aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/ADC/ExtLinesTrigger/readme.txt
diff options
context:
space:
mode:
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/ADC/ExtLinesTrigger/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/ADC/ExtLinesTrigger/readme.txt128
1 files changed, 128 insertions, 0 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/ADC/ExtLinesTrigger/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/ADC/ExtLinesTrigger/readme.txt
new file mode 100644
index 0000000..2a57195
--- /dev/null
+++ b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/ADC/ExtLinesTrigger/readme.txt
@@ -0,0 +1,128 @@
+/**
+ @page ADC_ExtLinesTrigger ADC external lines trigger example
+
+ @verbatim
+ ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
+ * @file ADC/ExtLinesTrigger/readme.txt
+ * @author MCD Application Team
+ * @version V3.5.0
+ * @date 08-April-2011
+ * @brief Description of the ADC external lines trigger example.
+ ******************************************************************************
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ ******************************************************************************
+ @endverbatim
+
+@par Example Description
+
+This example describes how to trigger ADC regular and injected groups channels
+conversion using two external line events. Discontinuous mode is enabled for regular
+group channel conversion and configured to convert one regular channel on each
+external trigger.
+
+ADC1 is configured to start regular group channel conversion on EXTI11 event.
+On detection of the first rising edge on PE.11 pin (PF.11 pin for High-Density Value line),
+the conversion of the first regular channel (ADC channel4) is done and its converted
+value is transferred by DMA to ADC_RegularConvertedValueTab table. On the following edge
+detection, the second regular channel (ADC channel14) is automatically converted and
+its converted value is stored by DMA in the same table. The number of transmitted data
+by DMA, in this example is limited to 64 data.
+
+The procedure is repeated for both regular channels on each EXTI11 event.
+ADC1 is configured to start injected group channel conversion on EXTI15 event.
+On detection of the first rising edge on PE.15 pin all selected injected channels, which
+are two in this example (ADC channel11 and channel12), are converted and an interrupt
+is generated on JEOC flag rising at the end of all injected channels conversion.
+Both injected channels converted results are stored in ADC_InjectedConvertedValueTab
+table inside the interrupt routine.
+The procedure is repeated for injected channels on each EXTI15 event.
+The ADC1 clock is set to 12 MHz on Value line devices and to 14MHz on other
+devices.
+
+@par Directory contents
+
+ - ADC/ExtLinesTrigger/stm32f10x_conf.h Library Configuration file
+ - ADC/ExtLinesTrigger/stm32f10x_it.c Interrupt handlers
+ - ADC/ExtLinesTrigger/stm32f10x_it.h Interrupt handlers header file
+ - ADC/ExtLinesTrigger/system_stm32f10x.c STM32F10x system source file
+ - ADC/ExtLinesTrigger/main.c Main program
+
+@par Hardware and Software environment
+
+ - This example runs on STM32F10x Connectivity line, High-Density, Medium-Density,
+ XL-Density, Medium-Density Value line, Low-Density and Low-Density Value line Devices.
+
+ - This example has been tested with STMicroelectronics STM32100B-EVAL (Medium-Density
+ Value line), STM3210C-EVAL (Connectivity line), STM3210E-EVAL (High-Density and
+ XL-Density) and STM3210B-EVAL (Medium-Density) evaluation boards and can be easily
+ tailored to any other supported device and development board.
+
+ - STM32100B-EVAL Set-up
+ - Connect a known voltage, between 0-3.3V, to ADC Channel14 mapped on pin
+ PC.04 (potentiometer RV2), ADC Channel4 mapped on pin PA.04, ADC Channel11
+ mapped on pin PC.01 and ADC Channel12 mapped on pin PC.02.
+ - Connect a push-button to pin PE.11 (EXTI Line11) and another push-button
+ to pin PE.15 (EXTI Line15).
+ @note Make shure that jumper JP3 is open.
+
+ - STM32100E-EVAL Set-up
+ - Connect a known voltage, between 0-3.3V, to ADC Channel14 mapped on pin
+ PC.04 (potentiometer RV1), ADC Channel4 mapped on pin PA.04, ADC Channel11
+ mapped on pin PC.01 and ADC Channel12 mapped on pin PC.02.
+ - Connect a push-button to pin PF.11 (EXTI Line11) and another push-button
+ to pin PE.15 (EXTI Line15).
+
+ - STM3210C-EVAL Set-up
+ - Connect a known voltage, between 0-3.3V, to ADC Channel14 mapped on pin
+ PC.04 (potentiometer RV1), ADC Channel4 mapped on pin PA.04, ADC Channel11
+ mapped on pin PC.01 and ADC Channel12 mapped on pin PC.02.
+ - Connect a push-button to pin PE.11 (EXTI Line11) and another push-button
+ to pin PE.15 (EXTI Line15).
+
+ - STM3210E-EVAL Set-up
+ - Connect a known voltage, between 0-3.3V, to ADC Channel14 mapped on pin
+ PC.04 (potentiometer RV1), ADC Channel4 mapped on pin PA.04, ADC Channel11
+ mapped on pin PC.01 and ADC Channel12 mapped on pin PC.02.
+ - Connect a push-button to pin PE.11 (EXTI Line11) and another push-button
+ to pin PE.15 (EXTI Line15).
+
+ - STM3210B-EVAL Set-up
+ - Connect a known voltage, between 0-3.3V, to ADC Channel14 mapped on pin
+ PC.04 (potentiometer RV1), ADC Channel4 mapped on pin PA.04, ADC Channel11
+ mapped on pin PC.01 and ADC Channel12 mapped on pin PC.02.
+ - Connect a push-button to pin PE.11 (EXTI Line11) and another push-button
+ to pin PE.15 (EXTI Line15).
+
+@par How to use it ?
+
+In order to make the program work, you must do the following :
+ - Copy all source files from this example folder to the template folder under
+ Project\STM32F10x_StdPeriph_Template
+ - Open your preferred toolchain
+ - Rebuild all files and load your image into target memory
+ - Run the example
+
+@note
+ - Low-density Value line devices are STM32F100xx microcontrollers where the
+ Flash memory density ranges between 16 and 32 Kbytes.
+ - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
+ - Medium-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 64 and 128 Kbytes.
+ - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
+ - High-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 512 and 1024 Kbytes.
+ - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
+
+ * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
+ */