer); return retval; } int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u32 address = 0; u32 value = 0; int count = 1; int i; int wordsize; target_t *target = get_current_target(cmd_ctx); u8 value_buf[4]; if ((argc < 2) || (argc > 3)) return ERROR_COMMAND_SYNTAX_ERROR; address = strtoul(args[0], NULL, 0); value = strtoul(args[1], NULL, 0); if (argc == 3) count = strtoul(args[2], NULL, 0); switch (cmd[2]) { case 'w': wordsize = 4; target_buffer_set_u32(target, value_buf, value); break; case 'h': wordsize = 2; target_buffer_set_u16(target, value_buf, value); break; case 'b': wordsize = 1; value_buf[0] = value; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } for (i=0; itype->write_memory(target, address + i*wordsize, 4, 1, value_buf); break; case 2: retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf); break; case 1: retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf); break; default: return ERROR_OK; } if (retval!=ERROR_OK) { return retval; } } return ERROR_OK; } int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u8 *buffer; u32 buf_cnt; u32 image_size; u32 min_address=0; u32 max_address=0xffffffff; int i; int retval; image_t image; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if ((argc < 1)||(argc > 5)) { return ERROR_COMMAND_SYNTAX_ERROR; } /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */ if (argc >= 2) { image.base_address_set = 1; image.base_address = strtoul(args[1], NULL, 0); } else { image.base_address_set = 0; } image.start_address_set = 0; if (argc>=4) { min_address=strtoul(args[3], NULL, 0); } if (argc>=5) { max_address=strtoul(args[4], NULL, 0)+min_address; } if (min_address>max_address) { return ERROR_COMMAND_SYNTAX_ERROR; } duration_start_measure(&duration); if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK) { return ERROR_OK; } image_size = 0x0; retval = ERROR_OK; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } u32 offset=0; u32 length=buf_cnt; /* DANGER!!! beware of unsigned comparision here!!! */ if ((image.sections[i].base_address+buf_cnt>=min_address)&& (image.sections[i].base_addressmax_address) { length-=(image.sections[i].base_address+buf_cnt)-max_address; } if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK) { free(buffer); break; } image_size += length; command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset); } free(buffer); } duration_stop_measure(&duration, &duration_text); if (retval==ERROR_OK) { command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text); } free(duration_text); image_close(&image); return retval; } int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { fileio_t fileio; u32 address; u32 size; u8 buffer[560]; int retval=ERROR_OK; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if (argc != 3) { command_print(cmd_ctx, "usage: dump_image
"); return ERROR_OK; } address = strtoul(args[1], NULL, 0); size = strtoul(args[2], NULL, 0); if ((address & 3) || (size & 3)) { command_print(cmd_ctx, "only 32-bit aligned address and size are supported"); return ERROR_OK; } if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK) { return ERROR_OK; } duration_start_measure(&duration); while (size > 0) { u32 size_written; u32 this_run_size = (size > 560) ? 560 : size; retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer); if (retval != ERROR_OK) { break; } retval = fileio_write(&fileio, this_run_size, buffer, &size_written); if (retval != ERROR_OK) { break; } size -= this_run_size; address += this_run_size; } fileio_close(&fileio); duration_stop_measure(&duration, &duration_text); if (retval==ERROR_OK) { command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text); } free(duration_text); return ERROR_OK; } int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u8 *buffer; u32 buf_cnt; u32 image_size; int i; int retval; u32 checksum = 0; u32 mem_checksum = 0; image_t image; duration_t duration; char *duration_text; target_t *target = get_current_target(cmd_ctx); if (argc < 1) { return ERROR_COMMAND_SYNTAX_ERROR; } if (!target) { LOG_ERROR("no target selected"); return ERROR_FAIL; } duration_start_measure(&duration); if (argc >= 2) { image.base_address_set = 1; image.base_address = strtoul(args[1], NULL, 0); } else { image.base_address_set = 0; image.base_address = 0x0; } image.start_address_set = 0; if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK) { return retval; } image_size = 0x0; retval=ERROR_OK; for (i = 0; i < image.num_sections; i++) { buffer = malloc(image.sections[i].size); if (buffer == NULL) { command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size); break; } if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK) { free(buffer); break; } /* calculate checksum of image */ image_calculate_checksum( buffer, buf_cnt, &checksum ); retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum); if( retval != ERROR_OK ) { free(buffer); break; } if( checksum != mem_checksum ) { /* failed crc checksum, fall back to a binary compare */ u8 *data; command_print(cmd_ctx, "checksum mismatch - attempting binary compare"); data = (u8*)malloc(buf_cnt); /* Can we use 32bit word accesses? */ int size = 1; int count = buf_cnt; if ((count % 4) == 0) { size *= 4; count /= 4; } retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data); if (retval == ERROR_OK) { int t; for (t = 0; t < buf_cnt; t++) { if (data[t] != buffer[t]) { command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]); free(data); free(buffer); retval=ERROR_FAIL; goto done; } } } free(data); } free(buffer); image_size += buf_cnt; } done: duration_stop_measure(&duration, &duration_text); if (retval==ERROR_OK) { command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text); } free(duration_text); image_close(&image); return retval; } int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); if (argc == 0) { breakpoint_t *breakpoint = target->breakpoints; while (breakpoint) { if (breakpoint->type == BKPT_SOFT) { char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16); command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf); free(buf); } else { command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set); } breakpoint = breakpoint->next; } } else if (argc >= 2) { int hw = BKPT_SOFT; u32 length = 0; length = strtoul(args[1], NULL, 0); if (argc >= 3) if (strcmp(args[2], "hw") == 0) hw = BKPT_HARD; if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK) { LOG_ERROR("Failure setting breakpoints"); } else { command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0)); } } else { command_print(cmd_ctx, "usage: bp
['hw']"); } return ERROR_OK; } int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc > 0) breakpoint_remove(target, strtoul(args[0], NULL, 0)); return ERROR_OK; } int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); int retval; if (argc == 0) { watchpoint_t *watchpoint = target->watchpoints; while (watchpoint) { command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask); watchpoint = watchpoint->next; } } else if (argc >= 2) { enum watchpoint_rw type = WPT_ACCESS; u32 data_value = 0x0; u32 data_mask = 0xffffffff; if (argc >= 3) { switch(args[2][0]) { case 'r': type = WPT_READ; break; case 'w': type = WPT_WRITE; break; case 'a': type = WPT_ACCESS; break; default: command_print(cmd_ctx, "usage: wp
[r/w/a] [value] [mask]"); return ERROR_OK; } } if (argc >= 4) { data_value = strtoul(args[3], NULL, 0); } if (argc >= 5) { data_mask = strtoul(args[4], NULL, 0); } if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0), strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK) { LOG_ERROR("Failure setting breakpoints"); } } else { command_print(cmd_ctx, "usage: wp
[r/w/a] [value] [mask]"); } return ERROR_OK; } int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc > 0) watchpoint_remove(target, strtoul(args[0], NULL, 0)); return ERROR_OK; } int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); u32 va; u32 pa; if (argc != 1) { return ERROR_COMMAND_SYNTAX_ERROR; } va = strtoul(args[0], NULL, 0); retval = target->type->virt2phys(target, va, &pa); if (retval == ERROR_OK) { command_print(cmd_ctx, "Physical address 0x%08x", pa); } else { /* lower levels will have logged a detailed error which is * forwarded to telnet/GDB session. */ } return retval; } static void writeLong(FILE *f, int l) { int i; for (i=0; i<4; i++) { char c=(l>>(i*8))&0xff; fwrite(&c, 1, 1, f); } } static void writeString(FILE *f, char *s) { fwrite(s, 1, strlen(s), f); } // Dump a gmon.out histogram file. static void writeGmon(u32 *samples, int sampleNum, char *filename) { int i; FILE *f=fopen(filename, "w"); if (f==NULL) return; fwrite("gmon", 1, 4, f); writeLong(f, 0x00000001); // Version writeLong(f, 0); // padding writeLong(f, 0); // padding writeLong(f, 0); // padding fwrite("", 1, 1, f); // GMON_TAG_TIME_HIST // figure out bucket size u32 min=samples[0]; u32 max=samples[0]; for (i=0; isamples[i]) { min=samples[i]; } if (max maxBuckets) { length=maxBuckets; } int *buckets=malloc(sizeof(int)*length); if (buckets==NULL) { fclose(f); return; } memset(buckets, 0, sizeof(int)*length); for (i=0; i65535) { val=65535; } data[i*2]=val&0xff; data[i*2+1]=(val>>8)&0xff; } free(buckets); fwrite(data, 1, length*2, f); free(data); } else { free(buckets); } fclose(f); } /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */ int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); struct timeval timeout, now; gettimeofday(&timeout, NULL); if (argc!=2) { return ERROR_COMMAND_SYNTAX_ERROR; } char *end; timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0); if (*end) { return ERROR_OK; } command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can..."); static const int maxSample=10000; u32 *samples=malloc(sizeof(u32)*maxSample); if (samples==NULL) return ERROR_OK; int numSamples=0; int retval=ERROR_OK; // hopefully it is safe to cache! We want to stop/restart as quickly as possible. reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1); for (;;) { target_poll(target); if (target->state == TARGET_HALTED) { u32 t=*((u32 *)reg->value); samples[numSamples++]=t; retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */ target_poll(target); alive_sleep(10); // sleep 10ms, i.e. <100 samples/second. } else if (target->state == TARGET_RUNNING) { // We want to quickly sample the PC. target_halt(target); } else { command_print(cmd_ctx, "Target not halted or running"); retval=ERROR_OK; break; } if (retval!=ERROR_OK) { break; } gettimeofday(&now, NULL); if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) { command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples); target_poll(target); if (target->state == TARGET_HALTED) { target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */ } target_poll(target); writeGmon(samples, numSamples, args[1]); command_print(cmd_ctx, "Wrote %s", args[1]); break; } } free(samples); return ERROR_OK; } static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val) { char *namebuf; Jim_Obj *nameObjPtr, *valObjPtr; int result; namebuf = alloc_printf("%s(%d)", varname, idx); if (!namebuf) return JIM_ERR; nameObjPtr = Jim_NewStringObj(interp, namebuf, -1); valObjPtr = Jim_NewIntObj(interp, val); if (!nameObjPtr || !valObjPtr) { free(namebuf); return JIM_ERR; } Jim_IncrRefCount(nameObjPtr); Jim_IncrRefCount(valObjPtr); result = Jim_SetVariable(interp, nameObjPtr, valObjPtr); Jim_DecrRefCount(interp, nameObjPtr); Jim_DecrRefCount(interp, valObjPtr); free(namebuf); /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */ return result; } static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { command_context_t *context; target_t *target; context = Jim_GetAssocData(interp, "context"); if (context == NULL) { LOG_ERROR("mem2array: no command context"); return JIM_ERR; } target = get_current_target(context); if (target == NULL) { LOG_ERROR("mem2array: no current target"); return JIM_ERR; } return target_mem2array(interp, target, argc,argv); } static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv) { long l; u32 width; u32 len; u32 addr; u32 count; u32 v; const char *varname; u8 buffer[4096]; int i, n, e, retval; /* argv[1] = name of array to receive the data * argv[2] = desired width * argv[3] = memory address * argv[4] = count of times to read */ if (argc != 5) { Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems"); return JIM_ERR; } varname = Jim_GetString(argv[1], &len); /* given "foo" get space for worse case "foo(%d)" .. add 20 */ e = Jim_GetLong(interp, argv[2], &l); width = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[3], &l); addr = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[4], &l); len = l; if (e != JIM_OK) { return e; } switch (width) { case 8: width = 1; break; case 16: width = 2; break; case 32: width = 4; break; default: Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL ); return JIM_ERR; } if (len == 0) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL); return JIM_ERR; } if ((addr + (len * width)) < addr) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL); return JIM_ERR; } /* absurd transfer size? */ if (len > 65536) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL); return JIM_ERR; } if ((width == 1) || ((width == 2) && ((addr & 1) == 0)) || ((width == 4) && ((addr & 3) == 0))) { /* all is well */ } else { char buf[100]; Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width); Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL); return JIM_ERR; } /* Transfer loop */ /* index counter */ n = 0; /* assume ok */ e = JIM_OK; while (len) { /* Slurp... in buffer size chunks */ count = len; /* in objects.. */ if (count > (sizeof(buffer)/width)) { count = (sizeof(buffer)/width); } retval = target->type->read_memory( target, addr, width, count, buffer ); if (retval != ERROR_OK) { /* BOO !*/ LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL); e = JIM_ERR; len = 0; } else { v = 0; /* shut up gcc */ for (i = 0 ;i < count ;i++, n++) { switch (width) { case 4: v = target_buffer_get_u32(target, &buffer[i*width]); break; case 2: v = target_buffer_get_u16(target, &buffer[i*width]); break; case 1: v = buffer[i] & 0x0ff; break; } new_int_array_element(interp, varname, n, v); } len -= count; } } Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); return JIM_OK; } static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val) { char *namebuf; Jim_Obj *nameObjPtr, *valObjPtr; int result; long l; namebuf = alloc_printf("%s(%d)", varname, idx); if (!namebuf) return JIM_ERR; nameObjPtr = Jim_NewStringObj(interp, namebuf, -1); if (!nameObjPtr) { free(namebuf); return JIM_ERR; } Jim_IncrRefCount(nameObjPtr); valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG); Jim_DecrRefCount(interp, nameObjPtr); free(namebuf); if (valObjPtr == NULL) return JIM_ERR; result = Jim_GetLong(interp, valObjPtr, &l); /* printf("%s(%d) => 0%08x\n", varname, idx, val); */ *val = l; return result; } static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { command_context_t *context; target_t *target; context = Jim_GetAssocData(interp, "context"); if (context == NULL){ LOG_ERROR("array2mem: no command context"); return JIM_ERR; } target = get_current_target(context); if (target == NULL){ LOG_ERROR("array2mem: no current target"); return JIM_ERR; } return target_array2mem( interp,target, argc, argv ); } static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv) { long l; u32 width; u32 len; u32 addr; u32 count; u32 v; const char *varname; u8 buffer[4096]; int i, n, e, retval; /* argv[1] = name of array to get the data * argv[2] = desired width * argv[3] = memory address * argv[4] = count to write */ if (argc != 5) { Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems"); return JIM_ERR; } varname = Jim_GetString(argv[1], &len); /* given "foo" get space for worse case "foo(%d)" .. add 20 */ e = Jim_GetLong(interp, argv[2], &l); width = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[3], &l); addr = l; if (e != JIM_OK) { return e; } e = Jim_GetLong(interp, argv[4], &l); len = l; if (e != JIM_OK) { return e; } switch (width) { case 8: width = 1; break; case 16: width = 2; break; case 32: width = 4; break; default: Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL ); return JIM_ERR; } if (len == 0) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL); return JIM_ERR; } if ((addr + (len * width)) < addr) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL); return JIM_ERR; } /* absurd transfer size? */ if (len > 65536) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL); return JIM_ERR; } if ((width == 1) || ((width == 2) && ((addr & 1) == 0)) || ((width == 4) && ((addr & 3) == 0))) { /* all is well */ } else { char buf[100]; Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width); Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL); return JIM_ERR; } /* Transfer loop */ /* index counter */ n = 0; /* assume ok */ e = JIM_OK; while (len) { /* Slurp... in buffer size chunks */ count = len; /* in objects.. */ if (count > (sizeof(buffer)/width)) { count = (sizeof(buffer)/width); } v = 0; /* shut up gcc */ for (i = 0 ;i < count ;i++, n++) { get_int_array_element(interp, varname, n, &v); switch (width) { case 4: target_buffer_set_u32(target, &buffer[i*width], v); break; case 2: target_buffer_set_u16(target, &buffer[i*width], v); break; case 1: buffer[i] = v & 0x0ff; break; } } len -= count; retval = target->type->write_memory(target, addr, width, count, buffer); if (retval != ERROR_OK) { /* BOO !*/ LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count); Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL); e = JIM_ERR; len = 0; } } Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); return JIM_OK; } /* * Local Variables: *** * c-basic-offset: 4 *** * tab-width: 4 *** * End: *** */ 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647