aboutsummaryrefslogtreecommitdiff
path: root/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src')
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_comp.c378
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_dma.c866
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_flash_ramfunc.c553
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_rcc.c1642
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_sdio.c984
-rw-r--r--thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_tim.c2843
6 files changed, 7266 insertions, 0 deletions
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_comp.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_comp.c
new file mode 100644
index 0000000..991f822
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_comp.c
@@ -0,0 +1,378 @@
+/**
+ ******************************************************************************
+ * @file stm32l1xx_comp.c
+ * @author MCD Application Team
+ * @version V1.1.1
+ * @date 05-March-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the comparators (COMP1 and COMP2) peripheral:
+ * + Comparators configuration
+ * + Window mode control
+ * + Internal Reference Voltage (VREFINT) output
+ *
+ * @verbatim
+ ===============================================================================
+ ##### How to use this driver #####
+ ===============================================================================
+ [..] The device integrates two analog comparators COMP1 and COMP2:
+ (+) COMP1 is a fixed threshold (VREFINT) that shares the non inverting
+ input with the ADC channels.
+ (+) COMP2 is a rail-to-rail comparator whose the inverting input can be
+ selected among: DAC_OUT1, DAC_OUT2, 1/4 VREFINT, 1/2 VERFINT, 3/4
+ VREFINT, VREFINT, PB3 and whose the output can be redirected to
+ embedded timers: TIM2, TIM3, TIM4, TIM10.
+
+ (+) The two comparators COMP1 and COMP2 can be combined in window mode.
+
+ -@-
+ (#@) Comparator APB clock must be enabled to get write access
+ to comparator register using
+ RCC_APB1PeriphClockCmd(RCC_APB1Periph_COMP, ENABLE).
+
+ (#@) COMP1 comparator and ADC can't be used at the same time since
+ they share the same ADC switch matrix (analog switches).
+
+ (#@) When an I/O is used as comparator input, the corresponding GPIO
+ registers should be configured in analog mode.
+
+ (#@) Comparators outputs (CMP1OUT and CMP2OUT) are not mapped on
+ GPIO pin. They are only internal.
+ To get the comparator output level, use COMP_GetOutputLevel().
+
+ (#@) COMP1 and COMP2 outputs are internally connected to EXTI Line 21
+ and EXTI Line 22 respectively.
+ Interrupts can be used by configuring the EXTI Line using the
+ EXTI peripheral driver.
+
+ (#@) After enabling the comparator (COMP1 or COMP2), user should wait
+ for start-up time (tSTART) to get right output levels.
+ Please refer to product datasheet for more information on tSTART.
+
+ (#@) Comparators cannot be used to exit the device from Sleep or Stop
+ mode when the internal reference voltage is switched off using
+ the PWR_UltraLowPowerCmd() function (ULP bit in the PWR_CR register).
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l1xx_comp.h"
+
+/** @addtogroup STM32L1xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup COMP
+ * @brief COMP driver modules.
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup COMP_Private_Functions
+ * @{
+ */
+
+/** @defgroup COMP_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions.
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and Configuration functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes COMP peripheral registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void COMP_DeInit(void)
+{
+ COMP->CSR = ((uint32_t)0x00000000); /*!< Set COMP->CSR to reset value */
+}
+
+/**
+ * @brief Initializes the COMP2 peripheral according to the specified parameters
+ * in the COMP_InitStruct.
+ * @note This function configures only COMP2.
+ * @note COMP2 comparator is enabled as soon as the INSEL[2:0] bits are
+ * different from "000".
+ * @param COMP_InitStruct: pointer to an COMP_InitTypeDef structure that contains
+ * the configuration information for the specified COMP peripheral.
+ * @retval None
+ */
+void COMP_Init(COMP_InitTypeDef* COMP_InitStruct)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_COMP_INVERTING_INPUT(COMP_InitStruct->COMP_InvertingInput));
+ assert_param(IS_COMP_OUTPUT(COMP_InitStruct->COMP_OutputSelect));
+ assert_param(IS_COMP_SPEED(COMP_InitStruct->COMP_Speed));
+
+ /*!< Get the COMP CSR value */
+ tmpreg = COMP->CSR;
+
+ /*!< Clear the INSEL[2:0], OUTSEL[1:0] and SPEED bits */
+ tmpreg &= (uint32_t) (~(uint32_t) (COMP_CSR_OUTSEL | COMP_CSR_INSEL | COMP_CSR_SPEED));
+
+ /*!< Configure COMP: speed, inversion input selection and output redirection */
+ /*!< Set SPEED bit according to COMP_InitStruct->COMP_Speed value */
+ /*!< Set INSEL bits according to COMP_InitStruct->COMP_InvertingInput value */
+ /*!< Set OUTSEL bits according to COMP_InitStruct->COMP_OutputSelect value */
+ tmpreg |= (uint32_t)((COMP_InitStruct->COMP_Speed | COMP_InitStruct->COMP_InvertingInput
+ | COMP_InitStruct->COMP_OutputSelect));
+
+ /*!< The COMP2 comparator is enabled as soon as the INSEL[2:0] bits value are
+ different from "000" */
+ /*!< Write to COMP_CSR register */
+ COMP->CSR = tmpreg;
+}
+
+/**
+ * @brief Enable or disable the COMP1 peripheral.
+ * @note After enabling COMP1, the following functions should be called to
+ * connect the selected GPIO input to COMP1 non inverting input:
+ * @note Enable switch control mode using SYSCFG_RISwitchControlModeCmd()
+ * @note Close VCOMP switch using SYSCFG_RIIOSwitchConfig()
+ * @note Close the I/O switch number n corresponding to the I/O
+ * using SYSCFG_RIIOSwitchConfig()
+ * @param NewState: new state of the COMP1 peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note This function enables/disables only the COMP1.
+ * @retval None
+ */
+void COMP_Cmd(FunctionalState NewState)
+{
+ /* Check the parameter */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the COMP1 */
+ COMP->CSR |= (uint32_t) COMP_CSR_CMP1EN;
+ }
+ else
+ {
+ /* Disable the COMP1 */
+ COMP->CSR &= (uint32_t)(~COMP_CSR_CMP1EN);
+ }
+}
+
+/**
+ * @brief Return the output level (high or low) of the selected comparator.
+ * @note Comparator output is low when the noninverting input is at a lower
+ * voltage than the inverting input.
+ * @note Comparator output is high when the noninverting input is at a higher
+ * voltage than the inverting input.
+ * @note Comparators outputs aren't available on GPIO (outputs levels are
+ * only internal). The COMP1 and COMP2 outputs are connected internally
+ * to the EXTI Line 21 and Line 22 respectively.
+ * @param COMP_Selection: the selected comparator.
+ * This parameter can be one of the following values:
+ * @arg COMP_Selection_COMP1: COMP1 selected
+ * @arg COMP_Selection_COMP2: COMP2 selected
+ * @retval Returns the selected comparator output level.
+ */
+uint8_t COMP_GetOutputLevel(uint32_t COMP_Selection)
+{
+ uint8_t compout = 0x0;
+
+ /* Check the parameters */
+ assert_param(IS_COMP_ALL_PERIPH(COMP_Selection));
+
+ /* Check if Comparator 1 is selected */
+ if(COMP_Selection == COMP_Selection_COMP1)
+ {
+ /* Check if comparator 1 output level is high */
+ if((COMP->CSR & COMP_CSR_CMP1OUT) != (uint8_t) RESET)
+ {
+ /* Get Comparator 1 output level */
+ compout = (uint8_t) COMP_OutputLevel_High;
+ }
+ /* comparator 1 output level is low */
+ else
+ {
+ /* Get Comparator 1 output level */
+ compout = (uint8_t) COMP_OutputLevel_Low;
+ }
+ }
+ /* Comparator 2 is selected */
+ else
+ {
+ /* Check if comparator 2 output level is high */
+ if((COMP->CSR & COMP_CSR_CMP2OUT) != (uint8_t) RESET)
+ {
+ /* Get Comparator output level */
+ compout = (uint8_t) COMP_OutputLevel_High;
+ }
+ /* comparator 2 output level is low */
+ else
+ {
+ /* Get Comparator 2 output level */
+ compout = (uint8_t) COMP_OutputLevel_Low;
+ }
+ }
+ /* Return the comparator output level */
+ return (uint8_t)(compout);
+}
+
+/**
+ * @brief Close or Open the SW1 switch.
+ * @param NewState: new state of the SW1 switch.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note ENABLE to close the SW1 switch
+ * @note DISABLE to open the SW1 switch
+ * @retval None.
+ */
+void COMP_SW1SwitchConfig(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Close SW1 switch */
+ COMP->CSR |= (uint32_t) COMP_CSR_SW1;
+ }
+ else
+ {
+ /* Open SW1 switch */
+ COMP->CSR &= (uint32_t)(~COMP_CSR_SW1);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup COMP_Group2 Window mode control function
+ * @brief Window mode control function.
+ *
+@verbatim
+ ===============================================================================
+ ##### Window mode control function #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the window mode.
+ * In window mode:
+ * @note COMP1 inverting input is fixed to VREFINT defining the first
+ * threshold.
+ * @note COMP2 inverting input is configurable (DAC_OUT1, DAC_OUT2, VREFINT
+ * sub-multiples, PB3) defining the second threshold.
+ * @note COMP1 and COMP2 non inverting inputs are connected together.
+ * @note In window mode, only the Group 6 (PB4 or PB5) can be used as
+ * noninverting inputs.
+ * @param NewState: new state of the window mode.
+ * This parameter can be ENABLE or DISABLE.
+ * @retval None
+ */
+void COMP_WindowCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the window mode */
+ COMP->CSR |= (uint32_t) COMP_CSR_WNDWE;
+ }
+ else
+ {
+ /* Disable the window mode */
+ COMP->CSR &= (uint32_t)(~COMP_CSR_WNDWE);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup COMP_Group3 Internal Reference Voltage output function
+ * @brief Internal Reference Voltage (VREFINT) output function.
+ *
+@verbatim
+ ===============================================================================
+ ##### Internal Reference Voltage (VREFINT) output function #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the output of internal reference voltage (VREFINT).
+ * The VREFINT output can be routed to any I/O in group 3: CH8 (PB0) or
+ * CH9 (PB1).
+ * To correctly use this function, the SYSCFG_RIIOSwitchConfig() function
+ * should be called after.
+ * @param NewState: new state of the Vrefint output.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void COMP_VrefintOutputCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the output of internal reference voltage */
+ COMP->CSR |= (uint32_t) COMP_CSR_VREFOUTEN;
+ }
+ else
+ {
+ /* Disable the output of internal reference voltage */
+ COMP->CSR &= (uint32_t) (~COMP_CSR_VREFOUTEN);
+ }
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_dma.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_dma.c
new file mode 100644
index 0000000..b21cef1
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_dma.c
@@ -0,0 +1,866 @@
+/**
+ ******************************************************************************
+ * @file stm32l1xx_dma.c
+ * @author MCD Application Team
+ * @version V1.1.1
+ * @date 05-March-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Direct Memory Access controller (DMA):
+ * + Initialization and Configuration
+ * + Data Counter
+ * + Interrupts and flags management
+ *
+ * @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ (#) Enable The DMA controller clock using
+ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE) function for DMA1 or
+ using RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE) function for DMA2.
+ (#) Enable and configure the peripheral to be connected to the DMA channel
+ (except for internal SRAM / FLASH memories: no initialization is
+ necessary).
+ (#) For a given Channel, program the Source and Destination addresses,
+ the transfer Direction, the Buffer Size, the Peripheral and Memory
+ Incrementation mode and Data Size, the Circular or Normal mode,
+ the channel transfer Priority and the Memory-to-Memory transfer
+ mode (if needed) using the DMA_Init() function.
+ (#) Enable the NVIC and the corresponding interrupt(s) using the function
+ DMA_ITConfig() if you need to use DMA interrupts.
+ (#) Enable the DMA channel using the DMA_Cmd() function.
+ (#) Activate the needed channel Request using PPP_DMACmd() function for
+ any PPP peripheral except internal SRAM and FLASH (ie. SPI, USART ...)
+ The function allowing this operation is provided in each PPP peripheral
+ driver (ie. SPI_DMACmd for SPI peripheral).
+ (#) Optionally, you can configure the number of data to be transferred
+ when the channel is disabled (ie. after each Transfer Complete event
+ or when a Transfer Error occurs) using the function DMA_SetCurrDataCounter().
+ And you can get the number of remaining data to be transferred using
+ the function DMA_GetCurrDataCounter() at run time (when the DMA channel is
+ enabled and running).
+ (#) To control DMA events you can use one of the following two methods:
+ (##) Check on DMA channel flags using the function DMA_GetFlagStatus().
+ (##) Use DMA interrupts through the function DMA_ITConfig() at initialization
+ phase and DMA_GetITStatus() function into interrupt routines in
+ communication phase.
+ After checking on a flag you should clear it using DMA_ClearFlag()
+ function. And after checking on an interrupt event you should
+ clear it using DMA_ClearITPendingBit() function.
+ @endverbatim
+
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l1xx_dma.h"
+#include "stm32l1xx_rcc.h"
+
+/** @addtogroup STM32L1xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup DMA
+ * @brief DMA driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* DMA1 Channelx interrupt pending bit masks */
+#define DMA1_CHANNEL1_IT_MASK ((uint32_t)(DMA_ISR_GIF1 | DMA_ISR_TCIF1 | DMA_ISR_HTIF1 | DMA_ISR_TEIF1))
+#define DMA1_CHANNEL2_IT_MASK ((uint32_t)(DMA_ISR_GIF2 | DMA_ISR_TCIF2 | DMA_ISR_HTIF2 | DMA_ISR_TEIF2))
+#define DMA1_CHANNEL3_IT_MASK ((uint32_t)(DMA_ISR_GIF3 | DMA_ISR_TCIF3 | DMA_ISR_HTIF3 | DMA_ISR_TEIF3))
+#define DMA1_CHANNEL4_IT_MASK ((uint32_t)(DMA_ISR_GIF4 | DMA_ISR_TCIF4 | DMA_ISR_HTIF4 | DMA_ISR_TEIF4))
+#define DMA1_CHANNEL5_IT_MASK ((uint32_t)(DMA_ISR_GIF5 | DMA_ISR_TCIF5 | DMA_ISR_HTIF5 | DMA_ISR_TEIF5))
+#define DMA1_CHANNEL6_IT_MASK ((uint32_t)(DMA_ISR_GIF6 | DMA_ISR_TCIF6 | DMA_ISR_HTIF6 | DMA_ISR_TEIF6))
+#define DMA1_CHANNEL7_IT_MASK ((uint32_t)(DMA_ISR_GIF7 | DMA_ISR_TCIF7 | DMA_ISR_HTIF7 | DMA_ISR_TEIF7))
+
+/* DMA2 Channelx interrupt pending bit masks */
+#define DMA2_CHANNEL1_IT_MASK ((uint32_t)(DMA_ISR_GIF1 | DMA_ISR_TCIF1 | DMA_ISR_HTIF1 | DMA_ISR_TEIF1))
+#define DMA2_CHANNEL2_IT_MASK ((uint32_t)(DMA_ISR_GIF2 | DMA_ISR_TCIF2 | DMA_ISR_HTIF2 | DMA_ISR_TEIF2))
+#define DMA2_CHANNEL3_IT_MASK ((uint32_t)(DMA_ISR_GIF3 | DMA_ISR_TCIF3 | DMA_ISR_HTIF3 | DMA_ISR_TEIF3))
+#define DMA2_CHANNEL4_IT_MASK ((uint32_t)(DMA_ISR_GIF4 | DMA_ISR_TCIF4 | DMA_ISR_HTIF4 | DMA_ISR_TEIF4))
+#define DMA2_CHANNEL5_IT_MASK ((uint32_t)(DMA_ISR_GIF5 | DMA_ISR_TCIF5 | DMA_ISR_HTIF5 | DMA_ISR_TEIF5))
+
+/* DMA FLAG mask */
+#define FLAG_MASK ((uint32_t)0x10000000)
+
+/* DMA registers Masks */
+#define CCR_CLEAR_MASK ((uint32_t)0xFFFF800F)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+
+/** @defgroup DMA_Private_Functions
+ * @{
+ */
+
+/** @defgroup DMA_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and Configuration functions #####
+ ===============================================================================
+ [..] This subsection provides functions allowing to initialize the DMA channel
+ source and destination addresses, incrementation and data sizes, transfer
+ direction, buffer size, circular/normal mode selection, memory-to-memory
+ mode selection and channel priority value.
+ [..] The DMA_Init() function follows the DMA configuration procedures as described
+ in reference manual (RM0038).
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the DMAy Channelx registers to their default reset
+ * values.
+ * @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
+ * 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
+ * @retval None
+ */
+void DMA_DeInit(DMA_Channel_TypeDef* DMAy_Channelx)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
+
+ /* Disable the selected DMAy Channelx */
+ DMAy_Channelx->CCR &= (uint16_t)(~DMA_CCR1_EN);
+
+ /* Reset DMAy Channelx control register */
+ DMAy_Channelx->CCR = 0;
+
+ /* Reset DMAy Channelx remaining bytes register */
+ DMAy_Channelx->CNDTR = 0;
+
+ /* Reset DMAy Channelx peripheral address register */
+ DMAy_Channelx->CPAR = 0;
+
+ /* Reset DMAy Channelx memory address register */
+ DMAy_Channelx->CMAR = 0;
+
+ if (DMAy_Channelx == DMA1_Channel1)
+ {
+ /* Reset interrupt pending bits for DMA1 Channel1 */
+ DMA1->IFCR |= DMA1_CHANNEL1_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA1_Channel2)
+ {
+ /* Reset interrupt pending bits for DMA1 Channel2 */
+ DMA1->IFCR |= DMA1_CHANNEL2_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA1_Channel3)
+ {
+ /* Reset interrupt pending bits for DMA1 Channel3 */
+ DMA1->IFCR |= DMA1_CHANNEL3_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA1_Channel4)
+ {
+ /* Reset interrupt pending bits for DMA1 Channel4 */
+ DMA1->IFCR |= DMA1_CHANNEL4_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA1_Channel5)
+ {
+ /* Reset interrupt pending bits for DMA1 Channel5 */
+ DMA1->IFCR |= DMA1_CHANNEL5_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA1_Channel6)
+ {
+ /* Reset interrupt pending bits for DMA1 Channel6 */
+ DMA1->IFCR |= DMA1_CHANNEL6_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA1_Channel7)
+ {
+ /* Reset interrupt pending bits for DMA1 Channel7 */
+ DMA1->IFCR |= DMA1_CHANNEL7_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA2_Channel1)
+ {
+ /* Reset interrupt pending bits for DMA2 Channel1 */
+ DMA2->IFCR |= DMA2_CHANNEL1_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA2_Channel2)
+ {
+ /* Reset interrupt pending bits for DMA2 Channel2 */
+ DMA2->IFCR |= DMA2_CHANNEL2_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA2_Channel3)
+ {
+ /* Reset interrupt pending bits for DMA2 Channel3 */
+ DMA2->IFCR |= DMA2_CHANNEL3_IT_MASK;
+ }
+ else if (DMAy_Channelx == DMA2_Channel4)
+ {
+ /* Reset interrupt pending bits for DMA2 Channel4 */
+ DMA2->IFCR |= DMA2_CHANNEL4_IT_MASK;
+ }
+ else
+ {
+ if (DMAy_Channelx == DMA2_Channel5)
+ {
+ /* Reset interrupt pending bits for DMA2 Channel5 */
+ DMA2->IFCR |= DMA2_CHANNEL5_IT_MASK;
+ }
+ }
+}
+
+/**
+ * @brief Initializes the DMAy Channelx according to the specified
+ * parameters in the DMA_InitStruct.
+ * @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
+ * 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
+ * @param DMA_InitStruct: pointer to a DMA_InitTypeDef structure that
+ * contains the configuration information for the specified DMA Channel.
+ * @retval None
+ */
+void DMA_Init(DMA_Channel_TypeDef* DMAy_Channelx, DMA_InitTypeDef* DMA_InitStruct)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
+ assert_param(IS_DMA_DIR(DMA_InitStruct->DMA_DIR));
+ assert_param(IS_DMA_BUFFER_SIZE(DMA_InitStruct->DMA_BufferSize));
+ assert_param(IS_DMA_PERIPHERAL_INC_STATE(DMA_InitStruct->DMA_PeripheralInc));
+ assert_param(IS_DMA_MEMORY_INC_STATE(DMA_InitStruct->DMA_MemoryInc));
+ assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(DMA_InitStruct->DMA_PeripheralDataSize));
+ assert_param(IS_DMA_MEMORY_DATA_SIZE(DMA_InitStruct->DMA_MemoryDataSize));
+ assert_param(IS_DMA_MODE(DMA_InitStruct->DMA_Mode));
+ assert_param(IS_DMA_PRIORITY(DMA_InitStruct->DMA_Priority));
+ assert_param(IS_DMA_M2M_STATE(DMA_InitStruct->DMA_M2M));
+
+/*--------------------------- DMAy Channelx CCR Configuration -----------------*/
+ /* Get the DMAy_Channelx CCR value */
+ tmpreg = DMAy_Channelx->CCR;
+ /* Clear MEM2MEM, PL, MSIZE, PSIZE, MINC, PINC, CIRC and DIR bits */
+ tmpreg &= CCR_CLEAR_MASK;
+ /* Configure DMAy Channelx: data transfer, data size, priority level and mode */
+ /* Set DIR bit according to DMA_DIR value */
+ /* Set CIRC bit according to DMA_Mode value */
+ /* Set PINC bit according to DMA_PeripheralInc value */
+ /* Set MINC bit according to DMA_MemoryInc value */
+ /* Set PSIZE bits according to DMA_PeripheralDataSize value */
+ /* Set MSIZE bits according to DMA_MemoryDataSize value */
+ /* Set PL bits according to DMA_Priority value */
+ /* Set the MEM2MEM bit according to DMA_M2M value */
+ tmpreg |= DMA_InitStruct->DMA_DIR | DMA_InitStruct->DMA_Mode |
+ DMA_InitStruct->DMA_PeripheralInc | DMA_InitStruct->DMA_MemoryInc |
+ DMA_InitStruct->DMA_PeripheralDataSize | DMA_InitStruct->DMA_MemoryDataSize |
+ DMA_InitStruct->DMA_Priority | DMA_InitStruct->DMA_M2M;
+
+ /* Write to DMAy Channelx CCR */
+ DMAy_Channelx->CCR = tmpreg;
+
+/*--------------------------- DMAy Channelx CNDTR Configuration ---------------*/
+ /* Write to DMAy Channelx CNDTR */
+ DMAy_Channelx->CNDTR = DMA_InitStruct->DMA_BufferSize;
+
+/*--------------------------- DMAy Channelx CPAR Configuration ----------------*/
+ /* Write to DMAy Channelx CPAR */
+ DMAy_Channelx->CPAR = DMA_InitStruct->DMA_PeripheralBaseAddr;
+
+/*--------------------------- DMAy Channelx CMAR Configuration ----------------*/
+ /* Write to DMAy Channelx CMAR */
+ DMAy_Channelx->CMAR = DMA_InitStruct->DMA_MemoryBaseAddr;
+}
+
+/**
+ * @brief Fills each DMA_InitStruct member with its default value.
+ * @param DMA_InitStruct: pointer to a DMA_InitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void DMA_StructInit(DMA_InitTypeDef* DMA_InitStruct)
+{
+/*-------------- Reset DMA init structure parameters values ------------------*/
+ /* Initialize the DMA_PeripheralBaseAddr member */
+ DMA_InitStruct->DMA_PeripheralBaseAddr = 0;
+ /* Initialize the DMA_MemoryBaseAddr member */
+ DMA_InitStruct->DMA_MemoryBaseAddr = 0;
+ /* Initialize the DMA_DIR member */
+ DMA_InitStruct->DMA_DIR = DMA_DIR_PeripheralSRC;
+ /* Initialize the DMA_BufferSize member */
+ DMA_InitStruct->DMA_BufferSize = 0;
+ /* Initialize the DMA_PeripheralInc member */
+ DMA_InitStruct->DMA_PeripheralInc = DMA_PeripheralInc_Disable;
+ /* Initialize the DMA_MemoryInc member */
+ DMA_InitStruct->DMA_MemoryInc = DMA_MemoryInc_Disable;
+ /* Initialize the DMA_PeripheralDataSize member */
+ DMA_InitStruct->DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
+ /* Initialize the DMA_MemoryDataSize member */
+ DMA_InitStruct->DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
+ /* Initialize the DMA_Mode member */
+ DMA_InitStruct->DMA_Mode = DMA_Mode_Normal;
+ /* Initialize the DMA_Priority member */
+ DMA_InitStruct->DMA_Priority = DMA_Priority_Low;
+ /* Initialize the DMA_M2M member */
+ DMA_InitStruct->DMA_M2M = DMA_M2M_Disable;
+}
+
+/**
+ * @brief Enables or disables the specified DMAy Channelx.
+ * @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
+ * 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
+ * @param NewState: new state of the DMAy Channelx.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DMA_Cmd(DMA_Channel_TypeDef* DMAy_Channelx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected DMAy Channelx */
+ DMAy_Channelx->CCR |= DMA_CCR1_EN;
+ }
+ else
+ {
+ /* Disable the selected DMAy Channelx */
+ DMAy_Channelx->CCR &= (uint16_t)(~DMA_CCR1_EN);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Group2 Data Counter functions
+ * @brief Data Counter functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Data Counter functions #####
+ ===============================================================================
+ [..] This subsection provides function allowing to configure and read the buffer
+ size (number of data to be transferred).The DMA data counter can be written
+ only when the DMA channel is disabled (ie. after transfer complete event).
+ [..] The following function can be used to write the Channel data counter value:
+ (+) void DMA_SetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx, uint16_t
+ DataNumber).
+ -@- It is advised to use this function rather than DMA_Init() in situations
+ where only the Data buffer needs to be reloaded.
+ [..] The DMA data counter can be read to indicate the number of remaining transfers
+ for the relative DMA channel. This counter is decremented at the end of each
+ data transfer and when the transfer is complete:
+ (+) If Normal mode is selected: the counter is set to 0.
+ (+) If Circular mode is selected: the counter is reloaded with the initial
+ value(configured before enabling the DMA channel).
+ [..] The following function can be used to read the Channel data counter value:
+ (+) uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Sets the number of data units in the current DMAy Channelx transfer.
+ * @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
+ * 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
+ * @param DataNumber: The number of data units in the current DMAy Channelx
+ * transfer.
+ * @note This function can only be used when the DMAy_Channelx is disabled.
+ * @retval None.
+ */
+void DMA_SetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx, uint16_t DataNumber)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
+
+/*--------------------------- DMAy Channelx CNDTR Configuration ---------------*/
+ /* Write to DMAy Channelx CNDTR */
+ DMAy_Channelx->CNDTR = DataNumber;
+}
+
+/**
+ * @brief Returns the number of remaining data units in the current
+ * DMAy Channelx transfer.
+ * @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
+ * 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
+ * @retval The number of remaining data units in the current DMAy Channelx
+ * transfer.
+ */
+uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
+ /* Return the number of remaining data units for DMAy Channelx */
+ return ((uint16_t)(DMAy_Channelx->CNDTR));
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Group3 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Interrupts and flags management functions #####
+ ===============================================================================
+ [..] This subsection provides functions allowing to configure the DMA Interrupts
+ sources and check or clear the flags or pending bits status.
+ The user should identify which mode will be used in his application to manage
+ the DMA controller events: Polling mode or Interrupt mode.
+ *** Polling Mode ***
+ ====================
+ [..] Each DMA channel can be managed through 4 event Flags:(y : DMA Controller
+ number x : DMA channel number ).
+ (#) DMAy_FLAG_TCx : to indicate that a Transfer Complete event occurred.
+ (#) DMAy_FLAG_HTx : to indicate that a Half-Transfer Complete event occurred.
+ (#) DMAy_FLAG_TEx : to indicate that a Transfer Error occurred.
+ (#) DMAy_FLAG_GLx : to indicate that at least one of the events described
+ above occurred.
+ -@- Clearing DMAy_FLAG_GLx results in clearing all other pending flags of the
+ same channel (DMAy_FLAG_TCx, DMAy_FLAG_HTx and DMAy_FLAG_TEx).
+ [..]In this Mode it is advised to use the following functions:
+ (+) FlagStatus DMA_GetFlagStatus(uint32_t DMA_FLAG);
+ (+) void DMA_ClearFlag(uint32_t DMA_FLAG);
+
+ *** Interrupt Mode ***
+ ======================
+ [..] Each DMA channel can be managed through 4 Interrupts:
+ (+) Interrupt Source
+ (##) DMA_IT_TC: specifies the interrupt source for the Transfer Complete
+ event.
+ (##) DMA_IT_HT : specifies the interrupt source for the Half-transfer Complete
+ event.
+ (##) DMA_IT_TE : specifies the interrupt source for the transfer errors event.
+ (##) DMA_IT_GL : to indicate that at least one of the interrupts described
+ above occurred.
+ -@@- Clearing DMA_IT_GL interrupt results in clearing all other interrupts of
+ the same channel (DMA_IT_TCx, DMA_IT_HT and DMA_IT_TE).
+ [..]In this Mode it is advised to use the following functions:
+ (+) void DMA_ITConfig(DMA_Channel_TypeDef* DMAy_Channelx, uint32_t DMA_IT,
+ FunctionalState NewState);
+ (+) ITStatus DMA_GetITStatus(uint32_t DMA_IT);
+ (+) void DMA_ClearITPendingBit(uint32_t DMA_IT);
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified DMAy Channelx interrupts.
+ * @param DMAy_Channelx: where y can be 1 or 2 to select the DMA and x can be
+ * 1 to 7 for DMA1 and 1 to 5 for DMA2 to select the DMA Channel.
+ * @param DMA_IT: specifies the DMA interrupts sources to be enabled
+ * or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_IT_TC: Transfer complete interrupt mask
+ * @arg DMA_IT_HT: Half transfer interrupt mask
+ * @arg DMA_IT_TE: Transfer error interrupt mask
+ * @param NewState: new state of the specified DMA interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DMA_ITConfig(DMA_Channel_TypeDef* DMAy_Channelx, uint32_t DMA_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Channelx));
+ assert_param(IS_DMA_CONFIG_IT(DMA_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected DMA interrupts */
+ DMAy_Channelx->CCR |= DMA_IT;
+ }
+ else
+ {
+ /* Disable the selected DMA interrupts */
+ DMAy_Channelx->CCR &= ~DMA_IT;
+ }
+}
+
+/**
+ * @brief Checks whether the specified DMAy Channelx flag is set or not.
+ * @param DMAy_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg DMA1_FLAG_GL1: DMA1 Channel1 global flag.
+ * @arg DMA1_FLAG_TC1: DMA1 Channel1 transfer complete flag.
+ * @arg DMA1_FLAG_HT1: DMA1 Channel1 half transfer flag.
+ * @arg DMA1_FLAG_TE1: DMA1 Channel1 transfer error flag.
+ * @arg DMA1_FLAG_GL2: DMA1 Channel2 global flag.
+ * @arg DMA1_FLAG_TC2: DMA1 Channel2 transfer complete flag.
+ * @arg DMA1_FLAG_HT2: DMA1 Channel2 half transfer flag.
+ * @arg DMA1_FLAG_TE2: DMA1 Channel2 transfer error flag.
+ * @arg DMA1_FLAG_GL3: DMA1 Channel3 global flag.
+ * @arg DMA1_FLAG_TC3: DMA1 Channel3 transfer complete flag.
+ * @arg DMA1_FLAG_HT3: DMA1 Channel3 half transfer flag.
+ * @arg DMA1_FLAG_TE3: DMA1 Channel3 transfer error flag.
+ * @arg DMA1_FLAG_GL4: DMA1 Channel4 global flag.
+ * @arg DMA1_FLAG_TC4: DMA1 Channel4 transfer complete flag.
+ * @arg DMA1_FLAG_HT4: DMA1 Channel4 half transfer flag.
+ * @arg DMA1_FLAG_TE4: DMA1 Channel4 transfer error flag.
+ * @arg DMA1_FLAG_GL5: DMA1 Channel5 global flag.
+ * @arg DMA1_FLAG_TC5: DMA1 Channel5 transfer complete flag.
+ * @arg DMA1_FLAG_HT5: DMA1 Channel5 half transfer flag.
+ * @arg DMA1_FLAG_TE5: DMA1 Channel5 transfer error flag.
+ * @arg DMA1_FLAG_GL6: DMA1 Channel6 global flag.
+ * @arg DMA1_FLAG_TC6: DMA1 Channel6 transfer complete flag.
+ * @arg DMA1_FLAG_HT6: DMA1 Channel6 half transfer flag.
+ * @arg DMA1_FLAG_TE6: DMA1 Channel6 transfer error flag.
+ * @arg DMA1_FLAG_GL7: DMA1 Channel7 global flag.
+ * @arg DMA1_FLAG_TC7: DMA1 Channel7 transfer complete flag.
+ * @arg DMA1_FLAG_HT7: DMA1 Channel7 half transfer flag.
+ * @arg DMA1_FLAG_TE7: DMA1 Channel7 transfer error flag.
+ * @arg DMA2_FLAG_GL1: DMA2 Channel1 global flag.
+ * @arg DMA2_FLAG_TC1: DMA2 Channel1 transfer complete flag.
+ * @arg DMA2_FLAG_HT1: DMA2 Channel1 half transfer flag.
+ * @arg DMA2_FLAG_TE1: DMA2 Channel1 transfer error flag.
+ * @arg DMA2_FLAG_GL2: DMA2 Channel2 global flag.
+ * @arg DMA2_FLAG_TC2: DMA2 Channel2 transfer complete flag.
+ * @arg DMA2_FLAG_HT2: DMA2 Channel2 half transfer flag.
+ * @arg DMA2_FLAG_TE2: DMA2 Channel2 transfer error flag.
+ * @arg DMA2_FLAG_GL3: DMA2 Channel3 global flag.
+ * @arg DMA2_FLAG_TC3: DMA2 Channel3 transfer complete flag.
+ * @arg DMA2_FLAG_HT3: DMA2 Channel3 half transfer flag.
+ * @arg DMA2_FLAG_TE3: DMA2 Channel3 transfer error flag.
+ * @arg DMA2_FLAG_GL4: DMA2 Channel4 global flag.
+ * @arg DMA2_FLAG_TC4: DMA2 Channel4 transfer complete flag.
+ * @arg DMA2_FLAG_HT4: DMA2 Channel4 half transfer flag.
+ * @arg DMA2_FLAG_TE4: DMA2 Channel4 transfer error flag.
+ * @arg DMA2_FLAG_GL5: DMA2 Channel5 global flag.
+ * @arg DMA2_FLAG_TC5: DMA2 Channel5 transfer complete flag.
+ * @arg DMA2_FLAG_HT5: DMA2 Channel5 half transfer flag.
+ * @arg DMA2_FLAG_TE5: DMA2 Channel5 transfer error flag.
+ *
+ * @note
+ * The Global flag (DMAy_FLAG_GLx) is set whenever any of the other flags
+ * relative to the same channel is set (Transfer Complete, Half-transfer
+ * Complete or Transfer Error flags: DMAy_FLAG_TCx, DMAy_FLAG_HTx or
+ * DMAy_FLAG_TEx).
+ *
+ * @retval The new state of DMAy_FLAG (SET or RESET).
+ */
+FlagStatus DMA_GetFlagStatus(uint32_t DMAy_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_GET_FLAG(DMAy_FLAG));
+
+ /* Calculate the used DMAy */
+ if ((DMAy_FLAG & FLAG_MASK) == (uint32_t)RESET)
+ {
+ /* Get DMA1 ISR register value */
+ tmpreg = DMA1->ISR;
+ }
+ else
+ {
+ /* Get DMA2 ISR register value */
+ tmpreg = DMA2->ISR;
+ }
+
+ /* Check the status of the specified DMAy flag */
+ if ((tmpreg & DMAy_FLAG) != (uint32_t)RESET)
+ {
+ /* DMAy_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* DMAy_FLAG is reset */
+ bitstatus = RESET;
+ }
+
+ /* Return the DMAy_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the DMAy Channelx's pending flags.
+ * @param DMAy_FLAG: specifies the flag to clear.
+ * This parameter can be any combination (for the same DMA) of the following values:
+ * @arg DMA1_FLAG_GL1: DMA1 Channel1 global flag.
+ * @arg DMA1_FLAG_TC1: DMA1 Channel1 transfer complete flag.
+ * @arg DMA1_FLAG_HT1: DMA1 Channel1 half transfer flag.
+ * @arg DMA1_FLAG_TE1: DMA1 Channel1 transfer error flag.
+ * @arg DMA1_FLAG_GL2: DMA1 Channel2 global flag.
+ * @arg DMA1_FLAG_TC2: DMA1 Channel2 transfer complete flag.
+ * @arg DMA1_FLAG_HT2: DMA1 Channel2 half transfer flag.
+ * @arg DMA1_FLAG_TE2: DMA1 Channel2 transfer error flag.
+ * @arg DMA1_FLAG_GL3: DMA1 Channel3 global flag.
+ * @arg DMA1_FLAG_TC3: DMA1 Channel3 transfer complete flag.
+ * @arg DMA1_FLAG_HT3: DMA1 Channel3 half transfer flag.
+ * @arg DMA1_FLAG_TE3: DMA1 Channel3 transfer error flag.
+ * @arg DMA1_FLAG_GL4: DMA1 Channel4 global flag.
+ * @arg DMA1_FLAG_TC4: DMA1 Channel4 transfer complete flag.
+ * @arg DMA1_FLAG_HT4: DMA1 Channel4 half transfer flag.
+ * @arg DMA1_FLAG_TE4: DMA1 Channel4 transfer error flag.
+ * @arg DMA1_FLAG_GL5: DMA1 Channel5 global flag.
+ * @arg DMA1_FLAG_TC5: DMA1 Channel5 transfer complete flag.
+ * @arg DMA1_FLAG_HT5: DMA1 Channel5 half transfer flag.
+ * @arg DMA1_FLAG_TE5: DMA1 Channel5 transfer error flag.
+ * @arg DMA1_FLAG_GL6: DMA1 Channel6 global flag.
+ * @arg DMA1_FLAG_TC6: DMA1 Channel6 transfer complete flag.
+ * @arg DMA1_FLAG_HT6: DMA1 Channel6 half transfer flag.
+ * @arg DMA1_FLAG_TE6: DMA1 Channel6 transfer error flag.
+ * @arg DMA1_FLAG_GL7: DMA1 Channel7 global flag.
+ * @arg DMA1_FLAG_TC7: DMA1 Channel7 transfer complete flag.
+ * @arg DMA1_FLAG_HT7: DMA1 Channel7 half transfer flag.
+ * @arg DMA1_FLAG_TE7: DMA1 Channel7 transfer error flag.
+ * @arg DMA2_FLAG_GL1: DMA2 Channel1 global flag.
+ * @arg DMA2_FLAG_TC1: DMA2 Channel1 transfer complete flag.
+ * @arg DMA2_FLAG_HT1: DMA2 Channel1 half transfer flag.
+ * @arg DMA2_FLAG_TE1: DMA2 Channel1 transfer error flag.
+ * @arg DMA2_FLAG_GL2: DMA2 Channel2 global flag.
+ * @arg DMA2_FLAG_TC2: DMA2 Channel2 transfer complete flag.
+ * @arg DMA2_FLAG_HT2: DMA2 Channel2 half transfer flag.
+ * @arg DMA2_FLAG_TE2: DMA2 Channel2 transfer error flag.
+ * @arg DMA2_FLAG_GL3: DMA2 Channel3 global flag.
+ * @arg DMA2_FLAG_TC3: DMA2 Channel3 transfer complete flag.
+ * @arg DMA2_FLAG_HT3: DMA2 Channel3 half transfer flag.
+ * @arg DMA2_FLAG_TE3: DMA2 Channel3 transfer error flag.
+ * @arg DMA2_FLAG_GL4: DMA2 Channel4 global flag.
+ * @arg DMA2_FLAG_TC4: DMA2 Channel4 transfer complete flag.
+ * @arg DMA2_FLAG_HT4: DMA2 Channel4 half transfer flag.
+ * @arg DMA2_FLAG_TE4: DMA2 Channel4 transfer error flag.
+ * @arg DMA2_FLAG_GL5: DMA2 Channel5 global flag.
+ * @arg DMA2_FLAG_TC5: DMA2 Channel5 transfer complete flag.
+ * @arg DMA2_FLAG_HT5: DMA2 Channel5 half transfer flag.
+ * @arg DMA2_FLAG_TE5: DMA2 Channel5 transfer error flag.
+ *
+ * @note
+ * Clearing the Global flag (DMAy_FLAG_GLx) results in clearing all other flags
+ * relative to the same channel (Transfer Complete, Half-transfer Complete and
+ * Transfer Error flags: DMAy_FLAG_TCx, DMAy_FLAG_HTx and DMAy_FLAG_TEx).
+ *
+ * @retval None
+ */
+void DMA_ClearFlag(uint32_t DMAy_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_CLEAR_FLAG(DMAy_FLAG));
+
+ if ((DMAy_FLAG & FLAG_MASK) == (uint32_t)RESET)
+ {
+ /* Clear the selected DMAy flags */
+ DMA1->IFCR = DMAy_FLAG;
+ }
+ else
+ {
+ /* Clear the selected DMAy flags */
+ DMA2->IFCR = DMAy_FLAG;
+ }
+}
+
+/**
+ * @brief Checks whether the specified DMAy Channelx interrupt has occurred or not.
+ * @param DMAy_IT: specifies the DMAy interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg DMA1_IT_GL1: DMA1 Channel1 global interrupt.
+ * @arg DMA1_IT_TC1: DMA1 Channel1 transfer complete interrupt.
+ * @arg DMA1_IT_HT1: DMA1 Channel1 half transfer interrupt.
+ * @arg DMA1_IT_TE1: DMA1 Channel1 transfer error interrupt.
+ * @arg DMA1_IT_GL2: DMA1 Channel2 global interrupt.
+ * @arg DMA1_IT_TC2: DMA1 Channel2 transfer complete interrupt.
+ * @arg DMA1_IT_HT2: DMA1 Channel2 half transfer interrupt.
+ * @arg DMA1_IT_TE2: DMA1 Channel2 transfer error interrupt.
+ * @arg DMA1_IT_GL3: DMA1 Channel3 global interrupt.
+ * @arg DMA1_IT_TC3: DMA1 Channel3 transfer complete interrupt.
+ * @arg DMA1_IT_HT3: DMA1 Channel3 half transfer interrupt.
+ * @arg DMA1_IT_TE3: DMA1 Channel3 transfer error interrupt.
+ * @arg DMA1_IT_GL4: DMA1 Channel4 global interrupt.
+ * @arg DMA1_IT_TC4: DMA1 Channel4 transfer complete interrupt.
+ * @arg DMA1_IT_HT4: DMA1 Channel4 half transfer interrupt.
+ * @arg DMA1_IT_TE4: DMA1 Channel4 transfer error interrupt.
+ * @arg DMA1_IT_GL5: DMA1 Channel5 global interrupt.
+ * @arg DMA1_IT_TC5: DMA1 Channel5 transfer complete interrupt.
+ * @arg DMA1_IT_HT5: DMA1 Channel5 half transfer interrupt.
+ * @arg DMA1_IT_TE5: DMA1 Channel5 transfer error interrupt.
+ * @arg DMA1_IT_GL6: DMA1 Channel6 global interrupt.
+ * @arg DMA1_IT_TC6: DMA1 Channel6 transfer complete interrupt.
+ * @arg DMA1_IT_HT6: DMA1 Channel6 half transfer interrupt.
+ * @arg DMA1_IT_TE6: DMA1 Channel6 transfer error interrupt.
+ * @arg DMA1_IT_GL7: DMA1 Channel7 global interrupt.
+ * @arg DMA1_IT_TC7: DMA1 Channel7 transfer complete interrupt.
+ * @arg DMA1_IT_HT7: DMA1 Channel7 half transfer interrupt.
+ * @arg DMA1_IT_TE7: DMA1 Channel7 transfer error interrupt.
+ * @arg DMA2_IT_GL1: DMA2 Channel1 global interrupt.
+ * @arg DMA2_IT_TC1: DMA2 Channel1 transfer complete interrupt.
+ * @arg DMA2_IT_HT1: DMA2 Channel1 half transfer interrupt.
+ * @arg DMA2_IT_TE1: DMA2 Channel1 transfer error interrupt.
+ * @arg DMA2_IT_GL2: DMA2 Channel2 global interrupt.
+ * @arg DMA2_IT_TC2: DMA2 Channel2 transfer complete interrupt.
+ * @arg DMA2_IT_HT2: DMA2 Channel2 half transfer interrupt.
+ * @arg DMA2_IT_TE2: DMA2 Channel2 transfer error interrupt.
+ * @arg DMA2_IT_GL3: DMA2 Channel3 global interrupt.
+ * @arg DMA2_IT_TC3: DMA2 Channel3 transfer complete interrupt.
+ * @arg DMA2_IT_HT3: DMA2 Channel3 half transfer interrupt.
+ * @arg DMA2_IT_TE3: DMA2 Channel3 transfer error interrupt.
+ * @arg DMA2_IT_GL4: DMA2 Channel4 global interrupt.
+ * @arg DMA2_IT_TC4: DMA2 Channel4 transfer complete interrupt.
+ * @arg DMA2_IT_HT4: DMA2 Channel4 half transfer interrupt.
+ * @arg DMA2_IT_TE4: DMA2 Channel4 transfer error interrupt.
+ * @arg DMA2_IT_GL5: DMA2 Channel5 global interrupt.
+ * @arg DMA2_IT_TC5: DMA2 Channel5 transfer complete interrupt.
+ * @arg DMA2_IT_HT5: DMA2 Channel5 half transfer interrupt.
+ * @arg DMA2_IT_TE5: DMA2 Channel5 transfer error interrupt.
+ *
+ * @note
+ * The Global interrupt (DMAy_FLAG_GLx) is set whenever any of the other
+ * interrupts relative to the same channel is set (Transfer Complete,
+ * Half-transfer Complete or Transfer Error interrupts: DMAy_IT_TCx,
+ * DMAy_IT_HTx or DMAy_IT_TEx).
+ *
+ * @retval The new state of DMAy_IT (SET or RESET).
+ */
+ITStatus DMA_GetITStatus(uint32_t DMAy_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_GET_IT(DMAy_IT));
+
+ /* Calculate the used DMAy */
+ if ((DMAy_IT & FLAG_MASK) == (uint32_t)RESET)
+ {
+ /* Get DMA1 ISR register value */
+ tmpreg = DMA1->ISR;
+ }
+ else
+ {
+ /* Get DMA2 ISR register value */
+ tmpreg = DMA2->ISR;
+ }
+
+ /* Check the status of the specified DMAy interrupt */
+ if ((tmpreg & DMAy_IT) != (uint32_t)RESET)
+ {
+ /* DMAy_IT is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* DMAy_IT is reset */
+ bitstatus = RESET;
+ }
+ /* Return the DMAy_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the DMAy Channelx's interrupt pending bits.
+ * @param DMAy_IT: specifies the DMAy interrupt pending bit to clear.
+ * This parameter can be any combination (for the same DMA) of the following values:
+ * @arg DMA1_IT_GL1: DMA1 Channel1 global interrupt.
+ * @arg DMA1_IT_TC1: DMA1 Channel1 transfer complete interrupt.
+ * @arg DMA1_IT_HT1: DMA1 Channel1 half transfer interrupt.
+ * @arg DMA1_IT_TE1: DMA1 Channel1 transfer error interrupt.
+ * @arg DMA1_IT_GL2: DMA1 Channel2 global interrupt.
+ * @arg DMA1_IT_TC2: DMA1 Channel2 transfer complete interrupt.
+ * @arg DMA1_IT_HT2: DMA1 Channel2 half transfer interrupt.
+ * @arg DMA1_IT_TE2: DMA1 Channel2 transfer error interrupt.
+ * @arg DMA1_IT_GL3: DMA1 Channel3 global interrupt.
+ * @arg DMA1_IT_TC3: DMA1 Channel3 transfer complete interrupt.
+ * @arg DMA1_IT_HT3: DMA1 Channel3 half transfer interrupt.
+ * @arg DMA1_IT_TE3: DMA1 Channel3 transfer error interrupt.
+ * @arg DMA1_IT_GL4: DMA1 Channel4 global interrupt.
+ * @arg DMA1_IT_TC4: DMA1 Channel4 transfer complete interrupt.
+ * @arg DMA1_IT_HT4: DMA1 Channel4 half transfer interrupt.
+ * @arg DMA1_IT_TE4: DMA1 Channel4 transfer error interrupt.
+ * @arg DMA1_IT_GL5: DMA1 Channel5 global interrupt.
+ * @arg DMA1_IT_TC5: DMA1 Channel5 transfer complete interrupt.
+ * @arg DMA1_IT_HT5: DMA1 Channel5 half transfer interrupt.
+ * @arg DMA1_IT_TE5: DMA1 Channel5 transfer error interrupt.
+ * @arg DMA1_IT_GL6: DMA1 Channel6 global interrupt.
+ * @arg DMA1_IT_TC6: DMA1 Channel6 transfer complete interrupt.
+ * @arg DMA1_IT_HT6: DMA1 Channel6 half transfer interrupt.
+ * @arg DMA1_IT_TE6: DMA1 Channel6 transfer error interrupt.
+ * @arg DMA1_IT_GL7: DMA1 Channel7 global interrupt.
+ * @arg DMA1_IT_TC7: DMA1 Channel7 transfer complete interrupt.
+ * @arg DMA1_IT_HT7: DMA1 Channel7 half transfer interrupt.
+ * @arg DMA1_IT_TE7: DMA1 Channel7 transfer error interrupt.
+ * @arg DMA2_IT_GL1: DMA2 Channel1 global interrupt.
+ * @arg DMA2_IT_TC1: DMA2 Channel1 transfer complete interrupt.
+ * @arg DMA2_IT_HT1: DMA2 Channel1 half transfer interrupt.
+ * @arg DMA2_IT_TE1: DMA2 Channel1 transfer error interrupt.
+ * @arg DMA2_IT_GL2: DMA2 Channel2 global interrupt.
+ * @arg DMA2_IT_TC2: DMA2 Channel2 transfer complete interrupt.
+ * @arg DMA2_IT_HT2: DMA2 Channel2 half transfer interrupt.
+ * @arg DMA2_IT_TE2: DMA2 Channel2 transfer error interrupt.
+ * @arg DMA2_IT_GL3: DMA2 Channel3 global interrupt.
+ * @arg DMA2_IT_TC3: DMA2 Channel3 transfer complete interrupt.
+ * @arg DMA2_IT_HT3: DMA2 Channel3 half transfer interrupt.
+ * @arg DMA2_IT_TE3: DMA2 Channel3 transfer error interrupt.
+ * @arg DMA2_IT_GL4: DMA2 Channel4 global interrupt.
+ * @arg DMA2_IT_TC4: DMA2 Channel4 transfer complete interrupt.
+ * @arg DMA2_IT_HT4: DMA2 Channel4 half transfer interrupt.
+ * @arg DMA2_IT_TE4: DMA2 Channel4 transfer error interrupt.
+ * @arg DMA2_IT_GL5: DMA2 Channel5 global interrupt.
+ * @arg DMA2_IT_TC5: DMA2 Channel5 transfer complete interrupt.
+ * @arg DMA2_IT_HT5: DMA2 Channel5 half transfer interrupt.
+ * @arg DMA2_IT_TE5: DMA2 Channel5 transfer error interrupt.
+ *
+ * @note
+ * Clearing the Global interrupt (DMAy_IT_GLx) results in clearing all other
+ * interrupts relative to the same channel (Transfer Complete, Half-transfer
+ * Complete and Transfer Error interrupts: DMAy_IT_TCx, DMAy_IT_HTx and
+ * DMAy_IT_TEx).
+ *
+ * @retval None
+ */
+void DMA_ClearITPendingBit(uint32_t DMAy_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_CLEAR_IT(DMAy_IT));
+
+ /* Calculate the used DMAy */
+ if ((DMAy_IT & FLAG_MASK) == (uint32_t)RESET)
+ {
+ /* Clear the selected DMAy interrupt pending bits */
+ DMA1->IFCR = DMAy_IT;
+ }
+ else
+ {
+ /* Clear the selected DMAy interrupt pending bits */
+ DMA2->IFCR = DMAy_IT;
+ }
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_flash_ramfunc.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_flash_ramfunc.c
new file mode 100644
index 0000000..e535084
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_flash_ramfunc.c
@@ -0,0 +1,553 @@
+/**
+ ******************************************************************************
+ * @file stm32l1xx_flash_ramfunc.c
+ * @author MCD Application Team
+ * @version V1.1.1
+ * @date 05-March-2012
+ * @brief This file provides all the Flash firmware functions which should be
+ * executed from the internal SRAM. This file should be placed in
+ * internal SRAM.
+ * Other FLASH memory functions that can be used from the FLASH are
+ * defined in the "stm32l1xx_flash.c" file.
+@verbatim
+
+ *** ARM Compiler ***
+ --------------------
+ [..] RAM functions are defined using the toolchain options.
+ Functions that are be executed in RAM should reside in a separate
+ source module. Using the 'Options for File' dialog you can simply change
+ the 'Code / Const' area of a module to a memory space in physical RAM.
+ Available memory areas are declared in the 'Target' tab of the
+ Options for Target' dialog.
+
+ *** ICCARM Compiler ***
+ -----------------------
+ [..] RAM functions are defined using a specific toolchain keyword "__ramfunc".
+
+ *** GNU Compiler ***
+ --------------------
+ [..] RAM functions are defined using a specific toolchain attribute
+ "__attribute__((section(".data")))".
+
+ *** TASKING Compiler ***
+ ------------------------
+ [..] RAM functions are defined using a specific toolchain pragma. This
+ pragma is defined inside this file.
+
+@endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l1xx_flash.h"
+
+/** @addtogroup STM32L1xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup FLASH
+ * @brief FLASH driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+static __RAM_FUNC GetStatus(void);
+static __RAM_FUNC WaitForLastOperation(uint32_t Timeout);
+
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup FLASH_Private_Functions
+ * @{
+ */
+
+/** @addtogroup FLASH_Group1
+ *
+@verbatim
+@endverbatim
+ * @{
+ */
+#if defined ( __TASKING__ )
+#pragma section_code_init on
+#endif
+
+/**
+ * @brief Enable or disable the power down mode during RUN mode.
+ * @note This function can be used only when the user code is running from Internal SRAM.
+ * @param NewState: new state of the power down mode during RUN mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+__RAM_FUNC FLASH_RUNPowerDownCmd(FunctionalState NewState)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ if (NewState != DISABLE)
+ {
+ /* Unlock the RUN_PD bit */
+ FLASH->PDKEYR = FLASH_PDKEY1;
+ FLASH->PDKEYR = FLASH_PDKEY2;
+
+ /* Set the RUN_PD bit in FLASH_ACR register to put Flash in power down mode */
+ FLASH->ACR |= (uint32_t)FLASH_ACR_RUN_PD;
+
+ if((FLASH->ACR & FLASH_ACR_RUN_PD) != FLASH_ACR_RUN_PD)
+ {
+ status = FLASH_ERROR_PROGRAM;
+ }
+ }
+ else
+ {
+ /* Clear the RUN_PD bit in FLASH_ACR register to put Flash in idle mode */
+ FLASH->ACR &= (uint32_t)(~(uint32_t)FLASH_ACR_RUN_PD);
+ }
+
+ /* Return the Write Status */
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASH_Group2
+ *
+@verbatim
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Erases a specified 2 page in program memory in parallel.
+ * @note This function can be used only for STM32L1XX_HD density devices.
+ * To correctly run this function, the FLASH_Unlock() function
+ * must be called before.
+ * Call the FLASH_Lock() to disable the flash memory access
+ * (recommended to protect the FLASH memory against possible unwanted operation).
+ * @param Page_Address1: The page address in program memory to be erased in
+ * the first Bank (BANK1). This parameter should be between 0x08000000
+ * and 0x0802FF00.
+ * @param Page_Address2: The page address in program memory to be erased in
+ * the second Bank (BANK2). This parameter should be between 0x08030000
+ * and 0x0805FF00.
+ * @note A Page is erased in the Program memory only if the address to load
+ * is the start address of a page (multiple of 256 bytes).
+ * @retval FLASH Status: The returned value can be:
+ * FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
+ */
+FLASH_Status FLASH_EraseParallelPage(uint32_t Page_Address1, uint32_t Page_Address2)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* If the previous operation is completed, proceed to erase the page */
+
+ /* Set the PARALLBANK bit */
+ FLASH->PECR |= FLASH_PECR_PARALLBANK;
+
+ /* Set the ERASE bit */
+ FLASH->PECR |= FLASH_PECR_ERASE;
+
+ /* Set PROG bit */
+ FLASH->PECR |= FLASH_PECR_PROG;
+
+ /* Write 00000000h to the first word of the first program page to erase */
+ *(__IO uint32_t *)Page_Address1 = 0x00000000;
+ /* Write 00000000h to the first word of the second program page to erase */
+ *(__IO uint32_t *)Page_Address2 = 0x00000000;
+
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ /* If the erase operation is completed, disable the ERASE, PROG and PARALLBANK bits */
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_PROG);
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_ERASE);
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_PARALLBANK);
+ }
+ /* Return the Erase Status */
+ return status;
+}
+
+/**
+ * @brief Programs a half page in program memory.
+ * @param Address: specifies the address to be written.
+ * @param pBuffer: pointer to the buffer containing the data to be written to
+ * the half page.
+ * @note To correctly run this function, the FLASH_Unlock() function
+ * must be called before.
+ * Call the FLASH_Lock() to disable the flash memory access
+ * (recommended to protect the FLASH memory against possible unwanted operation)
+ * @note Half page write is possible only from SRAM.
+ * @note If there are more than 32 words to write, after 32 words another
+ * Half Page programming operation starts and has to be finished.
+ * @note A half page is written to the program memory only if the first
+ * address to load is the start address of a half page (multiple of 128
+ * bytes) and the 31 remaining words to load are in the same half page.
+ * @note During the Program memory half page write all read operations are
+ * forbidden (this includes DMA read operations and debugger read
+ * operations such as breakpoints, periodic updates, etc.).
+ * @note If a PGAERR is set during a Program memory half page write, the
+ * complete write operation is aborted. Software should then reset the
+ * FPRG and PROG/DATA bits and restart the write operation from the
+ * beginning.
+ * @retval FLASH Status: The returned value can be:
+ * FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
+ */
+__RAM_FUNC FLASH_ProgramHalfPage(uint32_t Address, uint32_t* pBuffer)
+{
+ uint32_t count = 0;
+
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Set the DISMCYCINT[0] bit in the Auxillary Control Register (0xE000E008)
+ This bit prevents the interruption of multicycle instructions and therefore
+ will increase the interrupt latency. of Cortex-M3. */
+ SCnSCB->ACTLR |= SCnSCB_ACTLR_DISMCYCINT_Msk;
+
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* if the previous operation is completed, proceed to program the new
+ half page */
+ FLASH->PECR |= FLASH_PECR_FPRG;
+ FLASH->PECR |= FLASH_PECR_PROG;
+
+ /* Write one half page directly with 32 different words */
+ while(count < 32)
+ {
+ *(__IO uint32_t*) (Address + (4 * count)) = *(pBuffer++);
+ count ++;
+ }
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ /* if the write operation is completed, disable the PROG and FPRG bits */
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_PROG);
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_FPRG);
+ }
+
+ SCnSCB->ACTLR &= ~SCnSCB_ACTLR_DISMCYCINT_Msk;
+
+ /* Return the Write Status */
+ return status;
+}
+
+/**
+ * @brief Programs 2 half page in program memory in parallel.
+ * @param Address1: specifies the first address to be written in the first bank
+ * (BANK1). This parameter should be between 0x08000000 and 0x0802FF80.
+ * @param pBuffer1: pointer to the buffer containing the data to be written
+ * to the first half page in the first bank.
+ * @param Address2: specifies the second address to be written in the second bank
+ * (BANK2). This parameter should be between 0x08030000 and 0x0805FF80.
+ * @param pBuffer2: pointer to the buffer containing the data to be written
+ * to the second half page in the second bank.
+ * @note This function can be used only for STM32L1XX_HD density devices.
+ * @note To correctly run this function, the FLASH_Unlock() function
+ * must be called before.
+ * Call the FLASH_Lock() to disable the flash memory access
+ * (recommended to protect the FLASH memory against possible unwanted operation).
+ * @note Half page write is possible only from SRAM.
+ * @note If there are more than 32 words to write, after 32 words another
+ * Half Page programming operation starts and has to be finished.
+ * @note A half page is written to the program memory only if the first
+ * address to load is the start address of a half page (multiple of 128
+ * bytes) and the 31 remaining words to load are in the same half page.
+ * @note During the Program memory half page write all read operations are
+ * forbidden (this includes DMA read operations and debugger read
+ * operations such as breakpoints, periodic updates, etc.).
+ * @note If a PGAERR is set during a Program memory half page write, the
+ * complete write operation is aborted. Software should then reset the
+ * FPRG and PROG/DATA bits and restart the write operation from the
+ * beginning.
+ * @retval FLASH Status: The returned value can be:
+ * FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
+ */
+__RAM_FUNC FLASH_ProgramParallelHalfPage(uint32_t Address1, uint32_t* pBuffer1, uint32_t Address2, uint32_t* pBuffer2)
+{
+ uint32_t count = 0;
+
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Set the DISMCYCINT[0] bit in the Auxillary Control Register (0xE000E008)
+ This bit prevents the interruption of multicycle instructions and therefore
+ will increase the interrupt latency. of Cortex-M3. */
+ SCnSCB->ACTLR |= SCnSCB_ACTLR_DISMCYCINT_Msk;
+
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* If the previous operation is completed, proceed to program the new
+ half page */
+ FLASH->PECR |= FLASH_PECR_PARALLBANK;
+ FLASH->PECR |= FLASH_PECR_FPRG;
+ FLASH->PECR |= FLASH_PECR_PROG;
+
+ /* Write the first half page directly with 32 different words */
+ while(count < 32)
+ {
+ *(__IO uint32_t*) (Address1 + (4 * count)) = *(pBuffer1++);
+ count ++;
+ }
+ count = 0;
+ /* Write the second half page directly with 32 different words */
+ while(count < 32)
+ {
+ *(__IO uint32_t*) (Address2 + (4 * count)) = *(pBuffer2++);
+ count ++;
+ }
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ /* if the write operation is completed, disable the PROG, FPRG and PARALLBANK bits */
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_PROG);
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_FPRG);
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_PARALLBANK);
+ }
+
+ SCnSCB->ACTLR &= ~SCnSCB_ACTLR_DISMCYCINT_Msk;
+
+ /* Return the Write Status */
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @addtogroup FLASH_Group3
+ *
+@verbatim
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Erase a double word in data memory.
+ * @param Address: specifies the address to be erased.
+ * @note To correctly run this function, the DATA_EEPROM_Unlock() function
+ * must be called before.
+ * Call the DATA_EEPROM_Lock() to he data EEPROM access
+ * and Flash program erase control register access(recommended to protect
+ * the DATA_EEPROM against possible unwanted operation).
+ * @note Data memory double word erase is possible only from SRAM.
+ * @note A double word is erased to the data memory only if the first address
+ * to load is the start address of a double word (multiple of 8 bytes).
+ * @note During the Data memory double word erase, all read operations are
+ * forbidden (this includes DMA read operations and debugger read
+ * operations such as breakpoints, periodic updates, etc.).
+ * @retval FLASH Status: The returned value can be:
+ * FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
+ */
+
+__RAM_FUNC DATA_EEPROM_EraseDoubleWord(uint32_t Address)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Set the DISMCYCINT[0] bit in the Auxillary Control Register (0xE000E008)
+ This bit prevents the interruption of multicycle instructions and therefore
+ will increase the interrupt latency. of Cortex-M3. */
+ SCnSCB->ACTLR |= SCnSCB_ACTLR_DISMCYCINT_Msk;
+
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* If the previous operation is completed, proceed to erase the next double word */
+ /* Set the ERASE bit */
+ FLASH->PECR |= FLASH_PECR_ERASE;
+
+ /* Set DATA bit */
+ FLASH->PECR |= FLASH_PECR_DATA;
+
+ /* Write 00000000h to the 2 words to erase */
+ *(__IO uint32_t *)Address = 0x00000000;
+ Address += 4;
+ *(__IO uint32_t *)Address = 0x00000000;
+
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ /* If the erase operation is completed, disable the ERASE and DATA bits */
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_ERASE);
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_DATA);
+ }
+
+ SCnSCB->ACTLR &= ~SCnSCB_ACTLR_DISMCYCINT_Msk;
+
+ /* Return the erase status */
+ return status;
+}
+
+/**
+ * @brief Write a double word in data memory without erase.
+ * @param Address: specifies the address to be written.
+ * @param Data: specifies the data to be written.
+ * @note To correctly run this function, the DATA_EEPROM_Unlock() function
+ * must be called before.
+ * Call the DATA_EEPROM_Lock() to he data EEPROM access
+ * and Flash program erase control register access(recommended to protect
+ * the DATA_EEPROM against possible unwanted operation).
+ * @note Data memory double word write is possible only from SRAM.
+ * @note A data memory double word is written to the data memory only if the
+ * first address to load is the start address of a double word (multiple
+ * of double word).
+ * @note During the Data memory double word write, all read operations are
+ * forbidden (this includes DMA read operations and debugger read
+ * operations such as breakpoints, periodic updates, etc.).
+ * @retval FLASH Status: The returned value can be:
+ * FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or FLASH_TIMEOUT.
+ */
+__RAM_FUNC DATA_EEPROM_ProgramDoubleWord(uint32_t Address, uint64_t Data)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Set the DISMCYCINT[0] bit in the Auxillary Control Register (0xE000E008)
+ This bit prevents the interruption of multicycle instructions and therefore
+ will increase the interrupt latency. of Cortex-M3. */
+ SCnSCB->ACTLR |= SCnSCB_ACTLR_DISMCYCINT_Msk;
+
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* If the previous operation is completed, proceed to program the new data*/
+ FLASH->PECR |= FLASH_PECR_FPRG;
+ FLASH->PECR |= FLASH_PECR_DATA;
+
+ /* Write the 2 words */
+ *(__IO uint32_t *)Address = (uint32_t) Data;
+ Address += 4;
+ *(__IO uint32_t *)Address = (uint32_t) (Data >> 32);
+
+ /* Wait for last operation to be completed */
+ status = WaitForLastOperation(FLASH_ER_PRG_TIMEOUT);
+
+ /* If the write operation is completed, disable the FPRG and DATA bits */
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_FPRG);
+ FLASH->PECR &= (uint32_t)(~FLASH_PECR_DATA);
+ }
+
+ SCnSCB->ACTLR &= ~SCnSCB_ACTLR_DISMCYCINT_Msk;
+
+ /* Return the Write Status */
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @brief Returns the FLASH Status.
+ * @param None
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY,
+ * FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP or FLASH_COMPLETE
+ */
+static __RAM_FUNC GetStatus(void)
+{
+ FLASH_Status FLASHstatus = FLASH_COMPLETE;
+
+ if((FLASH->SR & FLASH_FLAG_BSY) == FLASH_FLAG_BSY)
+ {
+ FLASHstatus = FLASH_BUSY;
+ }
+ else
+ {
+ if((FLASH->SR & (uint32_t)FLASH_FLAG_WRPERR)!= (uint32_t)0x00)
+ {
+ FLASHstatus = FLASH_ERROR_WRP;
+ }
+ else
+ {
+ if((FLASH->SR & (uint32_t)0x1E00) != (uint32_t)0x00)
+ {
+ FLASHstatus = FLASH_ERROR_PROGRAM;
+ }
+ else
+ {
+ FLASHstatus = FLASH_COMPLETE;
+ }
+ }
+ }
+ /* Return the FLASH Status */
+ return FLASHstatus;
+}
+
+/**
+ * @brief Waits for a FLASH operation to complete or a TIMEOUT to occur.
+ * @param Timeout: FLASH programming Timeout
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY,
+ * FLASH_ERROR_PROGRAM, FLASH_ERROR_WRP, FLASH_COMPLETE or
+ * FLASH_TIMEOUT.
+ */
+static __RAM_FUNC WaitForLastOperation(uint32_t Timeout)
+{
+ __IO FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check for the FLASH Status */
+ status = GetStatus();
+
+ /* Wait for a FLASH operation to complete or a TIMEOUT to occur */
+ while((status == FLASH_BUSY) && (Timeout != 0x00))
+ {
+ status = GetStatus();
+ Timeout--;
+ }
+
+ if(Timeout == 0x00 )
+ {
+ status = FLASH_TIMEOUT;
+ }
+ /* Return the operation status */
+ return status;
+}
+
+#if defined ( __TASKING__ )
+#pragma section_code_init restore
+#endif
+
+/**
+ * @}
+ */
+
+ /**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_rcc.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_rcc.c
new file mode 100644
index 0000000..52eb808
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_rcc.c
@@ -0,0 +1,1642 @@
+/**
+ ******************************************************************************
+ * @file stm32l1xx_rcc.c
+ * @author MCD Application Team
+ * @version V1.1.1
+ * @date 05-March-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Reset and clock control (RCC) peripheral:
+ * + Internal/external clocks, PLL, CSS and MCO configuration
+ * + System, AHB and APB busses clocks configuration
+ * + Peripheral clocks configuration
+ * + Interrupts and flags management
+ *
+ @verbatim
+
+ ===============================================================================
+ ##### RCC specific features #####
+ ===============================================================================
+ [..] After reset the device is running from MSI (2 MHz) with Flash 0 WS,
+ all peripherals are off except internal SRAM, Flash and JTAG.
+ (#) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
+ all peripherals mapped on these busses are running at MSI speed.
+ (#) The clock for all peripherals is switched off, except the SRAM and
+ FLASH.
+ (#) All GPIOs are in input floating state, except the JTAG pins which
+ are assigned to be used for debug purpose.
+ [..] Once the device started from reset, the user application has to:
+ (#) Configure the clock source to be used to drive the System clock
+ (if the application needs higher frequency/performance)
+ (#) Configure the System clock frequency and Flash settings
+ (#) Configure the AHB and APB busses prescalers
+ (#) Enable the clock for the peripheral(s) to be used
+ (#) Configure the clock source(s) for peripherals whose clocks are not
+ derived from the System clock (ADC, RTC/LCD and IWDG)
+
+ @endverbatim
+
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l1xx_rcc.h"
+
+/** @addtogroup STM32L1xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup RCC
+ * @brief RCC driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* ------------ RCC registers bit address in the alias region ----------- */
+#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
+
+/* --- CR Register ---*/
+
+/* Alias word address of HSION bit */
+#define CR_OFFSET (RCC_OFFSET + 0x00)
+#define HSION_BitNumber 0x00
+#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
+
+/* Alias word address of MSION bit */
+#define MSION_BitNumber 0x08
+#define CR_MSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (MSION_BitNumber * 4))
+
+/* Alias word address of PLLON bit */
+#define PLLON_BitNumber 0x18
+#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
+
+/* Alias word address of CSSON bit */
+#define CSSON_BitNumber 0x1C
+#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
+
+/* --- CSR Register ---*/
+
+/* Alias word address of LSION bit */
+#define CSR_OFFSET (RCC_OFFSET + 0x34)
+#define LSION_BitNumber 0x00
+#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))
+
+/* Alias word address of LSECSSON bit */
+#define LSECSSON_BitNumber 0x0B
+#define CSR_LSECSSON_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSECSSON_BitNumber * 4))
+
+/* Alias word address of RTCEN bit */
+#define RTCEN_BitNumber 0x16
+#define CSR_RTCEN_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (RTCEN_BitNumber * 4))
+
+/* Alias word address of RTCRST bit */
+#define RTCRST_BitNumber 0x17
+#define CSR_RTCRST_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (RTCRST_BitNumber * 4))
+
+
+/* ---------------------- RCC registers mask -------------------------------- */
+/* RCC Flag Mask */
+#define FLAG_MASK ((uint8_t)0x1F)
+
+/* CR register byte 3 (Bits[23:16]) base address */
+#define CR_BYTE3_ADDRESS ((uint32_t)0x40023802)
+
+/* ICSCR register byte 4 (Bits[31:24]) base address */
+#define ICSCR_BYTE4_ADDRESS ((uint32_t)0x40023807)
+
+/* CFGR register byte 3 (Bits[23:16]) base address */
+#define CFGR_BYTE3_ADDRESS ((uint32_t)0x4002380A)
+
+/* CFGR register byte 4 (Bits[31:24]) base address */
+#define CFGR_BYTE4_ADDRESS ((uint32_t)0x4002380B)
+
+/* CIR register byte 2 (Bits[15:8]) base address */
+#define CIR_BYTE2_ADDRESS ((uint32_t)0x4002380D)
+
+/* CIR register byte 3 (Bits[23:16]) base address */
+#define CIR_BYTE3_ADDRESS ((uint32_t)0x4002380E)
+
+/* CSR register byte 2 (Bits[15:8]) base address */
+#define CSR_BYTE2_ADDRESS ((uint32_t)0x40023835)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+
+static __I uint8_t PLLMulTable[9] = {3, 4, 6, 8, 12, 16, 24, 32, 48};
+static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
+
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup RCC_Private_Functions
+ * @{
+ */
+
+/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
+ * @brief Internal and external clocks, PLL, CSS and MCO configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Internal-external clocks, PLL, CSS and MCO configuration functions #####
+ ===============================================================================
+ [..] This section provide functions allowing to configure the internal/external
+ clocks, PLL, CSS and MCO.
+ (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly
+ or through the PLL as System clock source.
+ (#) MSI (multi-speed internal), multispeed low power RC
+ (65.536 KHz to 4.194 MHz) MHz used as System clock source.
+ (#) LSI (low-speed internal), 37 KHz low consumption RC used as IWDG
+ and/or RTC clock source.
+ (#) HSE (high-speed external), 1 to 24 MHz crystal oscillator used
+ directly or through the PLL as System clock source. Can be used
+ also as RTC clock source.
+ (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
+ (#) PLL (clocked by HSI or HSE), for System clock and USB (48 MHz).
+ (#) CSS (Clock security system), once enable and if a HSE clock failure
+ occurs (HSE used directly or through PLL as System clock source),
+ the System clock is automatically switched to MSI and an interrupt
+ is generated if enabled.
+ The interrupt is linked to the Cortex-M3 NMI (Non-Maskable Interrupt)
+ exception vector.
+ (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, MSI,
+ HSE, PLL, LSI or LSE clock (through a configurable prescaler) on
+ PA8 pin.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Resets the RCC clock configuration to the default reset state.
+ * @note The default reset state of the clock configuration is given below:
+ * @note MSI ON and used as system clock source (MSI range is not modified
+ * by this function, it keep the value configured by user application)
+ * @note HSI, HSE and PLL OFF
+ * @note AHB, APB1 and APB2 prescaler set to 1.
+ * @note CSS and MCO OFF
+ * @note All interrupts disabled
+ * @note However, this function doesn't modify the configuration of the
+ * @note Peripheral clocks
+ * @note LSI, LSE and RTC clocks
+ * @param None
+ * @retval None
+ */
+void RCC_DeInit(void)
+{
+
+ /* Set MSION bit */
+ RCC->CR |= (uint32_t)0x00000100;
+
+ /* Reset SW[1:0], HPRE[3:0], PPRE1[2:0], PPRE2[2:0], MCOSEL[2:0] and MCOPRE[2:0] bits */
+ RCC->CFGR &= (uint32_t)0x88FFC00C;
+
+ /* Reset HSION, HSEON, CSSON and PLLON bits */
+ RCC->CR &= (uint32_t)0xEEFEFFFE;
+
+ /* Reset HSEBYP bit */
+ RCC->CR &= (uint32_t)0xFFFBFFFF;
+
+ /* Reset PLLSRC, PLLMUL[3:0] and PLLDIV[1:0] bits */
+ RCC->CFGR &= (uint32_t)0xFF02FFFF;
+
+ /* Disable all interrupts */
+ RCC->CIR = 0x00000000;
+}
+
+/**
+ * @brief Configures the External High Speed oscillator (HSE).
+ * @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
+ * software should wait on HSERDY flag to be set indicating that HSE clock
+ * is stable and can be used to clock the PLL and/or system clock.
+ * @note HSE state can not be changed if it is used directly or through the
+ * PLL as system clock. In this case, you have to select another source
+ * of the system clock then change the HSE state (ex. disable it).
+ * @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
+ * @note This function reset the CSSON bit, so if the Clock security system(CSS)
+ * was previously enabled you have to enable it again after calling this
+ * function.
+ * @param RCC_HSE: specifies the new state of the HSE.
+ * This parameter can be one of the following values:
+ * @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
+ * 6 HSE oscillator clock cycles.
+ * @arg RCC_HSE_ON: turn ON the HSE oscillator
+ * @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
+ * @retval None
+ */
+void RCC_HSEConfig(uint8_t RCC_HSE)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_HSE(RCC_HSE));
+
+ /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
+ *(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE_OFF;
+
+ /* Set the new HSE configuration -------------------------------------------*/
+ *(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE;
+
+}
+
+/**
+ * @brief Waits for HSE start-up.
+ * @note This functions waits on HSERDY flag to be set and return SUCCESS if
+ * this flag is set, otherwise returns ERROR if the timeout is reached
+ * and this flag is not set. The timeout value is defined by the constant
+ * HSE_STARTUP_TIMEOUT in stm32l1xx.h file. You can tailor it depending
+ * on the HSE crystal used in your application.
+ * @param None
+ * @retval An ErrorStatus enumeration value:
+ * - SUCCESS: HSE oscillator is stable and ready to use
+ * - ERROR: HSE oscillator not yet ready
+ */
+ErrorStatus RCC_WaitForHSEStartUp(void)
+{
+ __IO uint32_t StartUpCounter = 0;
+ ErrorStatus status = ERROR;
+ FlagStatus HSEStatus = RESET;
+
+ /* Wait till HSE is ready and if timeout is reached exit */
+ do
+ {
+ HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
+ StartUpCounter++;
+ } while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));
+
+ if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
+ {
+ status = SUCCESS;
+ }
+ else
+ {
+ status = ERROR;
+ }
+ return (status);
+}
+
+/**
+ * @brief Adjusts the Internal Multi Speed oscillator (MSI) calibration value.
+ * @note The calibration is used to compensate for the variations in voltage
+ * and temperature that influence the frequency of the internal MSI RC.
+ * Refer to the Application Note AN3300 for more details on how to
+ * calibrate the MSI.
+ * @param MSICalibrationValue: specifies the MSI calibration trimming value.
+ * This parameter must be a number between 0 and 0xFF.
+ * @retval None
+ */
+void RCC_AdjustMSICalibrationValue(uint8_t MSICalibrationValue)
+{
+
+ /* Check the parameters */
+ assert_param(IS_RCC_MSI_CALIBRATION_VALUE(MSICalibrationValue));
+
+ *(__IO uint8_t *) ICSCR_BYTE4_ADDRESS = MSICalibrationValue;
+}
+
+/**
+ * @brief Configures the Internal Multi Speed oscillator (MSI) clock range.
+ * @note After restart from Reset or wakeup from STANDBY, the MSI clock is
+ * around 2.097 MHz. The MSI clock does not change after wake-up from
+ * STOP mode.
+ * @note The MSI clock range can be modified on the fly.
+ * @param RCC_MSIRange: specifies the MSI Clock range.
+ * This parameter must be one of the following values:
+ * @arg RCC_MSIRange_0: MSI clock is around 65.536 KHz
+ * @arg RCC_MSIRange_1: MSI clock is around 131.072 KHz
+ * @arg RCC_MSIRange_2: MSI clock is around 262.144 KHz
+ * @arg RCC_MSIRange_3: MSI clock is around 524.288 KHz
+ * @arg RCC_MSIRange_4: MSI clock is around 1.048 MHz
+ * @arg RCC_MSIRange_5: MSI clock is around 2.097 MHz (default after Reset or wake-up from STANDBY)
+ * @arg RCC_MSIRange_6: MSI clock is around 4.194 MHz
+ *
+ * @retval None
+ */
+void RCC_MSIRangeConfig(uint32_t RCC_MSIRange)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_MSIRange));
+
+ tmpreg = RCC->ICSCR;
+
+ /* Clear MSIRANGE[2:0] bits */
+ tmpreg &= ~RCC_ICSCR_MSIRANGE;
+
+ /* Set the MSIRANGE[2:0] bits according to RCC_MSIRange value */
+ tmpreg |= (uint32_t)RCC_MSIRange;
+
+ /* Store the new value */
+ RCC->ICSCR = tmpreg;
+}
+
+/**
+ * @brief Enables or disables the Internal Multi Speed oscillator (MSI).
+ * @note The MSI is stopped by hardware when entering STOP and STANDBY modes.
+ * It is used (enabled by hardware) as system clock source after
+ * startup from Reset, wakeup from STOP and STANDBY mode, or in case
+ * of failure of the HSE used directly or indirectly as system clock
+ * (if the Clock Security System CSS is enabled).
+ * @note MSI can not be stopped if it is used as system clock source.
+ * In this case, you have to select another source of the system
+ * clock then stop the MSI.
+ * @note After enabling the MSI, the application software should wait on
+ * MSIRDY flag to be set indicating that MSI clock is stable and can
+ * be used as system clock source.
+ * @param NewState: new state of the MSI.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note When the MSI is stopped, MSIRDY flag goes low after 6 MSI oscillator
+ * clock cycles.
+ * @retval None
+ */
+void RCC_MSICmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_MSION_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Adjusts the Internal High Speed oscillator (HSI) calibration value.
+ * @note The calibration is used to compensate for the variations in voltage
+ * and temperature that influence the frequency of the internal HSI RC.
+ * Refer to the Application Note AN3300 for more details on how to
+ * calibrate the HSI.
+ * @param HSICalibrationValue: specifies the HSI calibration trimming value.
+ * This parameter must be a number between 0 and 0x1F.
+ * @retval None
+ */
+void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue));
+
+ tmpreg = RCC->ICSCR;
+
+ /* Clear HSITRIM[4:0] bits */
+ tmpreg &= ~RCC_ICSCR_HSITRIM;
+
+ /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
+ tmpreg |= (uint32_t)HSICalibrationValue << 8;
+
+ /* Store the new value */
+ RCC->ICSCR = tmpreg;
+}
+
+/**
+ * @brief Enables or disables the Internal High Speed oscillator (HSI).
+ * @note After enabling the HSI, the application software should wait on
+ * HSIRDY flag to be set indicating that HSI clock is stable and can
+ * be used to clock the PLL and/or system clock.
+ * @note HSI can not be stopped if it is used directly or through the PLL
+ * as system clock. In this case, you have to select another source
+ * of the system clock then stop the HSI.
+ * @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
+ * @param NewState: new state of the HSI.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
+ * clock cycles.
+ * @retval None
+ */
+void RCC_HSICmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the External Low Speed oscillator (LSE).
+ * @note As the LSE is in the RTC domain and write access is denied to this
+ * domain after reset, you have to enable write access using
+ * PWR_RTCAccessCmd(ENABLE) function before to configure the LSE
+ * (to be done once after reset).
+ * @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
+ * software should wait on LSERDY flag to be set indicating that LSE clock
+ * is stable and can be used to clock the RTC.
+ * @param RCC_LSE: specifies the new state of the LSE.
+ * This parameter can be one of the following values:
+ * @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
+ * 6 LSE oscillator clock cycles.
+ * @arg RCC_LSE_ON: turn ON the LSE oscillator
+ * @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
+ * @retval None
+ */
+void RCC_LSEConfig(uint8_t RCC_LSE)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_LSE(RCC_LSE));
+
+ /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
+ *(__IO uint8_t *) CSR_BYTE2_ADDRESS = RCC_LSE_OFF;
+
+ /* Set the new LSE configuration -------------------------------------------*/
+ *(__IO uint8_t *) CSR_BYTE2_ADDRESS = RCC_LSE;
+}
+
+/**
+ * @brief Enables or disables the Internal Low Speed oscillator (LSI).
+ * @note After enabling the LSI, the application software should wait on
+ * LSIRDY flag to be set indicating that LSI clock is stable and can
+ * be used to clock the IWDG and/or the RTC.
+ * @note LSI can not be disabled if the IWDG is running.
+ * @param NewState: new state of the LSI.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
+ * clock cycles.
+ * @retval None
+ */
+void RCC_LSICmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the PLL clock source and multiplication factor.
+ * @note This function must be used only when the PLL is disabled.
+ *
+ * @param RCC_PLLSource: specifies the PLL entry clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_PLLSource_HSI: HSI oscillator clock selected as PLL clock source
+ * @arg RCC_PLLSource_HSE: HSE oscillator clock selected as PLL clock source
+ * @note The minimum input clock frequency for PLL is 2 MHz (when using HSE as
+ * PLL source).
+ *
+ * @param RCC_PLLMul: specifies the PLL multiplication factor, which drive the PLLVCO clock
+ * This parameter can be:
+ * @arg RCC_PLLMul_3: PLL clock source multiplied by 3
+ * @arg RCC_PLLMul_4: PLL clock source multiplied by 4
+ * @arg RCC_PLLMul_6: PLL clock source multiplied by 6
+ * @arg RCC_PLLMul_8: PLL clock source multiplied by 8
+ * @arg RCC_PLLMul_12: PLL clock source multiplied by 12
+ * @arg RCC_PLLMul_16: PLL clock source multiplied by 16
+ * @arg RCC_PLLMul_24: PLL clock source multiplied by 24
+ * @arg RCC_PLLMul_32: PLL clock source multiplied by 32
+ * @arg RCC_PLLMul_48: PLL clock source multiplied by 48
+ * @note The application software must set correctly the PLL multiplication
+ * factor to avoid exceeding:
+ * - 96 MHz as PLLVCO when the product is in range 1
+ * - 48 MHz as PLLVCO when the product is in range 2
+ * - 24 MHz when the product is in range 3
+ * @note When using the USB the PLLVCO should be 96MHz
+ *
+ * @param RCC_PLLDiv: specifies the PLL division factor.
+ * This parameter can be:
+ * @arg RCC_PLLDiv_2: PLL Clock output divided by 2
+ * @arg RCC_PLLDiv_3: PLL Clock output divided by 3
+ * @arg RCC_PLLDiv_4: PLL Clock output divided by 4
+ * @note The application software must set correctly the output division to avoid
+ * exceeding 32 MHz as SYSCLK.
+ *
+ * @retval None
+ */
+void RCC_PLLConfig(uint8_t RCC_PLLSource, uint8_t RCC_PLLMul, uint8_t RCC_PLLDiv)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
+ assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
+ assert_param(IS_RCC_PLL_DIV(RCC_PLLDiv));
+
+ *(__IO uint8_t *) CFGR_BYTE3_ADDRESS = (uint8_t)(RCC_PLLSource | ((uint8_t)(RCC_PLLMul | (uint8_t)(RCC_PLLDiv))));
+}
+
+/**
+ * @brief Enables or disables the PLL.
+ * @note After enabling the PLL, the application software should wait on
+ * PLLRDY flag to be set indicating that PLL clock is stable and can
+ * be used as system clock source.
+ * @note The PLL can not be disabled if it is used as system clock source
+ * @note The PLL is disabled by hardware when entering STOP and STANDBY modes.
+ * @param NewState: new state of the PLL.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_PLLCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Enables or disables the Clock Security System.
+ * @note If a failure is detected on the HSE oscillator clock, this oscillator
+ * is automatically disabled and an interrupt is generated to inform the
+ * software about the failure (Clock Security System Interrupt, CSSI),
+ * allowing the MCU to perform rescue operations. The CSSI is linked to
+ * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.
+ * @param NewState: new state of the Clock Security System.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Enables or disables the LSE Clock Security System.
+ * @param NewState: new state of the Clock Security System.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_LSEClockSecuritySystemCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CSR_LSECSSON_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Selects the clock source to output on MCO pin (PA8).
+ * @note PA8 should be configured in alternate function mode.
+ * @param RCC_MCOSource: specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCOSource_NoClock: No clock selected
+ * @arg RCC_MCOSource_SYSCLK: System clock selected
+ * @arg RCC_MCOSource_HSI: HSI oscillator clock selected
+ * @arg RCC_MCOSource_MSI: MSI oscillator clock selected
+ * @arg RCC_MCOSource_HSE: HSE oscillator clock selected
+ * @arg RCC_MCOSource_PLLCLK: PLL clock selected
+ * @arg RCC_MCOSource_LSI: LSI clock selected
+ * @arg RCC_MCOSource_LSE: LSE clock selected
+ * @param RCC_MCODiv: specifies the MCO prescaler.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCODiv_1: no division applied to MCO clock
+ * @arg RCC_MCODiv_2: division by 2 applied to MCO clock
+ * @arg RCC_MCODiv_4: division by 4 applied to MCO clock
+ * @arg RCC_MCODiv_8: division by 8 applied to MCO clock
+ * @arg RCC_MCODiv_16: division by 16 applied to MCO clock
+ * @retval None
+ */
+void RCC_MCOConfig(uint8_t RCC_MCOSource, uint8_t RCC_MCODiv)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
+ assert_param(IS_RCC_MCO_DIV(RCC_MCODiv));
+
+ /* Select MCO clock source and prescaler */
+ *(__IO uint8_t *) CFGR_BYTE4_ADDRESS = RCC_MCOSource | RCC_MCODiv;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Group2 System AHB and APB busses clocks configuration functions
+ * @brief System, AHB and APB busses clocks configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### System, AHB and APB busses clocks configuration functions #####
+ ===============================================================================
+ [..] This section provide functions allowing to configure the System, AHB,
+ APB1 and APB2 busses clocks.
+ (#) Several clock sources can be used to drive the System clock (SYSCLK):
+ MSI, HSI, HSE and PLL.
+ The AHB clock (HCLK) is derived from System clock through configurable
+ prescaler and used to clock the CPU, memory and peripherals mapped
+ on AHB bus (DMA and GPIO).APB1 (PCLK1) and APB2 (PCLK2) clocks are
+ derived from AHB clock through configurable prescalers and used to
+ clock the peripherals mapped on these busses. You can use
+ "RCC_GetClocksFreq()" function to retrieve the frequencies of these
+ clocks.
+
+ -@- All the peripheral clocks are derived from the System clock (SYSCLK)
+ except:
+ (+@) The USB 48 MHz clock which is derived from the PLL VCO clock.
+ (+@) The ADC clock which is always the HSI clock. A divider by 1, 2
+ or 4 allows to adapt the clock frequency to the device operating
+ conditions.
+ (+@) The RTC/LCD clock which is derived from the LSE, LSI or 1 MHz
+ HSE_RTC (HSE divided by a programmable prescaler).
+ The System clock (SYSCLK) frequency must be higher or equal to
+ the RTC/LCD clock frequency.
+ (+@) IWDG clock which is always the LSI clock.
+
+ (#) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 32 MHz.
+ Depending on the device voltage range, the maximum frequency should
+ be adapted accordingly:
+
+ +----------------------------------------------------------------+
+ | Wait states | HCLK clock frequency (MHz) |
+ | |------------------------------------------------|
+ | (Latency) | voltage range | voltage range |
+ | | 1.65 V - 3.6 V | 2.0 V - 3.6 V |
+ | |----------------|---------------|---------------|
+ | | VCORE = 1.2 V | VCORE = 1.5 V | VCORE = 1.8 V |
+ |-------------- |----------------|---------------|---------------|
+ |0WS(1CPU cycle)|0 < HCLK <= 2 |0 < HCLK <= 8 |0 < HCLK <= 16 |
+ |---------------|----------------|---------------|---------------|
+ |1WS(2CPU cycle)|2 < HCLK <= 4 |8 < HCLK <= 16 |16 < HCLK <= 32|
+ +----------------------------------------------------------------+
+
+ (#) After reset, the System clock source is the MSI (2 MHz) with 0 WS,
+ Flash 32-bit access is enabled and prefetch is disabled.
+ [..] It is recommended to use the following software sequences to tune the
+ number of wait states needed to access the Flash memory with the CPU
+ frequency (HCLK).
+ (+) Increasing the CPU frequency (in the same voltage range)
+ (+) Program the Flash 64-bit access, using "FLASH_ReadAccess64Cmd(ENABLE)"
+ function
+ (+) Check that 64-bit access is taken into account by reading FLASH_ACR
+ (+) Program Flash WS to 1, using "FLASH_SetLatency(FLASH_Latency_1)"
+ function
+ (+) Check that the new number of WS is taken into account by reading
+ FLASH_ACR
+ (+) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
+ (+) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()"
+ function
+ (+) Check that the new CPU clock source is taken into account by reading
+ the clock source status, using "RCC_GetSYSCLKSource()" function
+ (+) Decreasing the CPU frequency (in the same voltage range)
+ (+) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
+ (+) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()"
+ function
+ (+) Check that the new CPU clock source is taken into account by reading
+ the clock source status, using "RCC_GetSYSCLKSource()" function
+ (+) Program the new number of WS, using "FLASH_SetLatency()" function
+ (+) Check that the new number of WS is taken into account by reading
+ FLASH_ACR
+ (+) Enable the Flash 32-bit access, using "FLASH_ReadAccess64Cmd(DISABLE)"
+ function
+ (+) Check that 32-bit access is taken into account by reading FLASH_ACR
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the system clock (SYSCLK).
+ * @note The MSI is used (enabled by hardware) as system clock source after
+ * startup from Reset, wake-up from STOP and STANDBY mode, or in case
+ * of failure of the HSE used directly or indirectly as system clock
+ * (if the Clock Security System CSS is enabled).
+ * @note A switch from one clock source to another occurs only if the target
+ * clock source is ready (clock stable after startup delay or PLL locked).
+ * If a clock source which is not yet ready is selected, the switch will
+ * occur when the clock source will be ready.
+ * You can use RCC_GetSYSCLKSource() function to know which clock is
+ * currently used as system clock source.
+ * @param RCC_SYSCLKSource: specifies the clock source used as system clock source
+ * This parameter can be one of the following values:
+ * @arg RCC_SYSCLKSource_MSI: MSI selected as system clock source
+ * @arg RCC_SYSCLKSource_HSI: HSI selected as system clock source
+ * @arg RCC_SYSCLKSource_HSE: HSE selected as system clock source
+ * @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
+ * @retval None
+ */
+void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear SW[1:0] bits */
+ tmpreg &= ~RCC_CFGR_SW;
+
+ /* Set SW[1:0] bits according to RCC_SYSCLKSource value */
+ tmpreg |= RCC_SYSCLKSource;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Returns the clock source used as system clock.
+ * @param None
+ * @retval The clock source used as system clock. The returned value can be one
+ * of the following values:
+ * - 0x00: MSI used as system clock
+ * - 0x04: HSI used as system clock
+ * - 0x08: HSE used as system clock
+ * - 0x0C: PLL used as system clock
+ */
+uint8_t RCC_GetSYSCLKSource(void)
+{
+ return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
+}
+
+/**
+ * @brief Configures the AHB clock (HCLK).
+ * @note Depending on the device voltage range, the software has to set correctly
+ * these bits to ensure that the system frequency does not exceed the
+ * maximum allowed frequency (for more details refer to section above
+ * "CPU, AHB and APB busses clocks configuration functions")
+ * @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
+ * the system clock (SYSCLK).
+ * This parameter can be one of the following values:
+ * @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
+ * @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
+ * @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
+ * @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
+ * @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
+ * @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
+ * @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
+ * @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
+ * @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
+ * @retval None
+ */
+void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_HCLK(RCC_SYSCLK));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear HPRE[3:0] bits */
+ tmpreg &= ~RCC_CFGR_HPRE;
+
+ /* Set HPRE[3:0] bits according to RCC_SYSCLK value */
+ tmpreg |= RCC_SYSCLK;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Configures the Low Speed APB clock (PCLK1).
+ * @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from
+ * the AHB clock (HCLK).
+ * This parameter can be one of the following values:
+ * @arg RCC_HCLK_Div1: APB1 clock = HCLK
+ * @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
+ * @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
+ * @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
+ * @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
+ * @retval None
+ */
+void RCC_PCLK1Config(uint32_t RCC_HCLK)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PCLK(RCC_HCLK));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear PPRE1[2:0] bits */
+ tmpreg &= ~RCC_CFGR_PPRE1;
+
+ /* Set PPRE1[2:0] bits according to RCC_HCLK value */
+ tmpreg |= RCC_HCLK;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Configures the High Speed APB clock (PCLK2).
+ * @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from
+ * the AHB clock (HCLK).
+ * This parameter can be one of the following values:
+ * @arg RCC_HCLK_Div1: APB2 clock = HCLK
+ * @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
+ * @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
+ * @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
+ * @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
+ * @retval None
+ */
+void RCC_PCLK2Config(uint32_t RCC_HCLK)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PCLK(RCC_HCLK));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear PPRE2[2:0] bits */
+ tmpreg &= ~RCC_CFGR_PPRE2;
+
+ /* Set PPRE2[2:0] bits according to RCC_HCLK value */
+ tmpreg |= RCC_HCLK << 3;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Returns the frequencies of the System, AHB and APB busses clocks.
+ * @note The frequency returned by this function is not the real frequency
+ * in the chip. It is calculated based on the predefined constant and
+ * the source selected by RCC_SYSCLKConfig():
+ *
+ * @note If SYSCLK source is MSI, function returns values based on MSI
+ * Value as defined by the MSI range, refer to RCC_MSIRangeConfig()
+ *
+ * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
+ *
+ * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
+ *
+ * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
+ * or HSI_VALUE(*) multiplied/divided by the PLL factors.
+ *
+ * (*) HSI_VALUE is a constant defined in stm32l1xx.h file (default value
+ * 16 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature, refer to RCC_AdjustHSICalibrationValue().
+ *
+ * (**) HSE_VALUE is a constant defined in stm32l1xx.h file (default value
+ * 8 MHz), user has to ensure that HSE_VALUE is same as the real
+ * frequency of the crystal used. Otherwise, this function may
+ * return wrong result.
+ *
+ * - The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ *
+ * @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
+ * the clocks frequencies.
+ *
+ * @note This function can be used by the user application to compute the
+ * baudrate for the communication peripherals or configure other parameters.
+ * @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
+ * must be called to update the structure's field. Otherwise, any
+ * configuration based on this function will be incorrect.
+ *
+ * @retval None
+ */
+void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
+{
+ uint32_t tmp = 0, pllmul = 0, plldiv = 0, pllsource = 0, presc = 0, msirange = 0;
+
+ /* Get SYSCLK source -------------------------------------------------------*/
+ tmp = RCC->CFGR & RCC_CFGR_SWS;
+
+ switch (tmp)
+ {
+ case 0x00: /* MSI used as system clock */
+ msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> 13;
+ RCC_Clocks->SYSCLK_Frequency = (32768 * (1 << (msirange + 1)));
+ break;
+ case 0x04: /* HSI used as system clock */
+ RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
+ break;
+ case 0x08: /* HSE used as system clock */
+ RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
+ break;
+ case 0x0C: /* PLL used as system clock */
+ /* Get PLL clock source and multiplication factor ----------------------*/
+ pllmul = RCC->CFGR & RCC_CFGR_PLLMUL;
+ plldiv = RCC->CFGR & RCC_CFGR_PLLDIV;
+ pllmul = PLLMulTable[(pllmul >> 18)];
+ plldiv = (plldiv >> 22) + 1;
+
+ pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
+
+ if (pllsource == 0x00)
+ {
+ /* HSI oscillator clock selected as PLL clock source */
+ RCC_Clocks->SYSCLK_Frequency = (((HSI_VALUE) * pllmul) / plldiv);
+ }
+ else
+ {
+ /* HSE selected as PLL clock source */
+ RCC_Clocks->SYSCLK_Frequency = (((HSE_VALUE) * pllmul) / plldiv);
+ }
+ break;
+ default: /* MSI used as system clock */
+ msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> 13;
+ RCC_Clocks->SYSCLK_Frequency = (32768 * (1 << (msirange + 1)));
+ break;
+ }
+ /* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/
+ /* Get HCLK prescaler */
+ tmp = RCC->CFGR & RCC_CFGR_HPRE;
+ tmp = tmp >> 4;
+ presc = APBAHBPrescTable[tmp];
+ /* HCLK clock frequency */
+ RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;
+
+ /* Get PCLK1 prescaler */
+ tmp = RCC->CFGR & RCC_CFGR_PPRE1;
+ tmp = tmp >> 8;
+ presc = APBAHBPrescTable[tmp];
+ /* PCLK1 clock frequency */
+ RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
+
+ /* Get PCLK2 prescaler */
+ tmp = RCC->CFGR & RCC_CFGR_PPRE2;
+ tmp = tmp >> 11;
+ presc = APBAHBPrescTable[tmp];
+ /* PCLK2 clock frequency */
+ RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Group3 Peripheral clocks configuration functions
+ * @brief Peripheral clocks configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral clocks configuration functions #####
+ ===============================================================================
+ [..] This section provide functions allowing to configure the Peripheral clocks.
+ (#) The RTC/LCD clock which is derived from the LSE, LSI or 1 MHz HSE_RTC
+ (HSE divided by a programmable prescaler).
+ (#) After restart from Reset or wakeup from STANDBY, all peripherals are
+ off except internal SRAM, Flash and JTAG. Before to start using a
+ peripheral you have to enable its interface clock. You can do this
+ using RCC_AHBPeriphClockCmd(), RCC_APB2PeriphClockCmd() and
+ RCC_APB1PeriphClockCmd() functions.
+
+ (#) To reset the peripherals configuration (to the default state after
+ device reset) you can use RCC_AHBPeriphResetCmd(),
+ RCC_APB2PeriphResetCmd() and RCC_APB1PeriphResetCmd() functions.
+ (#) To further reduce power consumption in SLEEP mode the peripheral
+ clocks can be disabled prior to executing the WFI or WFE instructions.
+ You can do this using RCC_AHBPeriphClockLPModeCmd(),
+ RCC_APB2PeriphClockLPModeCmd() and RCC_APB1PeriphClockLPModeCmd()
+ functions.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the RTC and LCD clock (RTCCLK / LCDCLK).
+ * @note As the RTC clock configuration bits are in the RTC domain and write
+ * access is denied to this domain after reset, you have to enable write
+ * access using PWR_RTCAccessCmd(ENABLE) function before to configure
+ * the RTC clock source (to be done once after reset).
+ * @note Once the RTC clock is configured it can't be changed unless the RTC
+ * is reset using RCC_RTCResetCmd function, or by a Power On Reset (POR)
+ * @note The RTC clock (RTCCLK) is used also to clock the LCD (LCDCLK).
+ *
+ * @param RCC_RTCCLKSource: specifies the RTC clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
+ * @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
+ * @arg RCC_RTCCLKSource_HSE_Div2: HSE divided by 2 selected as RTC clock
+ * @arg RCC_RTCCLKSource_HSE_Div4: HSE divided by 4 selected as RTC clock
+ * @arg RCC_RTCCLKSource_HSE_Div8: HSE divided by 8 selected as RTC clock
+ * @arg RCC_RTCCLKSource_HSE_Div16: HSE divided by 16 selected as RTC clock
+ *
+ * @note If the LSE or LSI is used as RTC clock source, the RTC continues to
+ * work in STOP and STANDBY modes, and can be used as wakeup source.
+ * However, when the HSE clock is used as RTC clock source, the RTC
+ * cannot be used in STOP and STANDBY modes.
+ *
+ * @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
+ * RTC clock source).
+ *
+ * @retval None
+ */
+void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
+
+ if ((RCC_RTCCLKSource & RCC_CSR_RTCSEL_HSE) == RCC_CSR_RTCSEL_HSE)
+ {
+ /* If HSE is selected as RTC clock source, configure HSE division factor for RTC clock */
+ tmpreg = RCC->CR;
+
+ /* Clear RTCPRE[1:0] bits */
+ tmpreg &= ~RCC_CR_RTCPRE;
+
+ /* Configure HSE division factor for RTC clock */
+ tmpreg |= (RCC_RTCCLKSource & RCC_CR_RTCPRE);
+
+ /* Store the new value */
+ RCC->CR = tmpreg;
+ }
+
+ RCC->CSR &= ~RCC_CSR_RTCSEL;
+
+ /* Select the RTC clock source */
+ RCC->CSR |= (RCC_RTCCLKSource & RCC_CSR_RTCSEL);
+}
+
+/**
+ * @brief Enables or disables the RTC clock.
+ * @note This function must be used only after the RTC clock source was selected
+ * using the RCC_RTCCLKConfig function.
+ * @param NewState: new state of the RTC clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_RTCCLKCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CSR_RTCEN_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Forces or releases the RTC peripheral and associated resources reset.
+ * @note This function resets the RTC peripheral, RTC clock source selection
+ * (in RCC_CSR) and the backup registers.
+ * @param NewState: new state of the RTC reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_RTCResetCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CSR_RTCRST_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Enables or disables the AHB peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHBPeriph_GPIOA: GPIOA clock
+ * @arg RCC_AHBPeriph_GPIOB: GPIOB clock
+ * @arg RCC_AHBPeriph_GPIOC: GPIOC clock
+ * @arg RCC_AHBPeriph_GPIOD: GPIOD clock
+ * @arg RCC_AHBPeriph_GPIOE: GPIOE clock
+ * @arg RCC_AHBPeriph_GPIOH: GPIOH clock
+ * @arg RCC_AHBPeriph_GPIOF: GPIOF clock
+ * @arg RCC_AHBPeriph_GPIOG: GPIOG clock
+ * @arg RCC_AHBPeriph_CRC: CRC clock
+ * @arg RCC_AHBPeriph_FLITF: (has effect only when the Flash memory is in power down mode)
+ * @arg RCC_AHBPeriph_DMA1: DMA1 clock
+ * @arg RCC_AHBPeriph_DMA2: DMA2 clock
+ * @arg RCC_AHBPeriph_AES: AES clock
+ * @arg RCC_AHBPeriph_FSMC: FSMC clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHBENR |= RCC_AHBPeriph;
+ }
+ else
+ {
+ RCC->AHBENR &= ~RCC_AHBPeriph;
+ }
+}
+
+/**
+ * @brief Enables or disables the High Speed APB (APB2) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB2Periph_SYSCFG: SYSCFG APB2 Clock.
+ * @arg RCC_APB2Periph_TIM9: TIM9 APB2 Clock.
+ * @arg RCC_APB2Periph_TIM10: TIM10 APB2 Clock.
+ * @arg RCC_APB2Periph_TIM11: TIM11 APB2 Clock.
+ * @arg RCC_APB2Periph_ADC1: ADC1 APB2 Clock.
+ * @arg RCC_APB2Periph_SDIO: SDIO APB2 Clock.
+ * @arg RCC_APB2Periph_SPI1: SPI1 APB2 Clock.
+ * @arg RCC_APB2Periph_USART1: USART1 APB2 Clock.
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB2ENR |= RCC_APB2Periph;
+ }
+ else
+ {
+ RCC->APB2ENR &= ~RCC_APB2Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the Low Speed APB (APB1) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB1Periph_TIM2: TIM2 clock
+ * @arg RCC_APB1Periph_TIM3: TIM3 clock
+ * @arg RCC_APB1Periph_TIM4: TIM4 clock
+ * @arg RCC_APB1Periph_TIM5: TIM5 clock
+ * @arg RCC_APB1Periph_TIM6: TIM6 clock
+ * @arg RCC_APB1Periph_TIM7: TIM7 clock
+ * @arg RCC_APB1Periph_LCD: LCD clock
+ * @arg RCC_APB1Periph_WWDG: WWDG clock
+ * @arg RCC_APB1Periph_SPI2: SPI2 clock
+ * @arg RCC_APB1Periph_SPI3: SPI3 clock
+ * @arg RCC_APB1Periph_USART2: USART2 clock
+ * @arg RCC_APB1Periph_USART3: USART3 clock
+ * @arg RCC_APB1Periph_UART4: UART4 clock
+ * @arg RCC_APB1Periph_UART5: UART5 clock
+ * @arg RCC_APB1Periph_I2C1: I2C1 clock
+ * @arg RCC_APB1Periph_I2C2: I2C2 clock
+ * @arg RCC_APB1Periph_USB: USB clock
+ * @arg RCC_APB1Periph_PWR: PWR clock
+ * @arg RCC_APB1Periph_DAC: DAC clock
+ * @arg RCC_APB1Periph_COMP COMP clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB1ENR |= RCC_APB1Periph;
+ }
+ else
+ {
+ RCC->APB1ENR &= ~RCC_APB1Periph;
+ }
+}
+
+/**
+ * @brief Forces or releases AHB peripheral reset.
+ * @param RCC_AHBPeriph: specifies the AHB peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHBPeriph_GPIOA: GPIOA clock
+ * @arg RCC_AHBPeriph_GPIOB: GPIOB clock
+ * @arg RCC_AHBPeriph_GPIOC: GPIOC clock
+ * @arg RCC_AHBPeriph_GPIOD: GPIOD clock
+ * @arg RCC_AHBPeriph_GPIOE: GPIOE clock
+ * @arg RCC_AHBPeriph_GPIOH: GPIOH clock
+ * @arg RCC_AHBPeriph_GPIOF: GPIOF clock
+ * @arg RCC_AHBPeriph_GPIOG: GPIOG clock
+ * @arg RCC_AHBPeriph_CRC: CRC clock
+ * @arg RCC_AHBPeriph_FLITF: (has effect only when the Flash memory is in power down mode)
+ * @arg RCC_AHBPeriph_DMA1: DMA1 clock
+ * @arg RCC_AHBPeriph_DMA2: DMA2 clock
+ * @arg RCC_AHBPeriph_AES: AES clock
+ * @arg RCC_AHBPeriph_FSMC: FSMC clock
+ * @param NewState: new state of the specified peripheral reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHBRSTR |= RCC_AHBPeriph;
+ }
+ else
+ {
+ RCC->AHBRSTR &= ~RCC_AHBPeriph;
+ }
+}
+
+/**
+ * @brief Forces or releases High Speed APB (APB2) peripheral reset.
+ * @param RCC_APB2Periph: specifies the APB2 peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
+ * @arg RCC_APB2Periph_TIM9: TIM9 clock
+ * @arg RCC_APB2Periph_TIM10: TIM10 clock
+ * @arg RCC_APB2Periph_TIM11: TIM11 clock
+ * @arg RCC_APB2Periph_ADC1: ADC1 clock
+ * @arg RCC_APB2Periph_SDIO: SDIO clock
+ * @arg RCC_APB2Periph_SPI1: SPI1 clock
+ * @arg RCC_APB2Periph_USART1: USART1 clock
+ * @param NewState: new state of the specified peripheral reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB2RSTR |= RCC_APB2Periph;
+ }
+ else
+ {
+ RCC->APB2RSTR &= ~RCC_APB2Periph;
+ }
+}
+
+/**
+ * @brief Forces or releases Low Speed APB (APB1) peripheral reset.
+ * @param RCC_APB1Periph: specifies the APB1 peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB1Periph_TIM2: TIM2 clock
+ * @arg RCC_APB1Periph_TIM3: TIM3 clock
+ * @arg RCC_APB1Periph_TIM4: TIM4 clock
+ * @arg RCC_APB1Periph_TIM5: TIM5 clock
+ * @arg RCC_APB1Periph_TIM6: TIM6 clock
+ * @arg RCC_APB1Periph_TIM7: TIM7 clock
+ * @arg RCC_APB1Periph_LCD: LCD clock
+ * @arg RCC_APB1Periph_WWDG: WWDG clock
+ * @arg RCC_APB1Periph_SPI2: SPI2 clock
+ * @arg RCC_APB1Periph_SPI3: SPI3 clock
+ * @arg RCC_APB1Periph_USART2: USART2 clock
+ * @arg RCC_APB1Periph_USART3: USART3 clock
+ * @arg RCC_APB1Periph_UART4: UART4 clock
+ * @arg RCC_APB1Periph_UART5: UART5 clock
+ * @arg RCC_APB1Periph_I2C1: I2C1 clock
+ * @arg RCC_APB1Periph_I2C2: I2C2 clock
+ * @arg RCC_APB1Periph_USB: USB clock
+ * @arg RCC_APB1Periph_PWR: PWR clock
+ * @arg RCC_APB1Periph_DAC: DAC clock
+ * @arg RCC_APB1Periph_COMP
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB1RSTR |= RCC_APB1Periph;
+ }
+ else
+ {
+ RCC->APB1RSTR &= ~RCC_APB1Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the AHB peripheral clock during SLEEP mode.
+ * @note Peripheral clock gating in SLEEP mode can be used to further reduce
+ * power consumption.
+ * - After wakeup from SLEEP mode, the peripheral clock is enabled again.
+ * - By default, all peripheral clocks are enabled during SLEEP mode.
+ * @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHBPeriph_GPIOA: GPIOA clock
+ * @arg RCC_AHBPeriph_GPIOB: GPIOB clock
+ * @arg RCC_AHBPeriph_GPIOC: GPIOC clock
+ * @arg RCC_AHBPeriph_GPIOD: GPIOD clock
+ * @arg RCC_AHBPeriph_GPIOE: GPIOE clock
+ * @arg RCC_AHBPeriph_GPIOH: GPIOH clock
+ * @arg RCC_AHBPeriph_GPIOF: GPIOF clock
+ * @arg RCC_AHBPeriph_GPIOG: GPIOG clock
+ * @arg RCC_AHBPeriph_CRC: CRC clock
+ * @arg RCC_AHBPeriph_FLITF: (has effect only when the Flash memory is in power down mode)
+ * @arg RCC_AHBPeriph_SRAM: SRAM clock
+ * @arg RCC_AHBPeriph_DMA1: DMA1 clock
+ * @arg RCC_AHBPeriph_DMA2: DMA2 clock
+ * @arg RCC_AHBPeriph_AES: AES clock
+ * @arg RCC_AHBPeriph_FSMC: FSMC clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHBPeriphClockLPModeCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB_LPMODE_PERIPH(RCC_AHBPeriph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHBLPENR |= RCC_AHBPeriph;
+ }
+ else
+ {
+ RCC->AHBLPENR &= ~RCC_AHBPeriph;
+ }
+}
+
+/**
+ * @brief Enables or disables the APB2 peripheral clock during SLEEP mode.
+ * @note Peripheral clock gating in SLEEP mode can be used to further reduce
+ * power consumption.
+ * @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
+ * @note By default, all peripheral clocks are enabled during SLEEP mode.
+ * @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
+ * @arg RCC_APB2Periph_TIM9: TIM9 clock
+ * @arg RCC_APB2Periph_TIM10: TIM10 clock
+ * @arg RCC_APB2Periph_TIM11: TIM11 clock
+ * @arg RCC_APB2Periph_ADC1: ADC1 clock
+ * @arg RCC_APB2Periph_SDIO: SDIO clock
+ * @arg RCC_APB2Periph_SPI1: SPI1 clock
+ * @arg RCC_APB2Periph_USART1: USART1 clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB2PeriphClockLPModeCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB2LPENR |= RCC_APB2Periph;
+ }
+ else
+ {
+ RCC->APB2LPENR &= ~RCC_APB2Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the APB1 peripheral clock during SLEEP mode.
+ * @note Peripheral clock gating in SLEEP mode can be used to further reduce
+ * power consumption.
+ * @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
+ * @note By default, all peripheral clocks are enabled during SLEEP mode.
+ * @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB1Periph_TIM2: TIM2 clock
+ * @arg RCC_APB1Periph_TIM3: TIM3 clock
+ * @arg RCC_APB1Periph_TIM4: TIM4 clock
+ * @arg RCC_APB1Periph_TIM5: TIM5 clock
+ * @arg RCC_APB1Periph_TIM6: TIM6 clock
+ * @arg RCC_APB1Periph_TIM7: TIM7 clock
+ * @arg RCC_APB1Periph_LCD: LCD clock
+ * @arg RCC_APB1Periph_WWDG: WWDG clock
+ * @arg RCC_APB1Periph_SPI2: SPI2 clock
+ * @arg RCC_APB1Periph_SPI3: SPI3 clock
+ * @arg RCC_APB1Periph_USART2: USART2 clock
+ * @arg RCC_APB1Periph_USART3: USART3 clock
+ * @arg RCC_APB1Periph_UART4: UART4 clock
+ * @arg RCC_APB1Periph_UART5: UART5 clock
+ * @arg RCC_APB1Periph_I2C1: I2C1 clock
+ * @arg RCC_APB1Periph_I2C2: I2C2 clock
+ * @arg RCC_APB1Periph_USB: USB clock
+ * @arg RCC_APB1Periph_PWR: PWR clock
+ * @arg RCC_APB1Periph_DAC: DAC clock
+ * @arg RCC_APB1Periph_COMP: COMP clock
+ * @param NewState: new state
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB1PeriphClockLPModeCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB1LPENR |= RCC_APB1Periph;
+ }
+ else
+ {
+ RCC->APB1LPENR &= ~RCC_APB1Periph;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Group4 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Interrupts and flags management functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified RCC interrupts.
+ * @note The CSS interrupt doesn't have an enable bit; once the CSS is enabled
+ * and if the HSE clock fails, the CSS interrupt occurs and an NMI is
+ * automatically generated. The NMI will be executed indefinitely, and
+ * since NMI has higher priority than any other IRQ (and main program)
+ * the application will be stacked in the NMI ISR unless the CSS interrupt
+ * pending bit is cleared.
+ * @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_IT_LSIRDY: LSI ready interrupt
+ * @arg RCC_IT_LSERDY: LSE ready interrupt
+ * @arg RCC_IT_HSIRDY: HSI ready interrupt
+ * @arg RCC_IT_HSERDY: HSE ready interrupt
+ * @arg RCC_IT_PLLRDY: PLL ready interrupt
+ * @arg RCC_IT_MSIRDY: MSI ready interrupt
+ * @arg RCC_IT_LSECSS: LSE CSS interrupt
+ * @param NewState: new state of the specified RCC interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_IT(RCC_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Perform Byte access to RCC_CIR[12:8] bits to enable the selected interrupts */
+ *(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
+ }
+ else
+ {
+ /* Perform Byte access to RCC_CIR[12:8] bits to disable the selected interrupts */
+ *(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
+ }
+}
+
+/**
+ * @brief Checks whether the specified RCC flag is set or not.
+ * @param RCC_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
+ * @arg RCC_FLAG_MSIRDY: MSI oscillator clock ready
+ * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
+ * @arg RCC_FLAG_PLLRDY: PLL clock ready
+ * @arg RCC_FLAG_LSECSS: LSE oscillator clock CSS detected
+ * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
+ * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
+ * @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset
+ * @arg RCC_FLAG_PINRST: Pin reset
+ * @arg RCC_FLAG_PORRST: POR/PDR reset
+ * @arg RCC_FLAG_SFTRST: Software reset
+ * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
+ * @arg RCC_FLAG_WWDGRST: Window Watchdog reset
+ * @arg RCC_FLAG_LPWRRST: Low Power reset
+ * @retval The new state of RCC_FLAG (SET or RESET).
+ */
+FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
+{
+ uint32_t tmp = 0;
+ uint32_t statusreg = 0;
+ FlagStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_FLAG(RCC_FLAG));
+
+ /* Get the RCC register index */
+ tmp = RCC_FLAG >> 5;
+
+ if (tmp == 1) /* The flag to check is in CR register */
+ {
+ statusreg = RCC->CR;
+ }
+ else /* The flag to check is in CSR register (tmp == 2) */
+ {
+ statusreg = RCC->CSR;
+ }
+
+ /* Get the flag position */
+ tmp = RCC_FLAG & FLAG_MASK;
+
+ if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the flag status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the RCC reset flags.
+ * The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST,
+ * RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST.
+ * @param None
+ * @retval None
+ */
+void RCC_ClearFlag(void)
+{
+ /* Set RMVF bit to clear the reset flags */
+ RCC->CSR |= RCC_CSR_RMVF;
+}
+
+/**
+ * @brief Checks whether the specified RCC interrupt has occurred or not.
+ * @param RCC_IT: specifies the RCC interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg RCC_IT_LSIRDY: LSI ready interrupt
+ * @arg RCC_IT_LSERDY: LSE ready interrupt
+ * @arg RCC_IT_HSIRDY: HSI ready interrupt
+ * @arg RCC_IT_HSERDY: HSE ready interrupt
+ * @arg RCC_IT_PLLRDY: PLL ready interrupt
+ * @arg RCC_IT_MSIRDY: MSI ready interrupt
+ * @arg RCC_IT_LSECSS: LSE CSS interrupt
+ * @arg RCC_IT_CSS: Clock Security System interrupt
+ * @retval The new state of RCC_IT (SET or RESET).
+ */
+ITStatus RCC_GetITStatus(uint8_t RCC_IT)
+{
+ ITStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_RCC_GET_IT(RCC_IT));
+
+ /* Check the status of the specified RCC interrupt */
+ if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the RCC_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the RCC's interrupt pending bits.
+ * @param RCC_IT: specifies the interrupt pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_IT_LSIRDY: LSI ready interrupt
+ * @arg RCC_IT_LSERDY: LSE ready interrupt
+ * @arg RCC_IT_HSIRDY: HSI ready interrupt
+ * @arg RCC_IT_HSERDY: HSE ready interrupt
+ * @arg RCC_IT_PLLRDY: PLL ready interrupt
+ * @arg RCC_IT_MSIRDY: MSI ready interrupt
+ * @arg RCC_IT_LSECSS: LSE CSS interrupt
+ * @arg RCC_IT_CSS: Clock Security System interrupt
+ * @retval None
+ */
+void RCC_ClearITPendingBit(uint8_t RCC_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_CLEAR_IT(RCC_IT));
+
+ /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
+ pending bits */
+ *(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_sdio.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_sdio.c
new file mode 100644
index 0000000..9c63ec4
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_sdio.c
@@ -0,0 +1,984 @@
+/**
+ ******************************************************************************
+ * @file stm32l1xx_sdio.c
+ * @author MCD Application Team
+ * @version V1.1.1
+ * @date 05-March-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the SDIO peripheral:
+ * + Initialization
+ * + Interrupts and flags management
+ *
+ * @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ (#) The SDIO clock (SDIOCLK = 48 MHz) is coming from a specific output of PLL
+ (PLLVCO) througth a fixed divider by 2.
+ Before to start working with SDIO peripheral make sure that the PLLVCO is
+ well configured to 96MHz.
+ The SDIO peripheral uses two clock signals:
+ (++) SDIO adapter clock (SDIOCLK = 48 MHz).
+ (++) APB2 bus clock (PCLK2).
+ PCLK2 and SDIO_CK clock frequencies must respect the following
+ condition: Frequenc(PCLK2) >= (3 / 8 x Frequency(SDIO_CK)).
+ (#) Enable peripheral clock using
+ RCC_APB2PeriphClockCmd(RCC_APB2Periph_SDIO, ENABLE).
+ (#) According to the SDIO mode, enable the GPIO clocks using
+ RCC_AHBPeriphClockCmd() function.
+ The I/O can be one of the following configurations:
+ (++) 1-bit data length: SDIO_CMD, SDIO_CK and D0.
+ (++) 4-bit data length: SDIO_CMD, SDIO_CK and D[3:0].
+ (++) 8-bit data length: SDIO_CMD, SDIO_CK and D[7:0].
+
+ (#) Peripheral's alternate function:
+ (++) Connect the pin to the desired peripherals' Alternate
+ Function (AF) using GPIO_PinAFConfig() function.
+ (++) Configure the desired pin in alternate function by:
+ GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF.
+ (++) Select the type, pull-up/pull-down and output speed via
+ GPIO_PuPd, GPIO_OType and GPIO_Speed members.
+ (++) Call GPIO_Init() function.
+
+ (#) Program the Clock Edge, Clock Bypass, Clock Power Save, Bus Wide,
+ hardware, flow control and the Clock Divider using the SDIO_Init()
+ function.
+ (#) Enable the Power ON State using the SDIO_SetPowerState(SDIO_PowerState_ON)
+ function.
+ (#) Enable the clock using the SDIO_ClockCmd() function.
+ (#) Enable the NVIC and the corresponding interrupt using the function
+ SDIO_ITConfig() if you need to use interrupt mode.
+ (#) When using the DMA mode
+ (++) Configure the DMA using DMA_Init() function.
+ (++) Active the needed channel Request using SDIO_DMACmd() function.
+ (#) Enable the DMA using the DMA_Cmd() function, when using DMA mode.
+ (#) To control the CPSM (Command Path State Machine) and send commands to the
+ card use the SDIO_SendCommand(), SDIO_GetCommandResponse() and
+ SDIO_GetResponse() functions. First, user has to fill the command
+ structure (pointer to SDIO_CmdInitTypeDef) according to the selected
+ command to be sent. The parameters that should be filled are:
+ (++) Command Argument.
+ (++) Command Index.
+ (++) Command Response type.
+ (++) Command Wait.
+ (++) CPSM Status (Enable or Disable).
+ To check if the command is well received, read the SDIO_CMDRESP register
+ using the SDIO_GetCommandResponse(). The SDIO responses registers
+ (SDIO_RESP1 to SDIO_RESP2), use the SDIO_GetResponse() function.
+ (#) To control the DPSM (Data Path State Machine) and send/receive
+ data to/from the card use the SDIO_DataConfig(), SDIO_GetDataCounter(),
+ SDIO_ReadData(), SDIO_WriteData() and SDIO_GetFIFOCount() functions.
+
+ *** Read Operations ***
+ -----------------------
+ [..]
+ (#) First, user has to fill the data structure (pointer to
+ SDIO_DataInitTypeDef) according to the selected data type to be received.
+ The parameters that should be filled are:
+ (++) Data TimeOut.
+ (++) Data Length.
+ (++) Data Block size.
+ (++) Data Transfer direction: should be from card (To SDIO).
+ (++) Data Transfer mode.
+ (++) DPSM Status (Enable or Disable).
+ (#) Configure the SDIO resources to receive the data from the card
+ according to selected transfer mode (Refer to Step 8, 9 and 10).
+ (#) Send the selected Read command (refer to step 11).
+ (#) Use the SDIO flags/interrupts to check the transfer status.
+
+ *** Write Operations ***
+ ------------------------
+ [..]
+ (#) First, user has to fill the data structure (pointer to
+ SDIO_DataInitTypeDef) according to the selected data type to be received.
+ The parameters that should be filled are:
+ (++) Data TimeOut.
+ (++) Data Length.
+ (++) Data Block size.
+ (++) Data Transfer direction: should be to card (To CARD).
+ (++) Data Transfer mode.
+ (++) DPSM Status (Enable or Disable).
+ (#) Configure the SDIO resources to send the data to the card
+ according to selected transfer mode (Refer to Step 8, 9 and 10).
+ (#) Send the selected Write command (refer to step 11).
+ (#) Use the SDIO flags/interrupts to check the transfer status.
+
+ @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l1xx_sdio.h"
+#include "stm32l1xx_rcc.h"
+
+/** @addtogroup STM32L1xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup SDIO
+ * @brief SDIO driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* ------------ SDIO registers bit address in the alias region ----------- */
+#define SDIO_OFFSET (SDIO_BASE - PERIPH_BASE)
+
+/* --- CLKCR Register ---*/
+
+/* Alias word address of CLKEN bit */
+#define CLKCR_OFFSET (SDIO_OFFSET + 0x04)
+#define CLKEN_BitNumber 0x08
+#define CLKCR_CLKEN_BB (PERIPH_BB_BASE + (CLKCR_OFFSET * 32) + (CLKEN_BitNumber * 4))
+
+/* --- CMD Register ---*/
+
+/* Alias word address of SDIOSUSPEND bit */
+#define CMD_OFFSET (SDIO_OFFSET + 0x0C)
+#define SDIOSUSPEND_BitNumber 0x0B
+#define CMD_SDIOSUSPEND_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (SDIOSUSPEND_BitNumber * 4))
+
+/* Alias word address of ENCMDCOMPL bit */
+#define ENCMDCOMPL_BitNumber 0x0C
+#define CMD_ENCMDCOMPL_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (ENCMDCOMPL_BitNumber * 4))
+
+/* Alias word address of NIEN bit */
+#define NIEN_BitNumber 0x0D
+#define CMD_NIEN_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (NIEN_BitNumber * 4))
+
+/* Alias word address of ATACMD bit */
+#define ATACMD_BitNumber 0x0E
+#define CMD_ATACMD_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (ATACMD_BitNumber * 4))
+
+/* --- DCTRL Register ---*/
+
+/* Alias word address of DMAEN bit */
+#define DCTRL_OFFSET (SDIO_OFFSET + 0x2C)
+#define DMAEN_BitNumber 0x03
+#define DCTRL_DMAEN_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (DMAEN_BitNumber * 4))
+
+/* Alias word address of RWSTART bit */
+#define RWSTART_BitNumber 0x08
+#define DCTRL_RWSTART_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWSTART_BitNumber * 4))
+
+/* Alias word address of RWSTOP bit */
+#define RWSTOP_BitNumber 0x09
+#define DCTRL_RWSTOP_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWSTOP_BitNumber * 4))
+
+/* Alias word address of RWMOD bit */
+#define RWMOD_BitNumber 0x0A
+#define DCTRL_RWMOD_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWMOD_BitNumber * 4))
+
+/* Alias word address of SDIOEN bit */
+#define SDIOEN_BitNumber 0x0B
+#define DCTRL_SDIOEN_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (SDIOEN_BitNumber * 4))
+
+/* ---------------------- SDIO registers bit mask ------------------------ */
+
+/* --- CLKCR Register ---*/
+
+/* CLKCR register clear mask */
+#define CLKCR_CLEAR_MASK ((uint32_t)0xFFFF8100)
+
+/* --- PWRCTRL Register ---*/
+
+/* SDIO PWRCTRL Mask */
+#define PWR_PWRCTRL_MASK ((uint32_t)0xFFFFFFFC)
+
+/* --- DCTRL Register ---*/
+
+/* SDIO DCTRL Clear Mask */
+#define DCTRL_CLEAR_MASK ((uint32_t)0xFFFFFF08)
+
+/* --- CMD Register ---*/
+
+/* CMD Register clear mask */
+#define CMD_CLEAR_MASK ((uint32_t)0xFFFFF800)
+
+/* SDIO RESP Registers Address */
+#define SDIO_RESP_ADDR ((uint32_t)(SDIO_BASE + 0x14))
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup SDIO_Private_Functions
+ * @{
+ */
+
+/** @defgroup SDIO_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### Initialization and Configuration functions #####
+ ==============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the SDIO peripheral registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void SDIO_DeInit(void)
+{
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_SDIO, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_SDIO, DISABLE);
+}
+
+/**
+ * @brief Initializes the SDIO peripheral according to the specified
+ * parameters in the SDIO_InitStruct.
+ * @param SDIO_InitStruct : pointer to a SDIO_InitTypeDef structure
+ * that contains the configuration information for the SDIO peripheral.
+ * @retval None
+ */
+void SDIO_Init(SDIO_InitTypeDef* SDIO_InitStruct)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_CLOCK_EDGE(SDIO_InitStruct->SDIO_ClockEdge));
+ assert_param(IS_SDIO_CLOCK_BYPASS(SDIO_InitStruct->SDIO_ClockBypass));
+ assert_param(IS_SDIO_CLOCK_POWER_SAVE(SDIO_InitStruct->SDIO_ClockPowerSave));
+ assert_param(IS_SDIO_BUS_WIDE(SDIO_InitStruct->SDIO_BusWide));
+ assert_param(IS_SDIO_HARDWARE_FLOW_CONTROL(SDIO_InitStruct->SDIO_HardwareFlowControl));
+
+/*---------------------------- SDIO CLKCR Configuration ------------------------*/
+ /* Get the SDIO CLKCR value */
+ tmpreg = SDIO->CLKCR;
+
+ /* Clear CLKDIV, PWRSAV, BYPASS, WIDBUS, NEGEDGE, HWFC_EN bits */
+ tmpreg &= CLKCR_CLEAR_MASK;
+
+ /* Set CLKDIV bits according to SDIO_ClockDiv value */
+ /* Set PWRSAV bit according to SDIO_ClockPowerSave value */
+ /* Set BYPASS bit according to SDIO_ClockBypass value */
+ /* Set WIDBUS bits according to SDIO_BusWide value */
+ /* Set NEGEDGE bits according to SDIO_ClockEdge value */
+ /* Set HWFC_EN bits according to SDIO_HardwareFlowControl value */
+ tmpreg |= (SDIO_InitStruct->SDIO_ClockDiv | SDIO_InitStruct->SDIO_ClockPowerSave |
+ SDIO_InitStruct->SDIO_ClockBypass | SDIO_InitStruct->SDIO_BusWide |
+ SDIO_InitStruct->SDIO_ClockEdge | SDIO_InitStruct->SDIO_HardwareFlowControl);
+
+ /* Write to SDIO CLKCR */
+ SDIO->CLKCR = tmpreg;
+}
+
+/**
+ * @brief Fills each SDIO_InitStruct member with its default value.
+ * @param SDIO_InitStruct: pointer to an SDIO_InitTypeDef structure which
+ * will be initialized.
+ * @retval None
+ */
+void SDIO_StructInit(SDIO_InitTypeDef* SDIO_InitStruct)
+{
+ /* SDIO_InitStruct members default value */
+ SDIO_InitStruct->SDIO_ClockDiv = 0x00;
+ SDIO_InitStruct->SDIO_ClockEdge = SDIO_ClockEdge_Rising;
+ SDIO_InitStruct->SDIO_ClockBypass = SDIO_ClockBypass_Disable;
+ SDIO_InitStruct->SDIO_ClockPowerSave = SDIO_ClockPowerSave_Disable;
+ SDIO_InitStruct->SDIO_BusWide = SDIO_BusWide_1b;
+ SDIO_InitStruct->SDIO_HardwareFlowControl = SDIO_HardwareFlowControl_Disable;
+}
+
+/**
+ * @brief Enables or disables the SDIO Clock.
+ * @param NewState: new state of the SDIO Clock. This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_ClockCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CLKCR_CLKEN_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Sets the power status of the controller.
+ * @param SDIO_PowerState: new state of the Power state.
+ * This parameter can be one of the following values:
+ * @arg SDIO_PowerState_OFF: SDIO Power OFF.
+ * @arg SDIO_PowerState_ON: SDIO Power ON.
+ * @retval None
+ */
+void SDIO_SetPowerState(uint32_t SDIO_PowerState)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_POWER_STATE(SDIO_PowerState));
+
+ SDIO->POWER = SDIO_PowerState;
+}
+
+/**
+ * @brief Gets the power status of the controller.
+ * @param None
+ * @retval Power status of the controller. The returned value can
+ * be one of the following:
+ * - 0x00: Power OFF
+ * - 0x02: Power UP
+ * - 0x03: Power ON
+ */
+uint32_t SDIO_GetPowerState(void)
+{
+ return (SDIO->POWER & (~PWR_PWRCTRL_MASK));
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group2 DMA transfers management functions
+ * @brief DMA transfers management functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### DMA transfers management functions #####
+ ==============================================================================
+ [..] This section provide functions allowing to program SDIO DMA transfer.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the SDIO DMA request.
+ * @param NewState: new state of the selected SDIO DMA request.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_DMACmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) DCTRL_DMAEN_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group3 Command path state machine (CPSM) management functions
+ * @brief Command path state machine (CPSM) management functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### Command path state machine (CPSM) management functions #####
+ ==============================================================================
+ [..] This section provide functions allowing to program and read the Command
+ path state machine (CPSM).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the SDIO Command according to the specified
+ * parameters in the SDIO_CmdInitStruct and send the command.
+ * @param SDIO_CmdInitStruct : pointer to a SDIO_CmdInitTypeDef
+ * structure that contains the configuration information for the SDIO command.
+ * @retval None
+ */
+void SDIO_SendCommand(SDIO_CmdInitTypeDef *SDIO_CmdInitStruct)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_CMD_INDEX(SDIO_CmdInitStruct->SDIO_CmdIndex));
+ assert_param(IS_SDIO_RESPONSE(SDIO_CmdInitStruct->SDIO_Response));
+ assert_param(IS_SDIO_WAIT(SDIO_CmdInitStruct->SDIO_Wait));
+ assert_param(IS_SDIO_CPSM(SDIO_CmdInitStruct->SDIO_CPSM));
+
+/*---------------------------- SDIO ARG Configuration ------------------------*/
+ /* Set the SDIO Argument value */
+ SDIO->ARG = SDIO_CmdInitStruct->SDIO_Argument;
+
+/*---------------------------- SDIO CMD Configuration ------------------------*/
+ /* Get the SDIO CMD value */
+ tmpreg = SDIO->CMD;
+ /* Clear CMDINDEX, WAITRESP, WAITINT, WAITPEND, CPSMEN bits */
+ tmpreg &= CMD_CLEAR_MASK;
+ /* Set CMDINDEX bits according to SDIO_CmdIndex value */
+ /* Set WAITRESP bits according to SDIO_Response value */
+ /* Set WAITINT and WAITPEND bits according to SDIO_Wait value */
+ /* Set CPSMEN bits according to SDIO_CPSM value */
+ tmpreg |= (uint32_t)SDIO_CmdInitStruct->SDIO_CmdIndex | SDIO_CmdInitStruct->SDIO_Response
+ | SDIO_CmdInitStruct->SDIO_Wait | SDIO_CmdInitStruct->SDIO_CPSM;
+
+ /* Write to SDIO CMD */
+ SDIO->CMD = tmpreg;
+}
+
+/**
+ * @brief Fills each SDIO_CmdInitStruct member with its default value.
+ * @param SDIO_CmdInitStruct: pointer to an SDIO_CmdInitTypeDef
+ * structure which will be initialized.
+ * @retval None
+ */
+void SDIO_CmdStructInit(SDIO_CmdInitTypeDef* SDIO_CmdInitStruct)
+{
+ /* SDIO_CmdInitStruct members default value */
+ SDIO_CmdInitStruct->SDIO_Argument = 0x00;
+ SDIO_CmdInitStruct->SDIO_CmdIndex = 0x00;
+ SDIO_CmdInitStruct->SDIO_Response = SDIO_Response_No;
+ SDIO_CmdInitStruct->SDIO_Wait = SDIO_Wait_No;
+ SDIO_CmdInitStruct->SDIO_CPSM = SDIO_CPSM_Disable;
+}
+
+/**
+ * @brief Returns command index of last command for which response received.
+ * @param None
+ * @retval Returns the command index of the last command response received.
+ */
+uint8_t SDIO_GetCommandResponse(void)
+{
+ return (uint8_t)(SDIO->RESPCMD);
+}
+
+/**
+ * @brief Returns response received from the card for the last command.
+ * @param SDIO_RESP: Specifies the SDIO response register.
+ * This parameter can be one of the following values:
+ * @arg SDIO_RESP1: Response Register 1.
+ * @arg SDIO_RESP2: Response Register 2.
+ * @arg SDIO_RESP3: Response Register 3.
+ * @arg SDIO_RESP4: Response Register 4.
+ * @retval The Corresponding response register value.
+ */
+uint32_t SDIO_GetResponse(uint32_t SDIO_RESP)
+{
+ __IO uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_RESP(SDIO_RESP));
+
+ tmp = SDIO_RESP_ADDR + SDIO_RESP;
+
+ return (*(__IO uint32_t *) tmp);
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group4 Data path state machine (DPSM) management functions
+ * @brief Data path state machine (DPSM) management functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### Data path state machine (DPSM) management functions #####
+ ==============================================================================
+ [..] This section provide functions allowing to program and read the Data path
+ state machine (DPSM).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the SDIO data path according to the specified
+ * parameters in the SDIO_DataInitStruct.
+ * @param SDIO_DataInitStruct : pointer to a SDIO_DataInitTypeDef structure that
+ * contains the configuration information for the SDIO command.
+ * @retval None
+ */
+void SDIO_DataConfig(SDIO_DataInitTypeDef* SDIO_DataInitStruct)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_DATA_LENGTH(SDIO_DataInitStruct->SDIO_DataLength));
+ assert_param(IS_SDIO_BLOCK_SIZE(SDIO_DataInitStruct->SDIO_DataBlockSize));
+ assert_param(IS_SDIO_TRANSFER_DIR(SDIO_DataInitStruct->SDIO_TransferDir));
+ assert_param(IS_SDIO_TRANSFER_MODE(SDIO_DataInitStruct->SDIO_TransferMode));
+ assert_param(IS_SDIO_DPSM(SDIO_DataInitStruct->SDIO_DPSM));
+
+/*---------------------------- SDIO DTIMER Configuration ---------------------*/
+ /* Set the SDIO Data TimeOut value */
+ SDIO->DTIMER = SDIO_DataInitStruct->SDIO_DataTimeOut;
+
+/*---------------------------- SDIO DLEN Configuration -----------------------*/
+ /* Set the SDIO DataLength value */
+ SDIO->DLEN = SDIO_DataInitStruct->SDIO_DataLength;
+
+/*---------------------------- SDIO DCTRL Configuration ----------------------*/
+ /* Get the SDIO DCTRL value */
+ tmpreg = SDIO->DCTRL;
+ /* Clear DEN, DTMODE, DTDIR and DBCKSIZE bits */
+ tmpreg &= DCTRL_CLEAR_MASK;
+ /* Set DEN bit according to SDIO_DPSM value */
+ /* Set DTMODE bit according to SDIO_TransferMode value */
+ /* Set DTDIR bit according to SDIO_TransferDir value */
+ /* Set DBCKSIZE bits according to SDIO_DataBlockSize value */
+ tmpreg |= (uint32_t)SDIO_DataInitStruct->SDIO_DataBlockSize | SDIO_DataInitStruct->SDIO_TransferDir
+ | SDIO_DataInitStruct->SDIO_TransferMode | SDIO_DataInitStruct->SDIO_DPSM;
+
+ /* Write to SDIO DCTRL */
+ SDIO->DCTRL = tmpreg;
+}
+
+/**
+ * @brief Fills each SDIO_DataInitStruct member with its default value.
+ * @param SDIO_DataInitStruct: pointer to an SDIO_DataInitTypeDef structure which
+ * will be initialized.
+ * @retval None
+ */
+void SDIO_DataStructInit(SDIO_DataInitTypeDef* SDIO_DataInitStruct)
+{
+ /* SDIO_DataInitStruct members default value */
+ SDIO_DataInitStruct->SDIO_DataTimeOut = 0xFFFFFFFF;
+ SDIO_DataInitStruct->SDIO_DataLength = 0x00;
+ SDIO_DataInitStruct->SDIO_DataBlockSize = SDIO_DataBlockSize_1b;
+ SDIO_DataInitStruct->SDIO_TransferDir = SDIO_TransferDir_ToCard;
+ SDIO_DataInitStruct->SDIO_TransferMode = SDIO_TransferMode_Block;
+ SDIO_DataInitStruct->SDIO_DPSM = SDIO_DPSM_Disable;
+}
+
+/**
+ * @brief Returns number of remaining data bytes to be transferred.
+ * @param None
+ * @retval Number of remaining data bytes to be transferred
+ */
+uint32_t SDIO_GetDataCounter(void)
+{
+ return SDIO->DCOUNT;
+}
+
+/**
+ * @brief Read one data word from Rx FIFO.
+ * @param None
+ * @retval Data received
+ */
+uint32_t SDIO_ReadData(void)
+{
+ return SDIO->FIFO;
+}
+
+/**
+ * @brief Write one data word to Tx FIFO.
+ * @param Data: 32-bit data word to write.
+ * @retval None
+ */
+void SDIO_WriteData(uint32_t Data)
+{
+ SDIO->FIFO = Data;
+}
+
+/**
+ * @brief Returns the number of words left to be written to or read from FIFO.
+ * @param None
+ * @retval Remaining number of words.
+ */
+uint32_t SDIO_GetFIFOCount(void)
+{
+ return SDIO->FIFOCNT;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group5 SDIO IO Cards mode management functions
+ * @brief SDIO IO Cards mode management functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### SDIO IO Cards mode management functions #####
+ ==============================================================================
+ [..] This section provide functions allowing to program and read the SDIO IO
+ Cards.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Starts the SD I/O Read Wait operation.
+ * @param NewState: new state of the Start SDIO Read Wait operation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_StartSDIOReadWait(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) DCTRL_RWSTART_BB = (uint32_t) NewState;
+}
+
+/**
+ * @brief Stops the SD I/O Read Wait operation.
+ * @param NewState: new state of the Stop SDIO Read Wait operation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_StopSDIOReadWait(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) DCTRL_RWSTOP_BB = (uint32_t) NewState;
+}
+
+/**
+ * @brief Sets one of the two options of inserting read wait interval.
+ * @param SDIO_ReadWaitMode: SD I/O Read Wait operation mode.
+ * This parametre can be:
+ * @arg SDIO_ReadWaitMode_CLK: Read Wait control by stopping SDIOCLK.
+ * @arg SDIO_ReadWaitMode_DATA2: Read Wait control using SDIO_DATA2.
+ * @retval None
+ */
+void SDIO_SetSDIOReadWaitMode(uint32_t SDIO_ReadWaitMode)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_READWAIT_MODE(SDIO_ReadWaitMode));
+
+ *(__IO uint32_t *) DCTRL_RWMOD_BB = SDIO_ReadWaitMode;
+}
+
+/**
+ * @brief Enables or disables the SD I/O Mode Operation.
+ * @param NewState: new state of SDIO specific operation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_SetSDIOOperation(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) DCTRL_SDIOEN_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Enables or disables the SD I/O Mode suspend command sending.
+ * @param NewState: new state of the SD I/O Mode suspend command.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_SendSDIOSuspendCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CMD_SDIOSUSPEND_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group6 CE-ATA mode management functions
+ * @brief CE-ATA mode management functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### CE-ATA mode management functions #####
+ ==============================================================================
+ [..] This section provide functions allowing to program and read the CE-ATA
+ card.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the command completion signal.
+ * @param NewState: new state of command completion signal.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_CommandCompletionCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CMD_ENCMDCOMPL_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Enables or disables the CE-ATA interrupt.
+ * @param NewState: new state of CE-ATA interrupt. This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_CEATAITCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CMD_NIEN_BB = (uint32_t)((~((uint32_t)NewState)) & ((uint32_t)0x1));
+}
+
+/**
+ * @brief Sends CE-ATA command (CMD61).
+ * @param NewState: new state of CE-ATA command. This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_SendCEATACmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CMD_ATACMD_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group7 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+
+
+ @verbatim
+ ==============================================================================
+ ##### Interrupts and flags management functions #####
+ ==============================================================================
+
+ @endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the SDIO interrupts.
+ * @param SDIO_IT: specifies the SDIO interrupt sources to be enabled or disabled.
+ * This parameter can be one or a combination of the following values:
+ * @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt.
+ * @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt.
+ * @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt.
+ * @arg SDIO_IT_DTIMEOUT: Data timeout interrupt.
+ * @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt.
+ * @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt.
+ * @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt.
+ * @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt.
+ * @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt.
+ * @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
+ * bus mode interrupt.
+ * @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt.
+ * @arg SDIO_IT_CMDACT: Command transfer in progress interrupt.
+ * @arg SDIO_IT_TXACT: Data transmit in progress interrupt.
+ * @arg SDIO_IT_RXACT: Data receive in progress interrupt.
+ * @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt.
+ * @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt.
+ * @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt.
+ * @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt.
+ * @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt.
+ * @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt.
+ * @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt.
+ * @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt.
+ * @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt.
+ * @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61 interrupt.
+ * @param NewState: new state of the specified SDIO interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_ITConfig(uint32_t SDIO_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_IT(SDIO_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the SDIO interrupts */
+ SDIO->MASK |= SDIO_IT;
+ }
+ else
+ {
+ /* Disable the SDIO interrupts */
+ SDIO->MASK &= ~SDIO_IT;
+ }
+}
+
+/**
+ * @brief Checks whether the specified SDIO flag is set or not.
+ * @param SDIO_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed).
+ * @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed).
+ * @arg SDIO_FLAG_CTIMEOUT: Command response timeout.
+ * @arg SDIO_FLAG_DTIMEOUT: Data timeout.
+ * @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error.
+ * @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error.
+ * @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed).
+ * @arg SDIO_FLAG_CMDSENT: Command sent (no response required).
+ * @arg SDIO_FLAG_DATAEND: Data end (data counter, SDIDCOUNT, is zero).
+ * @arg SDIO_FLAG_STBITERR: Start bit not detected on all data signals in wide
+ * bus mode.
+ * @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed).
+ * @arg SDIO_FLAG_CMDACT: Command transfer in progress.
+ * @arg SDIO_FLAG_TXACT: Data transmit in progress.
+ * @arg SDIO_FLAG_RXACT: Data receive in progress.
+ * @arg SDIO_FLAG_TXFIFOHE: Transmit FIFO Half Empty.
+ * @arg SDIO_FLAG_RXFIFOHF: Receive FIFO Half Full.
+ * @arg SDIO_FLAG_TXFIFOF: Transmit FIFO full.
+ * @arg SDIO_FLAG_RXFIFOF: Receive FIFO full.
+ * @arg SDIO_FLAG_TXFIFOE: Transmit FIFO empty.
+ * @arg SDIO_FLAG_RXFIFOE: Receive FIFO empty.
+ * @arg SDIO_FLAG_TXDAVL: Data available in transmit FIFO.
+ * @arg SDIO_FLAG_RXDAVL: Data available in receive FIFO.
+ * @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received.
+ * @arg SDIO_FLAG_CEATAEND: CE-ATA command completion signal received for CMD61.
+ * @retval The new state of SDIO_FLAG (SET or RESET).
+ */
+FlagStatus SDIO_GetFlagStatus(uint32_t SDIO_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_FLAG(SDIO_FLAG));
+
+ if ((SDIO->STA & SDIO_FLAG) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the SDIO's pending flags.
+ * @param SDIO_FLAG: specifies the flag to clear.
+ * This parameter can be one or a combination of the following values:
+ * @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed).
+ * @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed).
+ * @arg SDIO_FLAG_CTIMEOUT: Command response timeout.
+ * @arg SDIO_FLAG_DTIMEOUT: Data timeout.
+ * @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error.
+ * @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error.
+ * @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed).
+ * @arg SDIO_FLAG_CMDSENT: Command sent (no response required).
+ * @arg SDIO_FLAG_DATAEND: Data end (data counter, SDIDCOUNT, is zero).
+ * @arg SDIO_FLAG_STBITERR: Start bit not detected on all data signals in wide
+ * bus mode.
+ * @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed).
+ * @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received.
+ * @arg SDIO_FLAG_CEATAEND: CE-ATA command completion signal received for CMD61.
+ * @retval None
+ */
+void SDIO_ClearFlag(uint32_t SDIO_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_CLEAR_FLAG(SDIO_FLAG));
+
+ SDIO->ICR = SDIO_FLAG;
+}
+
+/**
+ * @brief Checks whether the specified SDIO interrupt has occurred or not.
+ * @param SDIO_IT: specifies the SDIO interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt.
+ * @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt.
+ * @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt.
+ * @arg SDIO_IT_DTIMEOUT: Data timeout interrupt.
+ * @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt.
+ * @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt.
+ * @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt.
+ * @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt.
+ * @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt.
+ * @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
+ * bus mode interrupt.
+ * @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt.
+ * @arg SDIO_IT_CMDACT: Command transfer in progress interrupt.
+ * @arg SDIO_IT_TXACT: Data transmit in progress interrupt.
+ * @arg SDIO_IT_RXACT: Data receive in progress interrupt.
+ * @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt.
+ * @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt.
+ * @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt.
+ * @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt.
+ * @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt.
+ * @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt.
+ * @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt.
+ * @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt.
+ * @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt.
+ * @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61 interrupt.
+ * @retval The new state of SDIO_IT (SET or RESET).
+ */
+ITStatus SDIO_GetITStatus(uint32_t SDIO_IT)
+{
+ ITStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_GET_IT(SDIO_IT));
+ if ((SDIO->STA & SDIO_IT) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the SDIO's interrupt pending bits.
+ * @param SDIO_IT: specifies the interrupt pending bit to clear.
+ * This parameter can be one or a combination of the following values:
+ * @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt.
+ * @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt.
+ * @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt.
+ * @arg SDIO_IT_DTIMEOUT: Data timeout interrupt.
+ * @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt.
+ * @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt.
+ * @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt.
+ * @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt.
+ * @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt.
+ * @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
+ * bus mode interrupt.
+ * @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt.
+ * @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61.
+ * @retval None
+ */
+void SDIO_ClearITPendingBit(uint32_t SDIO_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_CLEAR_IT(SDIO_IT));
+
+ SDIO->ICR = SDIO_IT;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_tim.c b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_tim.c
new file mode 100644
index 0000000..334f2d8
--- /dev/null
+++ b/thirdparty/STM32_USB-FS-Device_Lib_V4.0.0/Libraries/STM32L1xx_StdPeriph_Driver/src/stm32l1xx_tim.c
@@ -0,0 +1,2843 @@
+/**
+ ******************************************************************************
+ * @file stm32l1xx_tim.c
+ * @author MCD Application Team
+ * @version V1.1.1
+ * @date 05-March-2012
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the TIM peripheral:
+ * + TimeBase management
+ * + Output Compare management
+ * + Input Capture management
+ * + Interrupts, DMA and flags management
+ * + Clocks management
+ * + Synchronization management
+ * + Specific interface management
+ * + Specific remapping management
+ *
+* @verbatim
+
+ ===============================================================================
+ ##### How to use this driver #####
+ ===============================================================================
+ [..] This driver provides functions to configure and program the TIM
+ of all STM32L1xx devices These functions are split in 8 groups:
+ (#) TIM TimeBase management: this group includes all needed functions
+ to configure the TM Timebase unit:
+ (++) Set/Get Prescaler.
+ (++) Set/Get Autoreload.
+ (++) Counter modes configuration.
+ (++) Set Clock division.
+ (++) Select the One Pulse mode.
+ (++) Update Request Configuration.
+ (++) Update Disable Configuration.
+ (++) Auto-Preload Configuration.
+ (++) Enable/Disable the counter.
+
+ (#) TIM Output Compare management: this group includes all needed
+ functions to configure the Capture/Compare unit used in Output
+ compare mode:
+ (++) Configure each channel, independently, in Output Compare mode.
+ (++) Select the output compare modes.
+ (++) Select the Polarities of each channel.
+ (++) Set/Get the Capture/Compare register values.
+ (++) Select the Output Compare Fast mode.
+ (++) Select the Output Compare Forced mode.
+ (++) Output Compare-Preload Configuration.
+ (++) Clear Output Compare Reference.
+ (++) Select the OCREF Clear signal.
+ (++) Enable/Disable the Capture/Compare Channels.
+
+ (#) TIM Input Capture management: this group includes all needed
+ functions to configure the Capture/Compare unit used in
+ Input Capture mode:
+ (++) Configure each channel in input capture mode.
+ (++) Configure Channel1/2 in PWM Input mode.
+ (++) Set the Input Capture Prescaler.
+ (++) Get the Capture/Compare values.
+
+ (#) TIM interrupts, DMA and flags management.
+ (++) Enable/Disable interrupt sources.
+ (++) Get flags status.
+ (++) Clear flags/ Pending bits.
+ (++) Enable/Disable DMA requests.
+ (++) Configure DMA burst mode.
+ (++) Select CaptureCompare DMA request.
+
+ (#) TIM clocks management: this group includes all needed functions
+ to configure the clock controller unit:
+ (++) Select internal/External clock.
+ (++) Select the external clock mode: ETR(Mode1/Mode2), TIx or ITRx.
+
+ (#) TIM synchronization management: this group includes all needed.
+ functions to configure the Synchronization unit:
+ (++) Select Input Trigger.
+ (++) Select Output Trigger.
+ (++) Select Master Slave Mode.
+ (++) ETR Configuration when used as external trigger.
+
+ (#) TIM specific interface management, this group includes all
+ needed functions to use the specific TIM interface:
+ (++) Encoder Interface Configuration.
+ (++) Select Hall Sensor.
+
+ (#) TIM specific remapping management includes the Remapping
+ configuration of specific timers
+
+@endverbatim
+
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT 2012 STMicroelectronics</center></h2>
+ *
+ * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
+ * You may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ * http://www.st.com/software_license_agreement_liberty_v2
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l1xx_tim.h"
+#include "stm32l1xx_rcc.h"
+
+/** @addtogroup STM32L1xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup TIM
+ * @brief TIM driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* ---------------------- TIM registers bit mask ------------------------ */
+#define SMCR_ETR_MASK ((uint16_t)0x00FF)
+#define CCMR_OFFSET ((uint16_t)0x0018)
+#define CCER_CCE_SET ((uint16_t)0x0001)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+
+static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter);
+static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter);
+static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter);
+static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter);
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup TIM_Private_Functions
+ * @{
+ */
+
+/** @defgroup TIM_Group1 TimeBase management functions
+ * @brief TimeBase management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### TimeBase management functions #####
+ ===============================================================================
+
+ *** TIM Driver: how to use it in Timing(Time base) Mode ***
+ ===============================================================================
+ [..] To use the Timer in Timing(Time base) mode, the following steps are
+ mandatory:
+ (#) Enable TIM clock using
+ RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function.
+ (#) Fill the TIM_TimeBaseInitStruct with the desired parameters.
+ (#) Call TIM_TimeBaseInit(TIMx, &TIM_TimeBaseInitStruct) to configure
+ the Time Base unit with the corresponding configuration.
+ (#) Enable the NVIC if you need to generate the update interrupt.
+ (#) Enable the corresponding interrupt using the function
+ TIM_ITConfig(TIMx, TIM_IT_Update).
+ (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
+ [..]
+ (@) All other functions can be used seperatly to modify, if needed,
+ a specific feature of the Timer.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the TIMx peripheral registers to their default reset values.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @retval None
+ *
+ */
+void TIM_DeInit(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ if (TIMx == TIM2)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE);
+ }
+ else if (TIMx == TIM3)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE);
+ }
+ else if (TIMx == TIM4)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE);
+ }
+ else if (TIMx == TIM5)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, DISABLE);
+ }
+ else if (TIMx == TIM6)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE);
+ }
+ else if (TIMx == TIM7)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE);
+ }
+
+ else if (TIMx == TIM9)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, DISABLE);
+ }
+ else if (TIMx == TIM10)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, DISABLE);
+ }
+ else
+ {
+ if (TIMx == TIM11)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, DISABLE);
+ }
+ }
+
+}
+
+/**
+ * @brief Initializes the TIMx Time Base Unit peripheral according to
+ * the specified parameters in the TIM_TimeBaseInitStruct.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef
+ * structure that contains the configuration information for
+ * the specified TIM peripheral.
+ * @retval None
+ */
+void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
+{
+ uint16_t tmpcr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
+ assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));
+
+ tmpcr1 = TIMx->CR1;
+
+ if(((TIMx) == TIM2) || ((TIMx) == TIM3) || ((TIMx) == TIM4) || ((TIMx) == TIM5))
+ {
+ /* Select the Counter Mode */
+ tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));
+ tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
+ }
+
+ if(((TIMx) != TIM6) && ((TIMx) != TIM7))
+ {
+ /* Set the clock division */
+ tmpcr1 &= (uint16_t)(~((uint16_t)TIM_CR1_CKD));
+ tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
+ }
+
+ TIMx->CR1 = tmpcr1;
+
+ /* Set the Autoreload value */
+ TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
+
+ /* Set the Prescaler value */
+ TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
+
+ /* Generate an update event to reload the Prescaler value immediatly */
+ TIMx->EGR = TIM_PSCReloadMode_Immediate;
+}
+
+/**
+ * @brief Fills each TIM_TimeBaseInitStruct member with its default value.
+ * @param TIM_TimeBaseInitStruct : pointer to a TIM_TimeBaseInitTypeDef
+ * structure which will be initialized.
+ * @retval None
+ */
+void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
+{
+ /* Set the default configuration */
+ TIM_TimeBaseInitStruct->TIM_Period = 0xFFFFFFFF;
+ TIM_TimeBaseInitStruct->TIM_Prescaler = 0x0000;
+ TIM_TimeBaseInitStruct->TIM_ClockDivision = TIM_CKD_DIV1;
+ TIM_TimeBaseInitStruct->TIM_CounterMode = TIM_CounterMode_Up;
+}
+
+/**
+ * @brief Configures the TIMx Prescaler.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param Prescaler: specifies the Prescaler Register value.
+ * @param TIM_PSCReloadMode: specifies the TIM Prescaler Reload mode
+ * This parameter can be one of the following values:
+ * @arg TIM_PSCReloadMode_Update: The Prescaler is loaded at the update event.
+ * @arg TIM_PSCReloadMode_Immediate: The Prescaler is loaded immediatly.
+ * @retval None
+ */
+void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_PRESCALER_RELOAD(TIM_PSCReloadMode));
+
+ /* Set the Prescaler value */
+ TIMx->PSC = Prescaler;
+ /* Set or reset the UG Bit */
+ TIMx->EGR = TIM_PSCReloadMode;
+}
+
+/**
+ * @brief Specifies the TIMx Counter Mode to be used.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_CounterMode: specifies the Counter Mode to be used
+ * This parameter can be one of the following values:
+ * @arg TIM_CounterMode_Up: TIM Up Counting Mode.
+ * @arg TIM_CounterMode_Down: TIM Down Counting Mode.
+ * @arg TIM_CounterMode_CenterAligned1: TIM Center Aligned Mode1.
+ * @arg TIM_CounterMode_CenterAligned2: TIM Center Aligned Mode2.
+ * @arg TIM_CounterMode_CenterAligned3: TIM Center Aligned Mode3.
+ * @retval None
+ */
+void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode)
+{
+ uint16_t tmpcr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_COUNTER_MODE(TIM_CounterMode));
+
+ tmpcr1 = TIMx->CR1;
+ /* Reset the CMS and DIR Bits */
+ tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));
+ /* Set the Counter Mode */
+ tmpcr1 |= TIM_CounterMode;
+ /* Write to TIMx CR1 register */
+ TIMx->CR1 = tmpcr1;
+}
+
+/**
+ * @brief Sets the TIMx Counter Register value
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param Counter: specifies the Counter register new value.
+ * @retval None
+ */
+void TIM_SetCounter(TIM_TypeDef* TIMx, uint32_t Counter)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Set the Counter Register value */
+ TIMx->CNT = Counter;
+}
+
+/**
+ * @brief Sets the TIMx Autoreload Register value
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param Autoreload: specifies the Autoreload register new value.
+ * @retval None
+ */
+void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint32_t Autoreload)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Set the Autoreload Register value */
+ TIMx->ARR = Autoreload;
+}
+
+/**
+ * @brief Gets the TIMx Counter value.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @retval Counter Register value.
+ */
+uint32_t TIM_GetCounter(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Get the Counter Register value */
+ return TIMx->CNT;
+}
+
+/**
+ * @brief Gets the TIMx Prescaler value.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @retval Prescaler Register value.
+ */
+uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Get the Prescaler Register value */
+ return TIMx->PSC;
+}
+
+/**
+ * @brief Enables or Disables the TIMx Update event.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param NewState: new state of the TIMx UDIS bit
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the Update Disable Bit */
+ TIMx->CR1 |= TIM_CR1_UDIS;
+ }
+ else
+ {
+ /* Reset the Update Disable Bit */
+ TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_UDIS);
+ }
+}
+
+/**
+ * @brief Configures the TIMx Update Request Interrupt source.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param TIM_UpdateSource: specifies the Update source.
+ * This parameter can be one of the following values:
+ * @arg TIM_UpdateSource_Global: Source of update is the counter overflow/underflow
+ or the setting of UG bit, or an update generation
+ through the slave mode controller.
+ * @arg TIM_UpdateSource_Regular: Source of update is counter overflow/underflow.
+ * @retval None
+ */
+void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_UPDATE_SOURCE(TIM_UpdateSource));
+
+ if (TIM_UpdateSource != TIM_UpdateSource_Global)
+ {
+ /* Set the URS Bit */
+ TIMx->CR1 |= TIM_CR1_URS;
+ }
+ else
+ {
+ /* Reset the URS Bit */
+ TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_URS);
+ }
+}
+
+/**
+ * @brief Enables or disables TIMx peripheral Preload register on ARR.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param NewState: new state of the TIMx peripheral Preload register
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the ARR Preload Bit */
+ TIMx->CR1 |= TIM_CR1_ARPE;
+ }
+ else
+ {
+ /* Reset the ARR Preload Bit */
+ TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_ARPE);
+ }
+}
+
+/**
+ * @brief Selects the TIMx's One Pulse Mode.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param TIM_OPMode: specifies the OPM Mode to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_OPMode_Single:: TIM One Pulse Single Mode (Counter stops counting
+ * at the next update event (clearing the bit CEN)).
+ * @arg TIM_OPMode_Repetitive: TIM One Pulse Repetitive Mode
+ * (Counter is not stopped at update event).
+ * @retval None
+ */
+void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_OPM_MODE(TIM_OPMode));
+
+ /* Reset the OPM Bit */
+ TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_OPM);
+ /* Configure the OPM Mode */
+ TIMx->CR1 |= TIM_OPMode;
+}
+
+/**
+ * @brief Sets the TIMx Clock Division value.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_CKD: specifies the clock division value.
+ * This parameter can be one of the following value:
+ * @arg TIM_CKD_DIV1: TDTS = Tck_tim.
+ * @arg TIM_CKD_DIV2: TDTS = 2*Tck_tim.
+ * @arg TIM_CKD_DIV4: TDTS = 4*Tck_tim.
+ * @retval None
+ */
+void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_CKD_DIV(TIM_CKD));
+
+ /* Reset the CKD Bits */
+ TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_CKD);
+ /* Set the CKD value */
+ TIMx->CR1 |= TIM_CKD;
+}
+
+/**
+ * @brief Enables or disables the specified TIM peripheral.
+ * @param TIMx: where x can be 2 to 11 to select the TIMx peripheral.
+ * @param NewState: new state of the TIMx peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the TIM Counter */
+ TIMx->CR1 |= TIM_CR1_CEN;
+ }
+ else
+ {
+ /* Disable the TIM Counter */
+ TIMx->CR1 &= (uint16_t)(~((uint16_t)TIM_CR1_CEN));
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group2 Output Compare management functions
+ * @brief Output Compare management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Output Compare management functions #####
+ ===============================================================================
+ *** TIM Driver: how to use it in Output Compare Mode ***
+ ===============================================================================
+ [..] To use the Timer in Output Compare mode, the following steps are mandatory:
+ (#) Enable TIM clock using
+ RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function.
+ (#) Configure the TIM pins by configuring the corresponding GPIO pins
+ (#) Configure the Time base unit as described in the first part of this
+ driver, if needed, else the Timer will run with the default
+ configuration:
+ (++) Autoreload value = 0xFFFF.
+ (++) Prescaler value = 0x0000.
+ (++) Counter mode = Up counting.
+ (++) Clock Division = TIM_CKD_DIV1.
+ (#) Fill the TIM_OCInitStruct with the desired parameters including:
+ (++) The TIM Output Compare mode: TIM_OCMode.
+ (++) TIM Output State: TIM_OutputState.
+ (++) TIM Pulse value: TIM_Pulse.
+ (++) TIM Output Compare Polarity : TIM_OCPolarity.
+ (#) Call TIM_OCxInit(TIMx, &TIM_OCInitStruct) to configure the desired
+ channel with the corresponding configuration.
+ (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
+ [..]
+ (@) All other functions can be used separately to modify, if needed,
+ a specific feature of the Timer.
+ (@) In case of PWM mode, this function is mandatory:
+ TIM_OCxPreloadConfig(TIMx, TIM_OCPreload_ENABLE).
+ (@) If the corresponding interrupt or DMA request are needed, the user should:
+ (#@) Enable the NVIC (or the DMA) to use the TIM interrupts (or DMA requests).
+ (#@) Enable the corresponding interrupt (or DMA request) using the function
+ TIM_ITConfig(TIMx, TIM_IT_CCx) (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx)).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the TIMx Channel1 according to the specified
+ * parameters in the TIM_OCInitStruct.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
+ * that contains the configuration information for the specified TIM
+ * peripheral.
+ * @retval None
+ */
+void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ uint16_t tmpccmrx = 0, tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
+ assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ TIMx->CCER &= (uint16_t)(~(uint16_t)TIM_CCER_CC1E);
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR1;
+
+ /* Reset the Output Compare Mode Bits */
+ tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC1M));
+ tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC1S));
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
+
+ /* Reset the Output Polarity level */
+ tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1P));
+ /* Set the Output Compare Polarity */
+ tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
+
+ /* Set the Output State */
+ tmpccer |= TIM_OCInitStruct->TIM_OutputState;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmrx;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Initializes the TIMx Channel2 according to the specified
+ * parameters in the TIM_OCInitStruct.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
+ * that contains the configuration information for the specified TIM
+ * peripheral.
+ * @retval None
+ */
+void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ uint16_t tmpccmrx = 0, tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
+ assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC2E));
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR1;
+
+ /* Reset the Output Compare Mode Bits */
+ tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC2M));
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
+
+ /* Reset the Output Polarity level */
+ tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2P));
+ /* Set the Output Compare Polarity */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 4);
+
+ /* Set the Output State */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 4);
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR2 = TIM_OCInitStruct->TIM_Pulse;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmrx;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Initializes the TIMx Channel3 according to the specified
+ * parameters in the TIM_OCInitStruct.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
+ * that contains the configuration information for the specified TIM
+ * peripheral.
+ * @retval None
+ */
+void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ uint16_t tmpccmrx = 0, tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
+ assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC3E));
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmrx = TIMx->CCMR2;
+
+ /* Reset the Output Compare Mode Bits */
+ tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_OC3M));
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
+
+ /* Reset the Output Polarity level */
+ tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3P));
+ /* Set the Output Compare Polarity */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 8);
+
+ /* Set the Output State */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 8);
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR3 = TIM_OCInitStruct->TIM_Pulse;
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmrx;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Initializes the TIMx Channel4 according to the specified
+ * parameters in the TIM_OCInitStruct.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
+ * that contains the configuration information for the specified TIM
+ * peripheral.
+ * @retval None
+ */
+void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ uint16_t tmpccmrx = 0, tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
+ assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
+
+ /* Disable the Channel 2: Reset the CC4E Bit */
+ TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC4E));
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmrx = TIMx->CCMR2;
+
+ /* Reset the Output Compare Mode Bits */
+ tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_OC4M));
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
+
+ /* Reset the Output Polarity level */
+ tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC4P));
+ /* Set the Output Compare Polarity */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 12);
+
+ /* Set the Output State */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 12);
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR4 = TIM_OCInitStruct->TIM_Pulse;
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmrx;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Fills each TIM_OCInitStruct member with its default value.
+ * @param TIM_OCInitStruct : pointer to a TIM_OCInitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ /* Set the default configuration */
+ TIM_OCInitStruct->TIM_OCMode = TIM_OCMode_Timing;
+ TIM_OCInitStruct->TIM_OutputState = TIM_OutputState_Disable;
+ TIM_OCInitStruct->TIM_Pulse = 0x0000;
+ TIM_OCInitStruct->TIM_OCPolarity = TIM_OCPolarity_High;
+}
+
+/**
+ * @brief Selects the TIM Output Compare Mode.
+ * @note This function disables the selected channel before changing the Output
+ * Compare Mode.
+ * User has to enable this channel using TIM_CCxCmd and TIM_CCxNCmd functions.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_Channel: specifies the TIM Channel.
+ * This parameter can be one of the following values:
+ * @arg TIM_Channel_1: TIM Channel 1.
+ * @arg TIM_Channel_2: TIM Channel 2.
+ * @arg TIM_Channel_3: TIM Channel 3.
+ * @arg TIM_Channel_4: TIM Channel 4.
+ * @param TIM_OCMode: specifies the TIM Output Compare Mode.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCMode_Timing: TIM Output Compare Timing mode.
+ * @arg TIM_OCMode_Active: TIM Output Compare Active mode.
+ * @arg TIM_OCMode_Inactive: TIM Output Compare Inactive mode.
+ * @arg TIM_OCMode_Toggle: TIM Output Compare Toggle mode.
+ * @arg TIM_OCMode_PWM1: TIM Output Compare PWM1 mode.
+ * @arg TIM_OCMode_PWM2: TIM Output Compare PWM2 mode.
+ * @arg TIM_ForcedAction_Active: TIM Forced Action Active mode.
+ * @arg TIM_ForcedAction_InActive: TIM Forced Action Inactive mode.
+ * @retval None
+ */
+void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode)
+{
+ uint32_t tmp = 0;
+ uint16_t tmp1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OCM(TIM_OCMode));
+
+ tmp = (uint32_t) TIMx;
+ tmp += CCMR_OFFSET;
+
+ tmp1 = CCER_CCE_SET << (uint16_t)TIM_Channel;
+
+ /* Disable the Channel: Reset the CCxE Bit */
+ TIMx->CCER &= (uint16_t) ~tmp1;
+
+ if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3))
+ {
+ tmp += (TIM_Channel>>1);
+
+ /* Reset the OCxM bits in the CCMRx register */
+ *(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIM_CCMR1_OC1M);
+
+ /* Configure the OCxM bits in the CCMRx register */
+ *(__IO uint32_t *) tmp |= TIM_OCMode;
+ }
+ else
+ {
+ tmp += (uint16_t)(TIM_Channel - (uint16_t)4)>> (uint16_t)1;
+
+ /* Reset the OCxM bits in the CCMRx register */
+ *(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIM_CCMR1_OC2M);
+
+ /* Configure the OCxM bits in the CCMRx register */
+ *(__IO uint32_t *) tmp |= (uint16_t)(TIM_OCMode << 8);
+ }
+}
+
+/**
+ * @brief Sets the TIMx Capture Compare1 Register value
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param Compare1: specifies the Capture Compare1 register new value.
+ * @retval None
+ */
+void TIM_SetCompare1(TIM_TypeDef* TIMx, uint32_t Compare1)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+
+ /* Set the Capture Compare1 Register value */
+ TIMx->CCR1 = Compare1;
+}
+
+/**
+ * @brief Sets the TIMx Capture Compare2 Register value.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param Compare2: specifies the Capture Compare2 register new value.
+ * @retval None
+ */
+void TIM_SetCompare2(TIM_TypeDef* TIMx, uint32_t Compare2)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+
+ /* Set the Capture Compare2 Register value */
+ TIMx->CCR2 = Compare2;
+}
+
+/**
+ * @brief Sets the TIMx Capture Compare3 Register value.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param Compare3: specifies the Capture Compare3 register new value.
+ * @retval None
+ */
+void TIM_SetCompare3(TIM_TypeDef* TIMx, uint32_t Compare3)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+
+ /* Set the Capture Compare3 Register value */
+ TIMx->CCR3 = Compare3;
+}
+
+/**
+ * @brief Sets the TIMx Capture Compare4 Register value.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param Compare4: specifies the Capture Compare4 register new value.
+ * @retval None
+ */
+void TIM_SetCompare4(TIM_TypeDef* TIMx, uint32_t Compare4)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+
+ /* Set the Capture Compare4 Register value */
+ TIMx->CCR4 = Compare4;
+}
+
+/**
+ * @brief Forces the TIMx output 1 waveform to active or inactive level.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
+ * This parameter can be one of the following values:
+ * @arg TIM_ForcedAction_Active: Force active level on OC1REF.
+ * @arg TIM_ForcedAction_InActive: Force inactive level on OC1REF.
+ * @retval None
+ */
+void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
+{
+ uint16_t tmpccmr1 = 0;
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
+ tmpccmr1 = TIMx->CCMR1;
+ /* Reset the OC1M Bits */
+ tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1M);
+ /* Configure The Forced output Mode */
+ tmpccmr1 |= TIM_ForcedAction;
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Forces the TIMx output 2 waveform to active or inactive level.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM
+ * peripheral.
+ * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
+ * This parameter can be one of the following values:
+ * @arg TIM_ForcedAction_Active: Force active level on OC2REF.
+ * @arg TIM_ForcedAction_InActive: Force inactive level on OC2REF.
+ * @retval None
+ */
+void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
+
+ tmpccmr1 = TIMx->CCMR1;
+ /* Reset the OC2M Bits */
+ tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2M);
+ /* Configure The Forced output Mode */
+ tmpccmr1 |= (uint16_t)(TIM_ForcedAction << 8);
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Forces the TIMx output 3 waveform to active or inactive level.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
+ * This parameter can be one of the following values:
+ * @arg TIM_ForcedAction_Active: Force active level on OC3REF.
+ * @arg TIM_ForcedAction_InActive: Force inactive level on OC3REF.
+ * @retval None
+ */
+void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
+
+ tmpccmr2 = TIMx->CCMR2;
+ /* Reset the OC1M Bits */
+ tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3M);
+ /* Configure The Forced output Mode */
+ tmpccmr2 |= TIM_ForcedAction;
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Forces the TIMx output 4 waveform to active or inactive level.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
+ * This parameter can be one of the following values:
+ * @arg TIM_ForcedAction_Active: Force active level on OC4REF.
+ * @arg TIM_ForcedAction_InActive: Force inactive level on OC4REF.
+ * @retval None
+ */
+void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
+{
+ uint16_t tmpccmr2 = 0;
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
+
+ tmpccmr2 = TIMx->CCMR2;
+ /* Reset the OC2M Bits */
+ tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4M);
+ /* Configure The Forced output Mode */
+ tmpccmr2 |= (uint16_t)(TIM_ForcedAction << 8);
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Enables or disables the TIMx peripheral Preload register on CCR1.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_OCPreload: new state of the TIMx peripheral Preload register.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPreload_Enable: Enable TIM output compare Preload
+ * @arg TIM_OCPreload_Disable: Disable TIM output compare Preload
+ * @retval None
+ */
+void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
+{
+ uint16_t tmpccmr1 = 0;
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
+
+ tmpccmr1 = TIMx->CCMR1;
+ /* Reset the OC1PE Bit */
+ tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1PE);
+ /* Enable or Disable the Output Compare Preload feature */
+ tmpccmr1 |= TIM_OCPreload;
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Enables or disables the TIMx peripheral Preload register on CCR2.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_OCPreload: new state of the TIMx peripheral Preload register.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPreload_Enable: Enable TIM output compare Preload
+ * @arg TIM_OCPreload_Disable: Disable TIM output compare Preload
+ * @retval None
+ */
+void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
+{
+ uint16_t tmpccmr1 = 0;
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
+
+ tmpccmr1 = TIMx->CCMR1;
+ /* Reset the OC2PE Bit */
+ tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2PE);
+ /* Enable or Disable the Output Compare Preload feature */
+ tmpccmr1 |= (uint16_t)(TIM_OCPreload << 8);
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Enables or disables the TIMx peripheral Preload register on CCR3.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCPreload: new state of the TIMx peripheral Preload register.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPreload_Enable: Enable TIM output compare Preload
+ * @arg TIM_OCPreload_Disable: Disable TIM output compare Preload
+ * @retval None
+ */
+void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
+
+ tmpccmr2 = TIMx->CCMR2;
+ /* Reset the OC3PE Bit */
+ tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3PE);
+ /* Enable or Disable the Output Compare Preload feature */
+ tmpccmr2 |= TIM_OCPreload;
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Enables or disables the TIMx peripheral Preload register on CCR4.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCPreload: new state of the TIMx peripheral Preload register.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPreload_Enable: Enable TIM output compare Preload
+ * @arg TIM_OCPreload_Disable: Disable TIM output compare Preload
+ * @retval None
+ */
+void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
+
+ tmpccmr2 = TIMx->CCMR2;
+ /* Reset the OC4PE Bit */
+ tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4PE);
+ /* Enable or Disable the Output Compare Preload feature */
+ tmpccmr2 |= (uint16_t)(TIM_OCPreload << 8);
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Configures the TIMx Output Compare 1 Fast feature.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCFast_Enable: TIM output compare fast enable.
+ * @arg TIM_OCFast_Disable: TIM output compare fast disable.
+ * @retval None
+ */
+void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmr1 = TIMx->CCMR1;
+ /* Reset the OC1FE Bit */
+ tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1FE);
+ /* Enable or Disable the Output Compare Fast Bit */
+ tmpccmr1 |= TIM_OCFast;
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Configures the TIMx Output Compare 2 Fast feature.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCFast_Enable: TIM output compare fast enable.
+ * @arg TIM_OCFast_Disable: TIM output compare fast disable.
+ * @retval None
+ */
+void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmr1 = TIMx->CCMR1;
+ /* Reset the OC2FE Bit */
+ tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2FE);
+ /* Enable or Disable the Output Compare Fast Bit */
+ tmpccmr1 |= (uint16_t)(TIM_OCFast << 8);
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Configures the TIMx Output Compare 3 Fast feature.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCFast_Enable: TIM output compare fast enable.
+ * @arg TIM_OCFast_Disable: TIM output compare fast disable.
+ * @retval None
+ */
+void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmr2 = TIMx->CCMR2;
+ /* Reset the OC3FE Bit */
+ tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3FE);
+ /* Enable or Disable the Output Compare Fast Bit */
+ tmpccmr2 |= TIM_OCFast;
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Configures the TIMx Output Compare 4 Fast feature.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCFast_Enable: TIM output compare fast enable.
+ * @arg TIM_OCFast_Disable: TIM output compare fast disable.
+ * @retval None
+ */
+void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmr2 = TIMx->CCMR2;
+ /* Reset the OC4FE Bit */
+ tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4FE);
+ /* Enable or Disable the Output Compare Fast Bit */
+ tmpccmr2 |= (uint16_t)(TIM_OCFast << 8);
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Clears or safeguards the OCREF1 signal on an external event
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCClear_Enable: TIM Output clear enable.
+ * @arg TIM_OCClear_Disable: TIM Output clear disable.
+ * @retval None
+ */
+void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
+
+ tmpccmr1 = TIMx->CCMR1;
+ /* Reset the OC1CE Bit */
+ tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1CE);
+ /* Enable or Disable the Output Compare Clear Bit */
+ tmpccmr1 |= TIM_OCClear;
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Clears or safeguards the OCREF2 signal on an external event
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
+
+ * This parameter can be one of the following values:
+ * @arg TIM_OCClear_Enable: TIM Output clear enable.
+ * @arg TIM_OCClear_Disable: TIM Output clear disable .
+ * @retval None
+ */
+void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
+
+ tmpccmr1 = TIMx->CCMR1;
+ /* Reset the OC2CE Bit */
+ tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2CE);
+ /* Enable or Disable the Output Compare Clear Bit */
+ tmpccmr1 |= (uint16_t)(TIM_OCClear << 8);
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Clears or safeguards the OCREF3 signal on an external event
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCClear_Enable: TIM Output clear enable.
+ * @arg TIM_OCClear_Disable: TIM Output clear disable.
+ * @retval None
+ */
+void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
+
+ tmpccmr2 = TIMx->CCMR2;
+ /* Reset the OC3CE Bit */
+ tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3CE);
+ /* Enable or Disable the Output Compare Clear Bit */
+ tmpccmr2 |= TIM_OCClear;
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Clears or safeguards the OCREF4 signal on an external event
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCClear_Enable: TIM Output clear enable.
+ * @arg TIM_OCClear_Disable: TIM Output clear disable.
+ * @retval None
+ */
+void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
+
+ tmpccmr2 = TIMx->CCMR2;
+ /* Reset the OC4CE Bit */
+ tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4CE);
+ /* Enable or Disable the Output Compare Clear Bit */
+ tmpccmr2 |= (uint16_t)(TIM_OCClear << 8);
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Configures the TIMx channel 1 polarity.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_OCPolarity: specifies the OC1 Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPolarity_High: Output Compare active high.
+ * @arg TIM_OCPolarity_Low: Output Compare active low.
+ * @retval None
+ */
+void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
+
+ tmpccer = TIMx->CCER;
+ /* Set or Reset the CC1P Bit */
+ tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC1P);
+ tmpccer |= TIM_OCPolarity;
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configures the TIMx channel 2 polarity.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_OCPolarity: specifies the OC2 Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPolarity_High: Output Compare active high.
+ * @arg TIM_OCPolarity_Low: Output Compare active low.
+ * @retval None
+ */
+void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
+
+ tmpccer = TIMx->CCER;
+ /* Set or Reset the CC2P Bit */
+ tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC2P);
+ tmpccer |= (uint16_t)(TIM_OCPolarity << 4);
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configures the TIMx channel 3 polarity.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCPolarity: specifies the OC3 Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPolarity_High: Output Compare active high.
+ * @arg TIM_OCPolarity_Low: Output Compare active low.
+ * @retval None
+ */
+void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
+
+ tmpccer = TIMx->CCER;
+ /* Set or Reset the CC3P Bit */
+ tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC3P);
+ tmpccer |= (uint16_t)(TIM_OCPolarity << 8);
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configures the TIMx channel 4 polarity.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCPolarity: specifies the OC4 Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPolarity_High: Output Compare active high.
+ * @arg TIM_OCPolarity_Low: Output Compare active low.
+ * @retval None
+ */
+void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
+
+ tmpccer = TIMx->CCER;
+ /* Set or Reset the CC4P Bit */
+ tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC4P);
+ tmpccer |= (uint16_t)(TIM_OCPolarity << 12);
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Selects the OCReference Clear source.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_OCReferenceClear: specifies the OCReference Clear source.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCReferenceClear_ETRF: The internal OCreference clear input is connected to ETRF.
+ * @arg TIM_OCReferenceClear_OCREFCLR: The internal OCreference clear input is connected to OCREF_CLR input.
+ * @retval None
+ */
+void TIM_SelectOCREFClear(TIM_TypeDef* TIMx, uint16_t TIM_OCReferenceClear)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(TIM_OCREFERENCECECLEAR_SOURCE(TIM_OCReferenceClear));
+
+ /* Set the TIM_OCReferenceClear source */
+ TIMx->SMCR &= (uint16_t)~((uint16_t)TIM_SMCR_OCCS);
+ TIMx->SMCR |= TIM_OCReferenceClear;
+}
+
+/**
+ * @brief Enables or disables the TIM Capture Compare Channel x.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_Channel: specifies the TIM Channel.
+ * This parameter can be one of the following values:
+ * @arg TIM_Channel_1: TIM Channel 1.
+ * @arg TIM_Channel_2: TIM Channel 2.
+ * @arg TIM_Channel_3: TIM Channel 3.
+ * @arg TIM_Channel_4: TIM Channel 4.
+ * @param TIM_CCx: specifies the TIM Channel CCxE bit new state.
+ * This parameter can be: TIM_CCx_Enable or TIM_CCx_Disable.
+ * @retval None
+ */
+void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx)
+{
+ uint16_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_CCX(TIM_CCx));
+
+ tmp = CCER_CCE_SET << TIM_Channel;
+
+ /* Reset the CCxE Bit */
+ TIMx->CCER &= (uint16_t)~ tmp;
+
+ /* Set or reset the CCxE Bit */
+ TIMx->CCER |= (uint16_t)(TIM_CCx << TIM_Channel);
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group3 Input Capture management functions
+ * @brief Input Capture management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Input Capture management functions #####
+ ===============================================================================
+
+ *** TIM Driver: how to use it in Input Capture Mode ***
+ ===============================================================================
+ [..] To use the Timer in Input Capture mode, the following steps are mandatory:
+ (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE)
+ function.
+ (#) Configure the TIM pins by configuring the corresponding GPIO pins.
+ (#) Configure the Time base unit as described in the first part of this
+ driver, if needed, else the Timer will run with the default configuration:
+ (++) Autoreload value = 0xFFFF.
+ (++) Prescaler value = 0x0000.
+ (++) Counter mode = Up counting.
+ (++) Clock Division = TIM_CKD_DIV1.
+ (#) Fill the TIM_ICInitStruct with the desired parameters including:
+ (++) TIM Channel: TIM_Channel.
+ (++) TIM Input Capture polarity: TIM_ICPolarity.
+ (++) TIM Input Capture selection: TIM_ICSelection.
+ (++) TIM Input Capture Prescaler: TIM_ICPrescaler.
+ (++) TIM Input CApture filter value: TIM_ICFilter.
+ (#) Call TIM_ICInit(TIMx, &TIM_ICInitStruct) to configure the desired
+ channel with the corresponding configuration and to measure only
+ frequency or duty cycle of the input signal,or, Call
+ TIM_PWMIConfig(TIMx, &TIM_ICInitStruct) to configure the desired
+ channels with the corresponding configuration and to measure the
+ frequency and the duty cycle of the input signal.
+ (#) Enable the NVIC or the DMA to read the measured frequency.
+ (#) Enable the corresponding interrupt (or DMA request) to read
+ the Captured value, using the function TIM_ITConfig(TIMx, TIM_IT_CCx)
+ (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx)).
+ (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
+ (#) Use TIM_GetCapturex(TIMx); to read the captured value.
+ [..]
+ (@) All other functions can be used separately to modify, if needed,
+ a specific feature of the Timer.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the TIM peripheral according to the specified
+ * parameters in the TIM_ICInitStruct.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure
+ * that contains the configuration information for the specified TIM
+ * peripheral.
+ * @retval None
+ */
+void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_POLARITY(TIM_ICInitStruct->TIM_ICPolarity));
+ assert_param(IS_TIM_IC_SELECTION(TIM_ICInitStruct->TIM_ICSelection));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICInitStruct->TIM_ICPrescaler));
+ assert_param(IS_TIM_IC_FILTER(TIM_ICInitStruct->TIM_ICFilter));
+
+ if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
+ {
+ /* TI1 Configuration */
+ TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
+ TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+ else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_2)
+ {
+ /* TI2 Configuration */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
+ TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+ else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_3)
+ {
+ /* TI3 Configuration */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ TI3_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
+ TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC3Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+ else
+ {
+ /* TI4 Configuration */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ TI4_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
+ TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC4Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+}
+
+/**
+ * @brief Fills each TIM_ICInitStruct member with its default value.
+ * @param TIM_ICInitStruct : pointer to a TIM_ICInitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct)
+{
+ /* Set the default configuration */
+ TIM_ICInitStruct->TIM_Channel = TIM_Channel_1;
+ TIM_ICInitStruct->TIM_ICPolarity = TIM_ICPolarity_Rising;
+ TIM_ICInitStruct->TIM_ICSelection = TIM_ICSelection_DirectTI;
+ TIM_ICInitStruct->TIM_ICPrescaler = TIM_ICPSC_DIV1;
+ TIM_ICInitStruct->TIM_ICFilter = 0x00;
+}
+
+/**
+ * @brief Configures the TIM peripheral according to the specified
+ * parameters in the TIM_ICInitStruct to measure an external PWM signal.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure
+ * that contains the configuration information for the specified TIM
+ * peripheral.
+ * @retval None
+ */
+void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
+{
+ uint16_t icoppositepolarity = TIM_ICPolarity_Rising;
+ uint16_t icoppositeselection = TIM_ICSelection_DirectTI;
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ /* Select the Opposite Input Polarity */
+ if (TIM_ICInitStruct->TIM_ICPolarity == TIM_ICPolarity_Rising)
+ {
+ icoppositepolarity = TIM_ICPolarity_Falling;
+ }
+ else
+ {
+ icoppositepolarity = TIM_ICPolarity_Rising;
+ }
+ /* Select the Opposite Input */
+ if (TIM_ICInitStruct->TIM_ICSelection == TIM_ICSelection_DirectTI)
+ {
+ icoppositeselection = TIM_ICSelection_IndirectTI;
+ }
+ else
+ {
+ icoppositeselection = TIM_ICSelection_DirectTI;
+ }
+ if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
+ {
+ /* TI1 Configuration */
+ TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ /* TI2 Configuration */
+ TI2_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+ else
+ {
+ /* TI2 Configuration */
+ TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ /* TI1 Configuration */
+ TI1_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+}
+
+/**
+ * @brief Gets the TIMx Input Capture 1 value.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @retval Capture Compare 1 Register value.
+ */
+uint32_t TIM_GetCapture1(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+
+ /* Get the Capture 1 Register value */
+ return TIMx->CCR1;
+}
+
+/**
+ * @brief Gets the TIMx Input Capture 2 value.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @retval Capture Compare 2 Register value.
+ */
+uint32_t TIM_GetCapture2(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+
+ /* Get the Capture 2 Register value */
+ return TIMx->CCR2;
+}
+
+/**
+ * @brief Gets the TIMx Input Capture 3 value.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @retval Capture Compare 3 Register value.
+ */
+uint32_t TIM_GetCapture3(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+
+ /* Get the Capture 3 Register value */
+ return TIMx->CCR3;
+}
+
+/**
+ * @brief Gets the TIMx Input Capture 4 value.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @retval Capture Compare 4 Register value.
+ */
+uint32_t TIM_GetCapture4(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+
+ /* Get the Capture 4 Register value */
+ return TIMx->CCR4;
+}
+
+/**
+ * @brief Sets the TIMx Input Capture 1 prescaler.
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_ICPSC: specifies the Input Capture1 prescaler new value.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler.
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events.
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events.
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events.
+ * @retval None
+ */
+void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
+
+ /* Reset the IC1PSC Bits */
+ TIMx->CCMR1 &= (uint16_t)~((uint16_t)TIM_CCMR1_IC1PSC);
+ /* Set the IC1PSC value */
+ TIMx->CCMR1 |= TIM_ICPSC;
+}
+
+/**
+ * @brief Sets the TIMx Input Capture 2 prescaler.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_ICPSC: specifies the Input Capture2 prescaler new value.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler.
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events.
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events.
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events.
+ * @retval None
+ */
+void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
+
+ /* Reset the IC2PSC Bits */
+ TIMx->CCMR1 &= (uint16_t)~((uint16_t)TIM_CCMR1_IC2PSC);
+ /* Set the IC2PSC value */
+ TIMx->CCMR1 |= (uint16_t)(TIM_ICPSC << 8);
+}
+
+/**
+ * @brief Sets the TIMx Input Capture 3 prescaler.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_ICPSC: specifies the Input Capture3 prescaler new value.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler.
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events.
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events.
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events.
+ * @retval None
+ */
+void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
+
+ /* Reset the IC3PSC Bits */
+ TIMx->CCMR2 &= (uint16_t)~((uint16_t)TIM_CCMR2_IC3PSC);
+ /* Set the IC3PSC value */
+ TIMx->CCMR2 |= TIM_ICPSC;
+}
+
+/**
+ * @brief Sets the TIMx Input Capture 4 prescaler.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_ICPSC: specifies the Input Capture4 prescaler new value.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler.
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events.
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events.
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events.
+ * @retval None
+ */
+void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
+
+ /* Reset the IC4PSC Bits */
+ TIMx->CCMR2 &= (uint16_t)~((uint16_t)TIM_CCMR2_IC4PSC);
+ /* Set the IC4PSC value */
+ TIMx->CCMR2 |= (uint16_t)(TIM_ICPSC << 8);
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group4 Interrupts DMA and flags management functions
+ * @brief Interrupts, DMA and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Interrupts, DMA and flags management functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified TIM interrupts.
+ * @param TIMx: where x can be 2 to 11 to select the TIMx peripheral.
+ * @param TIM_IT: specifies the TIM interrupts sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg TIM_IT_Update: TIM update Interrupt source.
+ * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source.
+ * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source.
+ * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source.
+ * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source.
+ * @arg TIM_IT_Trigger: TIM Trigger Interrupt source.
+ * @note TIM6 and TIM7 can only generate an update interrupt.
+ * @note TIM_IT_CC2, TIM_IT_CC3, TIM_IT_CC4 and TIM_IT_Trigger can not be used with TIM10 and TIM11.
+ * @note TIM_IT_CC3, TIM_IT_CC4 can not be used with TIM9.
+ * @param NewState: new state of the TIM interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_IT(TIM_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the Interrupt sources */
+ TIMx->DIER |= TIM_IT;
+ }
+ else
+ {
+ /* Disable the Interrupt sources */
+ TIMx->DIER &= (uint16_t)~TIM_IT;
+ }
+}
+
+/**
+ * @brief Configures the TIMx event to be generate by software.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param TIM_EventSource: specifies the event source.
+ * This parameter can be one or more of the following values:
+ * @arg TIM_EventSource_Update: Timer update Event source.
+ * @arg TIM_EventSource_CC1: Timer Capture Compare 1 Event source.
+ * @arg TIM_EventSource_CC2: Timer Capture Compare 2 Event source.
+ * @arg TIM_EventSource_CC3: Timer Capture Compare 3 Event source.
+ * @arg TIM_EventSource_CC4: Timer Capture Compare 4 Event source.
+ * @arg TIM_EventSource_Trigger: Timer Trigger Event source.
+ * @note TIM6 and TIM7 can only generate an update event.
+ * @note TIM9 can only generate an update event, Capture Compare 1 event,
+ * Capture Compare 2 event and TIM_EventSource_Trigger.
+ * @note TIM10 and TIM11 can only generate an update event and Capture Compare 1 event.
+ * @retval None
+ */
+void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_EVENT_SOURCE(TIM_EventSource));
+ /* Set the event sources */
+ TIMx->EGR = TIM_EventSource;
+}
+
+/**
+ * @brief Checks whether the specified TIM flag is set or not.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param TIM_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg TIM_FLAG_Update: TIM update Flag.
+ * @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag.
+ * @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag.
+ * @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag.
+ * @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag.
+ * @arg TIM_FLAG_Trigger: TIM Trigger Flag.
+ * @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 overcapture Flag.
+ * @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 overcapture Flag.
+ * @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 overcapture Flag.
+ * @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 overcapture Flag.
+ *
+ * @note TIM6 and TIM7 can have only one update flag.
+ * @note TIM9 can have only update flag, TIM_FLAG_CC1, TIM_FLAG_CC2 and TIM_FLAG_Trigger,
+ * TIM_FLAG_CC1OF or TIM_FLAG_CC2OF flags.
+ * @note TIM10 and TIM11 can have only update flag, TIM_FLAG_CC1 or TIM_FLAG_CC1OF flags
+ * @retval The new state of TIM_FLAG (SET or RESET).
+ */
+FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
+{
+ ITStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_GET_FLAG(TIM_FLAG));
+
+ if ((TIMx->SR & TIM_FLAG) != (uint16_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the TIMx's pending flags.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param TIM_FLAG: specifies the flag bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg TIM_FLAG_Update: TIM update Flag.
+ * @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag.
+ * @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag.
+ * @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag.
+ * @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag.
+ * @arg TIM_FLAG_Trigger: TIM Trigger Flag.
+ * @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 overcapture Flag.
+ * @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 overcapture Flag.
+ * @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 overcapture Flag.
+ * @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 overcapture Flag.
+ * @note TIM6 and TIM7 can have only one update flag.
+ * @note TIM9 can have only update flag, TIM_FLAG_CC1, TIM_FLAG_CC2 and TIM_FLAG_Trigger flags
+ * TIM_FLAG_CC1OF or TIM_FLAG_CC2OF flags.
+ * @note TIM10 and TIM11 can have only update flag, TIM_FLAG_CC1
+ * or TIM_FLAG_CC1OF flags
+ * @retval None
+ */
+void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_CLEAR_FLAG(TIM_FLAG));
+
+ /* Clear the flags */
+ TIMx->SR = (uint16_t)~TIM_FLAG;
+}
+
+/**
+ * @brief Checks whether the TIM interrupt has occurred or not.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param TIM_IT: specifies the TIM interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg TIM_IT_Update: TIM update Interrupt source.
+ * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source.
+ * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source.
+ * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source.
+ * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source.
+ * @arg TIM_IT_Trigger: TIM Trigger Interrupt source.
+ *
+ * @note TIM6 and TIM7 can generate only an update interrupt.
+ * @note TIM9 can have only update interrupt, TIM_FLAG_CC1 or TIM_FLAG_CC2,
+ * interrupt and TIM_IT_Trigger interrupt.
+ * @note TIM10 and TIM11 can have only update interrupt or TIM_FLAG_CC1
+ * interrupt
+ * @retval The new state of the TIM_IT(SET or RESET).
+ */
+ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint16_t itstatus = 0x0, itenable = 0x0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_GET_IT(TIM_IT));
+
+ itstatus = TIMx->SR & TIM_IT;
+
+ itenable = TIMx->DIER & TIM_IT;
+ if ((itstatus != (uint16_t)RESET) && (itenable != (uint16_t)RESET))
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the TIMx's interrupt pending bits.
+ * @param TIMx: where x can be 2 to 11 to select the TIM peripheral.
+ * @param TIM_IT: specifies the pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg TIM_IT_Update: TIM update Interrupt source.
+ * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source.
+ * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source.
+ * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source.
+ * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source.
+ * @arg TIM_IT_Trigger: TIM Trigger Interrupt source.
+ * @note
+ * @note TIM6 and TIM7 can generate only an update interrupt.
+ * @note TIM9 can have only update interrupt, TIM_IT_CC1 or TIM_IT_CC2,
+ * and TIM_IT_Trigger interrupt.
+ * @note TIM10 and TIM11 can have only update interrupt or TIM_IT_CC1
+ * interrupt
+ * @retval None
+ */
+void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_IT(TIM_IT));
+
+ /* Clear the IT pending Bit */
+ TIMx->SR = (uint16_t)~TIM_IT;
+}
+
+/**
+ * @brief Configures the TIMx's DMA interface.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_DMABase: DMA Base address.
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABase_CR1: TIM CR1 register as TIM DMA Base.
+ * @arg TIM_DMABase_CR2: TIM CR2 register as TIM DMA Base.
+ * @arg TIM_DMABase_SMCR: TIM SMCR register as TIM DMA Base.
+ * @arg TIM_DMABase_DIER: TIM DIER register as TIM DMA Base.
+ * @arg TIM_DMABase_SR: TIM SR register as TIM DMA Base.
+ * @arg TIM_DMABase_EGR: TIM EGR register as TIM DMA Base.
+ * @arg TIM_DMABase_CCMR1: TIM CCMR1 register as TIM DMA Base.
+ * @arg TIM_DMABase_CCMR2: TIM CCMR2 register as TIM DMA Base.
+ * @arg TIM_DMABase_CCER: TIM CCER register as TIM DMA Base.
+ * @arg TIM_DMABase_CNT: TIM CNT register as TIM DMA Base.
+ * @arg TIM_DMABase_PSC: TIM PSC register as TIM DMA Base.
+ * @arg TIM_DMABase_ARR: TIM ARR register as TIM DMA Base.
+ * @arg TIM_DMABase_CCR1: TIM CCR1 register as TIM DMA Base.
+ * @arg TIM_DMABase_CCR2: TIM CCR2 register as TIM DMA Base.
+ * @arg TIM_DMABase_CCR3: TIM CCR3 register as TIM DMA Base.
+ * @arg TIM_DMABase_CCR4: TIM CCR4 register as TIM DMA Base.
+ * @arg TIM_DMABase_DCR: TIM DCR register as TIM DMA Base.
+ * @arg TIM_DMABase_OR: TIM OR register as TIM DMA Base.
+ * @param TIM_DMABurstLength: DMA Burst length.
+ * This parameter can be one value between:
+ * TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers.
+ * @retval None
+ */
+void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_DMA_BASE(TIM_DMABase));
+ assert_param(IS_TIM_DMA_LENGTH(TIM_DMABurstLength));
+ /* Set the DMA Base and the DMA Burst Length */
+ TIMx->DCR = TIM_DMABase | TIM_DMABurstLength;
+}
+
+/**
+ * @brief Enables or disables the TIMx's DMA Requests.
+ * @param TIMx: where x can be 2, 3, 4, 5, 6 or 7 to select the TIM peripheral.
+ * @param TIM_DMASource: specifies the DMA Request sources.
+ * This parameter can be any combination of the following values:
+ * @arg TIM_DMA_Update: TIM update Interrupt source.
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source.
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source.
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source.
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source.
+ * @arg TIM_DMA_Trigger: TIM Trigger DMA source.
+ * @param NewState: new state of the DMA Request sources.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST4_PERIPH(TIMx));
+ assert_param(IS_TIM_DMA_SOURCE(TIM_DMASource));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the DMA sources */
+ TIMx->DIER |= TIM_DMASource;
+ }
+ else
+ {
+ /* Disable the DMA sources */
+ TIMx->DIER &= (uint16_t)~TIM_DMASource;
+ }
+}
+
+/**
+ * @brief Selects the TIMx peripheral Capture Compare DMA source.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param NewState: new state of the Capture Compare DMA source
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the CCDS Bit */
+ TIMx->CR2 |= TIM_CR2_CCDS;
+ }
+ else
+ {
+ /* Reset the CCDS Bit */
+ TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_CCDS);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group5 Clocks management functions
+ * @brief Clocks management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Clocks management functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the TIMx internal Clock
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @retval None
+ */
+void TIM_InternalClockConfig(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ /* Disable slave mode to clock the prescaler directly with the internal clock */
+ TIMx->SMCR &= (uint16_t)(~((uint16_t)TIM_SMCR_SMS));
+}
+
+/**
+ * @brief Configures the TIMx Internal Trigger as External Clock
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_ITRSource: Trigger source.
+ * This parameter can be one of the following values:
+ * @param TIM_TS_ITR0: Internal Trigger 0.
+ * @param TIM_TS_ITR1: Internal Trigger 1.
+ * @param TIM_TS_ITR2: Internal Trigger 2.
+ * @param TIM_TS_ITR3: Internal Trigger 3.
+ * @retval None
+ */
+void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_INTERNAL_TRIGGER_SELECTION(TIM_InputTriggerSource));
+ /* Select the Internal Trigger */
+ TIM_SelectInputTrigger(TIMx, TIM_InputTriggerSource);
+ /* Select the External clock mode1 */
+ TIMx->SMCR |= TIM_SlaveMode_External1;
+}
+
+/**
+ * @brief Configures the TIMx Trigger as External Clock
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_TIxExternalCLKSource: Trigger source.
+ * This parameter can be one of the following values:
+ * @arg TIM_TIxExternalCLK1Source_TI1ED: TI1 Edge Detector.
+ * @arg TIM_TIxExternalCLK1Source_TI1: Filtered Timer Input 1.
+ * @arg TIM_TIxExternalCLK1Source_TI2: Filtered Timer Input 2.
+ * @param TIM_ICPolarity: specifies the TIx Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising:
+ * @arg TIM_ICPolarity_Falling:
+ * @param ICFilter : specifies the filter value.
+ * This parameter must be a value between 0x0 and 0xF.
+ * @retval None
+ */
+void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
+ uint16_t TIM_ICPolarity, uint16_t ICFilter)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_POLARITY(TIM_ICPolarity));
+ assert_param(IS_TIM_IC_FILTER(ICFilter));
+
+ /* Configure the Timer Input Clock Source */
+ if (TIM_TIxExternalCLKSource == TIM_TIxExternalCLK1Source_TI2)
+ {
+ TI2_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
+ }
+ else
+ {
+ TI1_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
+ }
+ /* Select the Trigger source */
+ TIM_SelectInputTrigger(TIMx, TIM_TIxExternalCLKSource);
+ /* Select the External clock mode1 */
+ TIMx->SMCR |= TIM_SlaveMode_External1;
+}
+
+/**
+ * @brief Configures the External clock Mode1
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
+ * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
+ * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
+ * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
+ * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
+ * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
+ * @param ExtTRGFilter: External Trigger Filter.
+ * This parameter must be a value between 0x00 and 0x0F
+ * @retval None
+ */
+void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
+ uint16_t ExtTRGFilter)
+{
+ uint16_t tmpsmcr = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
+ assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
+ assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
+
+ /* Configure the ETR Clock source */
+ TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = TIMx->SMCR;
+ /* Reset the SMS Bits */
+ tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_SMS));
+ /* Select the External clock mode1 */
+ tmpsmcr |= TIM_SlaveMode_External1;
+ /* Select the Trigger selection : ETRF */
+ tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_TS));
+ tmpsmcr |= TIM_TS_ETRF;
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+
+/**
+ * @brief Configures the External clock Mode2
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
+ * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
+ * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
+ * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
+ * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
+ * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
+ * @param ExtTRGFilter: External Trigger Filter.
+ * This parameter must be a value between 0x00 and 0x0F
+ * @retval None
+ */
+void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
+ uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
+ assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
+ assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
+
+ /* Configure the ETR Clock source */
+ TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
+ /* Enable the External clock mode2 */
+ TIMx->SMCR |= TIM_SMCR_ECE;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group6 Synchronization management functions
+ * @brief Synchronization management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Synchronization management functions #####
+ ===============================================================================
+ *** TIM Driver: how to use it in synchronization Mode ***
+ ===============================================================================
+ [..] Case of two/several Timers
+ (#) Configure the Master Timers using the following functions:
+ (++) void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx,
+ uint16_t TIM_TRGOSource).
+ (++) void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx,
+ uint16_t TIM_MasterSlaveMode);
+ (#) Configure the Slave Timers using the following functions:
+ (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx,
+ uint16_t TIM_InputTriggerSource);
+ (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode);
+ [..] Case of Timers and external trigger(ETR pin)
+ (#) Configure the Etrenal trigger using this function:
+ (++) void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
+ uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter);
+ (#) Configure the Slave Timers using the following functions:
+ (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx,
+ uint16_t TIM_InputTriggerSource);
+ (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode);
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Selects the Input Trigger source
+ * @param TIMx: where x can be 2, 3, 4, 5, or 9 to select the TIM peripheral.
+ * @param TIM_InputTriggerSource: The Input Trigger source.
+ * This parameter can be one of the following values:
+ * @arg TIM_TS_ITR0: Internal Trigger 0.
+ * @arg TIM_TS_ITR1: Internal Trigger 1.
+ * @arg TIM_TS_ITR2: Internal Trigger 2.
+ * @arg TIM_TS_ITR3: Internal Trigger 3.
+ * @arg TIM_TS_TI1F_ED: TI1 Edge Detector.
+ * @arg TIM_TS_TI1FP1: Filtered Timer Input 1.
+ * @arg TIM_TS_TI2FP2: Filtered Timer Input 2.
+ * @arg TIM_TS_ETRF: External Trigger input.
+ * @retval None
+ */
+void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
+{
+ uint16_t tmpsmcr = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_TRIGGER_SELECTION(TIM_InputTriggerSource));
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = TIMx->SMCR;
+ /* Reset the TS Bits */
+ tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_TS));
+ /* Set the Input Trigger source */
+ tmpsmcr |= TIM_InputTriggerSource;
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+
+/**
+ * @brief Selects the TIMx Trigger Output Mode.
+ * @param TIMx: where x can be 2, 3, 4, 5, 6, 7 or 9 to select the TIM peripheral.
+ * @param TIM_TRGOSource: specifies the Trigger Output source.
+ * This paramter can be one of the following values:
+ *
+ * @param For all TIMx
+ * @arg TIM_TRGOSource_Reset: The UG bit in the TIM_EGR register is used as the trigger output (TRGO).
+ * @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output (TRGO).
+ * @arg TIM_TRGOSource_Update: The update event is selected as the trigger output (TRGO).
+ *
+ * @param For all TIMx except TIM6 and TIM7
+ * @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag
+ * is to be set, as soon as a capture or compare match occurs (TRGO).
+ * @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output (TRGO).
+
+ * @param For all TIMx except TIM6, TIM7, TIM10 and TIM11
+ * @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output (TRGO).
+
+ * @param For TIM2, TIM3 and TIM4
+ * @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output (TRGO).
+ * @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output (TRGO).
+ *
+ * @retval None
+ */
+void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST5_PERIPH(TIMx));
+ assert_param(IS_TIM_TRGO_SOURCE(TIM_TRGOSource));
+
+ /* Reset the MMS Bits */
+ TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_MMS);
+ /* Select the TRGO source */
+ TIMx->CR2 |= TIM_TRGOSource;
+}
+
+/**
+ * @brief Selects the TIMx Slave Mode.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_SlaveMode: specifies the Timer Slave Mode.
+ * This paramter can be one of the following values:
+ * @arg TIM_SlaveMode_Reset: Rising edge of the selected trigger signal (TRGI) re-initializes
+ * the counter and triggers an update of the registers.
+ * @arg TIM_SlaveMode_Gated: The counter clock is enabled when the trigger signal (TRGI) is high.
+ * @arg TIM_SlaveMode_Trigger: The counter starts at a rising edge of the trigger TRGI.
+ * @arg TIM_SlaveMode_External1: Rising edges of the selected trigger (TRGI) clock the counter.
+ * @retval None
+ */
+void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_SLAVE_MODE(TIM_SlaveMode));
+
+ /* Reset the SMS Bits */
+ TIMx->SMCR &= (uint16_t)~((uint16_t)TIM_SMCR_SMS);
+ /* Select the Slave Mode */
+ TIMx->SMCR |= TIM_SlaveMode;
+}
+
+/**
+ * @brief Sets or Resets the TIMx Master/Slave Mode.
+ * @param TIMx: where x can be 2, 3, 4, 5 or 9 to select the TIM peripheral.
+ * @param TIM_MasterSlaveMode: specifies the Timer Master Slave Mode.
+ * This paramter can be one of the following values:
+ * @arg TIM_MasterSlaveMode_Enable: synchronization between the current timer
+ * and its slaves (through TRGO).
+ * @arg TIM_MasterSlaveMode_Disable: No action
+ * @retval None
+ */
+void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_MSM_STATE(TIM_MasterSlaveMode));
+
+ /* Reset the MSM Bit */
+ TIMx->SMCR &= (uint16_t)~((uint16_t)TIM_SMCR_MSM);
+
+ /* Set or Reset the MSM Bit */
+ TIMx->SMCR |= TIM_MasterSlaveMode;
+}
+
+/**
+ * @brief Configures the TIMx External Trigger (ETR).
+ * @param TIMx: where x can be 2, 3, 4, 5, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
+ * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
+ * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
+ * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
+ * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
+ * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
+ * @param ExtTRGFilter: External Trigger Filter.
+ * This parameter must be a value between 0x00 and 0x0F
+ * @retval None
+ */
+void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
+ uint16_t ExtTRGFilter)
+{
+ uint16_t tmpsmcr = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
+ assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
+ assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
+
+ tmpsmcr = TIMx->SMCR;
+ /* Reset the ETR Bits */
+ tmpsmcr &= SMCR_ETR_MASK;
+ /* Set the Prescaler, the Filter value and the Polarity */
+ tmpsmcr |= (uint16_t)(TIM_ExtTRGPrescaler | (uint16_t)(TIM_ExtTRGPolarity | (uint16_t)(ExtTRGFilter << (uint16_t)8)));
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group7 Specific interface management functions
+ * @brief Specific interface management functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Specific interface management functions #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the TIMx Encoder Interface.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param TIM_EncoderMode: specifies the TIMx Encoder Mode.
+ * This parameter can be one of the following values:
+ * @arg TIM_EncoderMode_TI1: Counter counts on TI1FP1 edge depending on TI2FP2 level.
+ * @arg TIM_EncoderMode_TI2: Counter counts on TI2FP2 edge depending on TI1FP1 level.
+ * @arg TIM_EncoderMode_TI12: Counter counts on both TI1FP1 and TI2FP2 edges depending
+ * on the level of the other input.
+ * @param TIM_IC1Polarity: specifies the IC1 Polarity.
+ * This parmeter can be one of the following values:
+ * @arg TIM_ICPolarity_Falling: IC Falling edge.
+ * @arg TIM_ICPolarity_Rising: IC Rising edge.
+ * @param TIM_IC2Polarity: specifies the IC2 Polarity
+ * This parmeter can be one of the following values:
+ * @arg TIM_ICPolarity_Falling: IC Falling edge.
+ * @arg TIM_ICPolarity_Rising: IC Rising edge.
+ * @retval None
+ */
+void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,
+ uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity)
+{
+ uint16_t tmpsmcr = 0;
+ uint16_t tmpccmr1 = 0;
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_ENCODER_MODE(TIM_EncoderMode));
+ assert_param(IS_TIM_IC_POLARITY(TIM_IC1Polarity));
+ assert_param(IS_TIM_IC_POLARITY(TIM_IC2Polarity));
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = TIMx->SMCR;
+ /* Get the TIMx CCMR1 register value */
+ tmpccmr1 = TIMx->CCMR1;
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Set the encoder Mode */
+ tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_SMS));
+ tmpsmcr |= TIM_EncoderMode;
+ /* Select the Capture Compare 1 and the Capture Compare 2 as input */
+ tmpccmr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR1_CC1S)) & (uint16_t)(~((uint16_t)TIM_CCMR1_CC2S)));
+ tmpccmr1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_0;
+ /* Set the TI1 and the TI2 Polarities */
+ tmpccer &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCER_CC1P)) & ((uint16_t)~((uint16_t)TIM_CCER_CC2P)));
+ tmpccer |= (uint16_t)(TIM_IC1Polarity | (uint16_t)(TIM_IC2Polarity << (uint16_t)4));
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmr1;
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Enables or disables the TIMx's Hall sensor interface.
+ * @param TIMx: where x can be 2, 3, 4 or 5 to select the TIM peripheral.
+ * @param NewState: new state of the TIMx Hall sensor interface.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the TI1S Bit */
+ TIMx->CR2 |= TIM_CR2_TI1S;
+ }
+ else
+ {
+ /* Reset the TI1S Bit */
+ TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_TI1S);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group8 Specific remapping management function
+ * @brief Specific remapping management function
+ *
+@verbatim
+ ===============================================================================
+ ##### Specific remapping management function #####
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the TIM2, TIM3, TIM9, TIM10 and TIM11 Remapping input
+ * Capabilities.
+ * @param TIMx: where x can be 2, 3, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_Remap: specifies the TIM input remapping source.
+ * This parameter can be one of the following values:
+ * @arg TIM2_TIM10_OC: TIM2 ITR1 is connected to TIM10 output compare(default).
+ * @arg TIM2_TIM5_TRGO: TIM2 ITR1 is connected to TIM5 Trigger output.
+ * @arg TIM3_TIM11_OC: TIM3 ITR2 is connected to TIM11 output compare(default).
+ * @arg TIM3_TIM5_TRGO: TIM3 ITR2 is connected to TIM5 Trigger output.
+ * @arg TIM9_GPIO: TIM9 Channel 1 is connected to dedicated Timer pin(default).
+ * @arg TIM9_LSE: TIM9 Channel 1 is connected to LSE clock.
+ * @arg TIM9_TIM3_TRGO: TIM9 ITR1 is connected to TIM3 TRGO.
+ * @arg TIM9_TS_IO: TIM9 ITR1 is connected to Touch Sense IO.
+ * @arg TIM10_GPIO: TIM10 Channel 1 is connected to dedicated Timer pin(default).
+ * @arg TIM10_LSI: TIM10 Channel 1 is connected to LSI clock.
+ * @arg TIM10_LSE: TIM10 Channel 1 is connected to LSE clock.
+ * @arg TIM10_RTC: TIM10 Channel 1 is connected to RTC Output event.
+ * @arg TIM10_RI: TIM10 Channel 1 is connected to Routing Interface (RI).
+ * @arg TIM10_ETR_LSE: TIM10 ETR input is connected to LSE Clock.
+ * @arg TIM10_ETR_TIM9_TRGO: TIM10 ETR input is connected to TIM9 Trigger Output.
+ * @arg TIM11_GPIO: TIM11 Channel 1 is connected to dedicated Timer pin(default).
+ * @arg TIM11_MSI: TIM11 Channel 1 is connected to MSI clock.
+ * @arg TIM11_HSE_RTC: TIM11 Channel 1 is connected to HSE_RTC clock.
+ * @arg TIM11_RI: TIM11 Channel 1 is connected to Routing Interface (RI).
+ * @arg TIM11_ETR_LSE: TIM11 ETR input is connected to LSE Clock.
+ * @arg TIM11_ETR_TIM9_TRGO: TIM11 ETR input is connected to TIM9 Trigger Output.
+ * @retval None
+ */
+void TIM_RemapConfig(TIM_TypeDef* TIMx, uint32_t TIM_Remap)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST6_PERIPH(TIMx));
+ assert_param(IS_TIM_REMAP(TIM_Remap));
+
+ /* Set the Timer remapping configuration */
+ TIMx->OR &= (uint16_t)(TIM_Remap >> 16);
+ TIMx->OR |= (uint16_t)TIM_Remap;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @brief Configure the TI1 as Input.
+ * @param TIMx: where x can be 2, 3, 4, 9, 10 or 11 to select the TIM peripheral.
+ * @param TIM_ICPolarity : The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising: IC Rising edge.
+ * @arg TIM_ICPolarity_Falling: IC Falling edge.
+ * @param TIM_ICSelection: specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1.
+ * @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2.
+ * @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC.
+ * @param TIM_ICFilter: Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter)
+{
+ uint16_t tmpccmr1 = 0, tmpccer = 0;
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC1E);
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+ /* Select the Input and set the filter */
+ tmpccmr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR1_CC1S)) & ((uint16_t)~((uint16_t)TIM_CCMR1_IC1F)));
+ tmpccmr1 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
+ /* Select the Polarity and set the CC1E Bit */
+ tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC1P | TIM_CCER_CC1NP));
+ tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC1E);
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI2 as Input.
+ * @param TIMx: where x can be 2, 3, 4 or 9 to select the TIM peripheral.
+ * @param TIM_ICPolarity : The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising: IC Rising edge.
+ * @arg TIM_ICPolarity_Falling: IC Falling edge.
+ * @param TIM_ICSelection: specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2.
+ * @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1.
+ * @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC.
+ * @param TIM_ICFilter: Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter)
+{
+ uint16_t tmpccmr1 = 0, tmpccer = 0, tmp = 0;
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC2E);
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+ tmp = (uint16_t)(TIM_ICPolarity << 4);
+ /* Select the Input and set the filter */
+ tmpccmr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR1_CC2S)) & ((uint16_t)~((uint16_t)TIM_CCMR1_IC2F)));
+ tmpccmr1 |= (uint16_t)(TIM_ICFilter << 12);
+ tmpccmr1 |= (uint16_t)(TIM_ICSelection << 8);
+ /* Select the Polarity and set the CC2E Bit */
+ tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC2P | TIM_CCER_CC2NP));
+ tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC2E);
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1 ;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI3 as Input.
+ * @param TIMx: where x can be 2, 3 or 4 to select the TIM peripheral.
+ * @param TIM_ICPolarity : The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising: IC Rising edge.
+ * @arg TIM_ICPolarity_Falling: IC Falling edge.
+ * @param TIM_ICSelection: specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3.
+ * @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4.
+ * @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC.
+ * @param TIM_ICFilter: Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter)
+{
+ uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
+
+ /* Disable the Channel 3: Reset the CC3E Bit */
+ TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC3E);
+ tmpccmr2 = TIMx->CCMR2;
+ tmpccer = TIMx->CCER;
+ tmp = (uint16_t)(TIM_ICPolarity << 8);
+ /* Select the Input and set the filter */
+ tmpccmr2 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR2_CC3S)) & ((uint16_t)~((uint16_t)TIM_CCMR2_IC3F)));
+ tmpccmr2 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
+ /* Select the Polarity and set the CC3E Bit */
+ tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC3P | TIM_CCER_CC3NP));
+ tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC3E);
+ /* Write to TIMx CCMR2 and CCER registers */
+ TIMx->CCMR2 = tmpccmr2;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI4 as Input.
+ * @param TIMx: where x can be 2, 3 or 4 to select the TIM peripheral.
+ * @param TIM_ICPolarity : The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising: IC Rising edge.
+ * @arg TIM_ICPolarity_Falling: IC Falling edge.
+ * @param TIM_ICSelection: specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4.
+ * @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3.
+ * @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC.
+ * @param TIM_ICFilter: Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter)
+{
+ uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
+
+ /* Disable the Channel 4: Reset the CC4E Bit */
+ TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC4E);
+ tmpccmr2 = TIMx->CCMR2;
+ tmpccer = TIMx->CCER;
+ tmp = (uint16_t)(TIM_ICPolarity << 12);
+ /* Select the Input and set the filter */
+ tmpccmr2 &= (uint16_t)((uint16_t)(~(uint16_t)TIM_CCMR2_CC4S) & ((uint16_t)~((uint16_t)TIM_CCMR2_IC4F)));
+ tmpccmr2 |= (uint16_t)(TIM_ICSelection << 8);
+ tmpccmr2 |= (uint16_t)(TIM_ICFilter << 12);
+
+ /* Select the Polarity and set the CC4E Bit */
+ tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC4P | TIM_CCER_CC4NP));
+ tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC4E);
+ /* Write to TIMx CCMR2 and CCER registers */
+ TIMx->CCMR2 = tmpccmr2;
+ TIMx->CCER = tmpccer ;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/