aboutsummaryrefslogtreecommitdiff
path: root/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/GPIO/JTAG_Remap/readme.txt
diff options
context:
space:
mode:
Diffstat (limited to 'tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/GPIO/JTAG_Remap/readme.txt')
-rw-r--r--tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/GPIO/JTAG_Remap/readme.txt115
1 files changed, 115 insertions, 0 deletions
diff --git a/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/GPIO/JTAG_Remap/readme.txt b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/GPIO/JTAG_Remap/readme.txt
new file mode 100644
index 0000000..4e9c8f7
--- /dev/null
+++ b/tmp/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/GPIO/JTAG_Remap/readme.txt
@@ -0,0 +1,115 @@
+/**
+ @page GPIO_JTAG_Remap GPIO JTAG Remap example
+
+ @verbatim
+ ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
+ * @file GPIO/JTAG_Remap/readme.txt
+ * @author MCD Application Team
+ * @version V3.5.0
+ * @date 08-April-2011
+ * @brief Description of the GPIO JTAG Remap example.
+ ******************************************************************************
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ ******************************************************************************
+ @endverbatim
+
+@par Example Description
+
+This example provides a short description of how to use the JTAG IOs as standard
+GPIOs and gives a configuration sequence.
+
+First, the SWJ-DP is disabled. The SWJ-DP pins are configured as output push-pull.
+Five LEDs connected to the PA.13(JTMS/SWDAT), PA.14(JTCK/SWCLK), PA.15(JTDI),
+PB.03(JTDO) and PB.04(JTRST) pins are toggled in an infinite loop.
+
+Note that once the JTAG IOs are disabled, the connection with the host debugger is
+lost and cannot be re-established as long as the JTAG IOs remain disabled.
+
+To avoid this situation, a specified pin is connected to a push-button that is used
+to disable or not the JTAG IOs:
+ 1. push-button pressed at reset: JTAG IOs disabled and LED1 turned on
+ 2. push-button not pressed at reset: JTAG IOs unchanged and LED2 turned on
+
+Before starting this example, you should disconnect your tool chain debugging probe
+and run the example in standalone mode.
+
+@par Directory contents
+
+ - GPIO/JTAG_Remap/stm32f10x_conf.h Library Configuration file
+ - GPIO/JTAG_Remap/stm32f10x_it.c Interrupt handlers
+ - GPIO/JTAG_Remap/stm32f10x_it.h Header for stm32f10x_it.c
+ - GPIO/JTAG_Remap/main.c Main program
+ - GPIO/JTAG_Remap/system_stm32f10x.c STM32F10x system source file
+
+@par Hardware and Software environment
+
+ - This example runs on STM32F10x Connectivity line, High-Density, High-Density
+ Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density
+ and Low-Density Value line Devices.
+
+ - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
+ Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL
+ (Connectivity line), STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL
+ (Medium-Density) evaluation boards and can be easily tailored to any other
+ supported device and development board.
+ To select the STMicroelectronics evaluation board used to run the example,
+ uncomment the corresponding line in stm32_eval.h file (under Utilities\STM32_EVAL)
+
+ - STM32100E-EVAL Set-up
+ - Connect five leds to pins PA.13, PA.14, PA.15, PB.03 and PB.04.
+ - Use the Key push-button connected to pin PG.08 (EXTI Line8).
+ - Use LD1 and LD2 connected respectively to PF.06 and PF.07
+
+ - STM32100B-EVAL Set-up
+ - Connect five leds to pins PA.13, PA.14, PA.15, PB.03 and PB.04.
+ - Use the Key push-button connected to pin PB.09 (EXTI Line9).
+ - Use LD1 and LD2 connected respectively to PC.06 and PC.07
+
+ - STM3210C-EVAL Set-up
+ - Connect five leds to pins PA.13, PA.14, PA.15, PB.03 and PB.04.
+ - Use the Key push-button connected to pin PB.09 (EXTI Line9).
+ - Use LD1 and LD2 connected respectively to PC.06 and PC.07
+
+ - STM3210E-EVAL Set-up
+ - Connect five leds to pins PA.13, PA.14, PA.15, PB.03 and PB.04.
+ - Use the Key push-button connected to pin PG.08 (EXTI Line8).
+ - Use LD1 and LD2 connected respectively to PF.06 and PF.07
+
+ - STM3210B-EVAL Set-up
+ - Connect five leds to pins PA.13, PA.14, PA.15, PB.03 and PB.04.
+ - Use the Key push-button connected to pin PB.09 (EXTI Line9).
+ - Use LD1 and LD2 connected respectively to PC.06 and PC.07
+
+@par How to use it ?
+
+In order to make the program work, you must do the following :
+ - Copy all source files from this example folder to the template folder under
+ Project\STM32F10x_StdPeriph_Template
+ - Open your preferred toolchain
+ - Rebuild all files and load your image into target memory
+ - Run the example
+
+@note
+ - Low-density Value line devices are STM32F100xx microcontrollers where the
+ Flash memory density ranges between 16 and 32 Kbytes.
+ - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
+ - Medium-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 64 and 128 Kbytes.
+ - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
+ microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
+ - High-density Value line devices are STM32F100xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 256 and 512 Kbytes.
+ - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
+ the Flash memory density ranges between 512 and 1024 Kbytes.
+ - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
+
+ * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
+ */