aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ExtTrigger_Synchro/readme.txt
diff options
context:
space:
mode:
authorTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:23:13 +0100
committerTrygve Laugstøl <trygvis@inamo.no>2017-01-25 22:23:17 +0100
commit2fff65aed2477a503c72629d27e2a330d30c02d1 (patch)
tree96fd9f2f8151e266c0cf8563a714d7bab8aa7cb0 /tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ExtTrigger_Synchro/readme.txt
parent41fdd2b1f35bcb4224fdb8fee2b959e09d1f5916 (diff)
downloadstm32f103-playground-2fff65aed2477a503c72629d27e2a330d30c02d1.tar.gz
stm32f103-playground-2fff65aed2477a503c72629d27e2a330d30c02d1.tar.bz2
stm32f103-playground-2fff65aed2477a503c72629d27e2a330d30c02d1.tar.xz
stm32f103-playground-2fff65aed2477a503c72629d27e2a330d30c02d1.zip
o Seemingly working Mutexes.
o Dropping the privileged/unprivileged split for now.
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ExtTrigger_Synchro/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ExtTrigger_Synchro/readme.txt138
1 files changed, 0 insertions, 138 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ExtTrigger_Synchro/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ExtTrigger_Synchro/readme.txt
deleted file mode 100644
index cb3db14..0000000
--- a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/ExtTrigger_Synchro/readme.txt
+++ /dev/null
@@ -1,138 +0,0 @@
-/**
- @page TIM_ExtTrigger_Synchro TIM External Trigger Synchro example
-
- @verbatim
- ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
- * @file TIM/ExtTrigger_Synchro/readme.txt
- * @author MCD Application Team
- * @version V3.5.0
- * @date 08-April-2011
- * @brief Description of the TIM External Trigger Synchro example.
- ******************************************************************************
- * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
- * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
- * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
- * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
- * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
- * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
- ******************************************************************************
- @endverbatim
-
-@par Example Description
-
-This example shows how to synchronize TIM peripherals in cascade mode with an
-external trigger.
-In this example three timers are used:
-
-1/TIM1 is configured as Master Timer:
- - Toggle Mode is used
- - The TIM1 Enable event is used as Trigger Output
-
-2/TIM1 is configured as Slave Timer for an external Trigger connected to TIM1
- TI2 pin (TIM1 CH2 configured as input pin):
- - The TIM1 TI2FP2 is used as Trigger Input
- - Rising edge is used to start and stop the TIM1: Gated Mode.
-
-3/TIM3 is slave for TIM1 and Master for TIM4,
- - Toggle Mode is used
- - The ITR1(TIM1) is used as input trigger
- - Gated mode is used, so start and stop of slave counter
- are controlled by the Master trigger output signal(TIM1 enable event).
- - The TIM3 enable event is used as Trigger Output.
-
-4/TIM4 is slave for TIM3,
- - Toggle Mode is used
- - The ITR2(TIM3) is used as input trigger
- - Gated mode is used, so start and stop of slave counter
- are controlled by the Master trigger output signal(TIM3 enable event).
-
- * For Low-density, Medium-density, High-density and Connectivity line devices:
- The TIMxCLK is fixed to 72 MHZ, the Prescaler is equal to 2 so the TIMx clock
- counter is equal to 24 MHz.
- The Three Timers are running at:
- TIMx frequency = TIMx clock counter/ 2*(TIMx_Period + 1) = 162.1 KHz.
-
- * For Low-Density Value line, Medium-Density Value line and High-Density Value line devices:
- The TIMxCLK is fixed to 24 MHz, the Prescaler is equal to 2 so the TIMx clock
- counter is equal to 8 MHz.
- TIMx frequency = TIMx clock counter/ 2*(TIMx_Period + 1) = 54 KHz.
-
-The starts and stops of the TIM1 counters are controlled by the external trigger.
-The TIM3 starts and stops are controlled by the TIM1, and the TIM4 starts and
-stops are controlled by the TIM3.
-
-@par Directory contents
-
- - TIM/ExtTrigger_Synchro/stm32f10x_conf.h Library Configuration file
- - TIM/ExtTrigger_Synchro/stm32f10x_it.c Interrupt handlers
- - TIM/ExtTrigger_Synchro/stm32f10x_it.h Interrupt handlers header file
- - TIM/ExtTrigger_Synchro/main.c Main program
- - TIM/ExtTrigger_Synchro/system_stm32f10x.c STM32F10x system source file
-
-@par Hardware and Software environment
-
- - This example runs on STM32F10x Connectivity line, High-Density, High-Density
- Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
- and Low-Density Value line Devices.
-
- - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
- Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line),
- STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL (Medium-Density)
- evaluation boards and can be easily tailored to any other supported device
- and development board.
-
- - STM32100B-EVAL Set-up
- - Connect an external trigger, with a frequency <= xx KHz, to the TIM1 CH2
- pin (PA.09). In this example the frequency is equal to x KHz.
-
- - Connect the following pins to an oscilloscope to monitor the different waveforms:
- - TIM1 CH1 (PA.08)
- - TIM3 CH1 (PA.06)
- - TIM4 CH1 (PB.06)
-
- - STM3210C-EVAL Set-up
- - Connect an external trigger, with a frequency <= 40KHz, to the TIM1 CH2
- pin (PE.11). In this example the frequency is equal to 5 KHz.
-
- - Connect the following pins to an oscilloscope to monitor the different waveforms:
- - TIM1 CH1 (PE.09)
- - TIM3 CH1 (PC.06)
- - TIM4 CH1 (PB.06)
-
- - STM3210E-EVAL, STM32100E-EVAL and STM3210B-EVAL Set-up
- - Connect an external trigger, with a frequency <= 40KHz, to the TIM1 CH2
- pin (PA.09). In this example the frequency is equal to 5 KHz.
-
- - Connect the following pins to an oscilloscope to monitor the different waveforms:
- - TIM1 CH1 (PA.08)
- - TIM3 CH1 (PA.06)
- - TIM4 CH1 (PB.06)
-
-@par How to use it ?
-
-In order to make the program work, you must do the following :
- - Copy all source files from this example folder to the template folder under
- Project\STM32F10x_StdPeriph_Template
- - Open your preferred toolchain
- - Rebuild all files and load your image into target memory
- - Run the example
-
-@note
- - Low-density Value line devices are STM32F100xx microcontrollers where the
- Flash memory density ranges between 16 and 32 Kbytes.
- - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
- - Medium-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 64 and 128 Kbytes.
- - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
- microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
- - High-density Value line devices are STM32F100xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 256 and 512 Kbytes.
- - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
- the Flash memory density ranges between 512 and 1024 Kbytes.
- - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
-
- * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
- */