aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/DMA/SPI_RAM/readme.txt
diff options
context:
space:
mode:
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/DMA/SPI_RAM/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/DMA/SPI_RAM/readme.txt121
1 files changed, 121 insertions, 0 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/DMA/SPI_RAM/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/DMA/SPI_RAM/readme.txt
new file mode 100644
index 0000000..7bcbeb8
--- /dev/null
+++ b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/DMA/SPI_RAM/readme.txt
@@ -0,0 +1,121 @@
+/**
+ @page DMA_SPI_RAM DMA SPI to RAM example
+
+ @verbatim
+ ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
+ * @file DMA/SPI_RAM/readme.txt
+ * @author MCD Application Team
+ * @version V3.5.0
+ * @date 08-April-2011
+ * @brief Description of the DMA SPI to RAM example.
+ ******************************************************************************
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ ******************************************************************************
+ @endverbatim
+
+@par Example Description
+
+This example provides a description of how to use four DMA channels to transfer
+a data buffer from memory to SPI_SLAVE through SPI_MASTER and a second data buffer
+from memory to SPI_MASTER through SPI_SLAVE in full-duplex mode.
+SPI_MASTER and SPI_SLAVE can be SPI1 and SPI2 or SPI3 and SPI2, depending on the
+STMicroelectronics EVAL board you are using.
+
+For each SPI the NSS pin is configured by software (thus NSS pin is free for GPIO use)
+and DMA Tx/Rx requests are enabled.
+
+In this example both transmission and reception are managed through DMA and the
+received data are stored into buffers declared in the SRAM. The DMA channels
+involved in this transfer depend on the used SPIs (for more details please refer
+to platform_config.h file).
+
+A polling on all Transfer complete flags are done for all used DMA channels to
+check the end of all DMA channels transfers. The last received data on SPI_MASTER
+and SPI_SLAVE are the CRC values sent by each SPI to the other.
+The transmitted and received buffers are compared to check that all data have
+been correctly transferred.
+
+
+@par Directory contents
+
+ - DMA/SPI_RAM/platform_config.h Evaluation board specific configuration file
+ - DMA/SPI_RAM/stm32f10x_conf.h Library Configuration file
+ - DMA/SPI_RAM/stm32f10x_it.c Interrupt handlers
+ - DMA/SPI_RAM/stm32f10x_it.h Interrupt handlers header file
+ - DMA/SPI_RAM/main.c Main program
+ - DMA/SPI_RAM/system_stm32f10x.c STM32F10x system source file
+
+@par Hardware and Software environment
+
+ - This example runs on STM32F10x Connectivity line, High-Density, Medium-Density,
+ XL-Density, High-Density Value line, Medium-Density Value line, Low-Density
+ and Low-Density Value line Devices.
+
+ - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density Value line)
+ STM32100B-EVAL (Medium-Density Value line), STM32100E-EVAL (High-Density Value line), STM3210C-EVAL
+ (Connectivity line), STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL
+ (Medium-Density) evaluation boards and can be easily tailored to any other
+ supported device and development board.
+
+ - STM32100E-EVAL Set-up
+ - Connect SPI1 SCK pin (PA.05) to SPI2 SCK pin (PB.13)
+ - Connect SPI1 MISO pin (PA.06) to SPI2 MISO pin (PB.14)
+ - Connect SPI1 MOSI pin (PA.07) to SPI2 MOSI pin (PB.15)
+
+ - STM32100B-EVAL Set-up
+ - Connect SPI1 SCK pin (PA.05) to SPI2 SCK pin (PB.13)
+ - Connect SPI1 MISO pin (PA.06) to SPI2 MISO pin (PB.14)
+ - Connect SPI1 MOSI pin (PA.07) to SPI2 MOSI pin (PB.15)
+
+ - STM3210C-EVAL Set-up
+ - Connect SPI3 SCK pin (PC.10) to SPI2 SCK pin (PB.13)
+ - Connect SPI3 MISO pin (PC.11) to SPI2 MISO pin (PB.14)
+ - Connect SPI3 MOSI pin (PC.12) to SPI2 MOSI pin (PB.15)
+ @note In this case SPI3 pins are remapped by software.
+
+ - STM3210E-EVAL Set-up
+ - Connect SPI1 SCK pin (PA.05) to SPI2 SCK pin (PB.13)
+ - Connect SPI1 MISO pin (PA.06) to SPI2 MISO pin (PB.14)
+ - Connect SPI1 MOSI pin (PA.07) to SPI2 MOSI pin (PB.15)
+ @note The jumper 14 (USB Disconnect) must be set in position 1<->2 in order
+ to not interfer with SPI2 MISO pin PB14.
+
+ - STM3210B-EVAL Set-up
+ - Connect SPI1 SCK pin (PA.05) to SPI2 SCK pin (PB.13)
+ - Connect SPI1 MISO pin (PA.06) to SPI2 MISO pin (PB.14)
+ - Connect SPI1 MOSI pin (PA.07) to SPI2 MOSI pin (PB.15)
+
+
+@par How to use it ?
+
+In order to make the program work, you must do the following :
+ - Copy all source files from this example folder to the template folder under
+ Project\STM32F10x_StdPeriph_Template
+ - Open your preferred toolchain
+ - Rebuild all files and load your image into target memory
+ - Run the example
+
+@note
+ - Low-density Value line devices are STM32F100xx microcontrollers where the
+ Flash memory density ranges between 16 and 32 Kbytes.
+ - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
+ - Medium-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 64 and 128 Kbytes.
+ - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
+ - High-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 512 and 1024 Kbytes.
+ - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
+
+ * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
+ */